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SUMMARY

The Basalt Waste Isolation Project (Rockwell Hanford Operations) is
conducting a safety assessment of nuclear waste storage in a repository on the
Hanford Site. Pacific Northwest Laboratory, in support of the assessment
effort, is generating radionuclide distribution coefficient data between
simutated groundwaters and basalts and their secondary mineral products under
the range of physicochemical conditions expected in a repository in basalt.

Experimental radionuclide distribution coefficients were determined for
crushed Pomona, Flow E, and Umtanum basalts at 230, 600, 1500, and
300°C at both normal oxygen partial pressure (0.2 atm) and Tower oxygen
partial pressure (Nlo-? atm), using a static technique. Little or no
changes in distribution coefficients were noted for selenium, uranium,
technetium, neptunium, or plutonium over the oxygen partial pressure range
noted above. Sodium dithionite and hydrazine are now under study as system
additives to lower Eh to -0.3 to -0.5 V, the conditions expected to prevail in
the closed repository in basait. Radium, strontium, cesium, and americium are
not expected to change oxidation states under repository conditions, while
jodine remains an anion in either oxidation state. Lowering the system Eh to
the -0.3 to -0.5 V expected in a repository in basalt should result in an
oxidation state change and enhanced removal from solution for selenium,
uranium, technetium, neptunium, and plutonium. Sorption of iodine was not
affected by the Eh changes.

Temperature change effects on most radionuclide distribution coefficient
(Xd) values over the 23° to 300°C range were major with the exception of
jodine and technetium, neither of which were appreciably sorbed at normal to
m10-7 atm oxygen partial pressure. Uranium Kd values increased with an
increase in temperature. In addition, uranium Kd values at 23°C decrease by
an order of magnitude in response to added CO%' in the solution. Cesium
basalt Kd values decreased from 23° to 150°C and increased from 150° to
300°C. Americium and plutonium Kd values increased from 100 to 200 mL/g at
23°C to several thousand m./g at 150°C. Strontium Kd values reacted to
temperature increases in an individualistic response that apparently depended

upon the basalt contacted. Flow £ basalt showed little strontium Kd change
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between 23° and 150°C, while an order of magnitude strontium Kd increase
was noted for Umtanum basalt over the same temperature range. Selenium Kd
values increased from 5 mi/g at 23°C to 100 m./g at 150°C.

The effect of radionuclide concentration on the Kd value was shown
graphically for cesium and strontium over a range of from 1 x 10'10 or
10"12 to 1 x 10_4ﬂ. Molarity was plotted versus Kd on log scales. The Xd
values remained linear with increasing cesium or strontium concentration until
V12 x 10’?& concentration were attained. Above 1 x 10“?&, the Xd values
decreased.

When the natural log of eguilibrium solution concentration {(moles/liter)
was plotted versus the natural log of equilibrium solids loading (moles/gram}
the strontium sorption data were linearized in a Freundlich plot. The cesium
sorption data, on the other hand, were linearized by the Dubinin-Radushkevich
relationship.

99

The use of “"Tc to study technetium concentration effects on sorption

was unsuccessful., Technetium-95m wi1) be utilized for this purpose in the
future,

Initial work was begun on Kd values obtained under controtied Eh and pH
conditions to simulate specific oxygen partial pressure and pH conditions
expected to occur in the repository environment. Eh values from +0.60 to
-0.55 V and pH values of ~6 to 10 are expected over a period of time in the

repository. Hydrazine and sodium dithionite are under investigation for use
in Eh contrel at the lower end of the Eh range and quinhydrone for inter-

mediate Eh range. The upper end of the pH range also can be duplicated with
hydrazine and the lower end with sodium dithionite.

iv
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INTRODUCTION

The primary purpose of the sorption work described in this report is to
assist the Basalt Waste Isolation Project in completing a safety assessment of
potential radioactive waste storage in a repository in basalt on the Hanford
Site. Specifically, the objective of the sorption work being conducted by
Pacific Northwest Laboratory is to determine the distribution of radionuclides
between geologic materials and synthetic groundwater solutions characteristic
of a repository in Hanford basalt and its physicochemical environment,

The probable radionuclide transport pathway from the repository to the
biosphere involves dissolution and movement in the groundwater, Migration of
the radionuclides in solution may be retarded by sorption on basalts,
secondary minerals, volcanic ash, or sediments contacted during groundwater
movements in the Hanford environment. One of the measures of the ability of
geologic materials to impede radionuclide migration velocity in relation to
groundwater velocity is the radionuclide distribution coefficient (Kd). A Kd
is defined as the ratio of the equilibrium radionuclide concentration on the
s01id phase (basalt, secondary minerals, volcanic ash, sediments) to the
equilibrium concentration of the radionuclide dissolved in solution, and has
the dimensions of solution volume per solid weight. The Kd values obtained
under conditions relevant to measured repository physicochemical conditions
will be used in both radionuclide transport modeling and in determining needs
and priorities for development of engineered barriers for specific
radioisotopes.

The radionuclides studied inftially were those found in irradiated
uranium fuel with long half-lives, or those continually generated in the
radioactive decay chains. The Kd data will be used to assess the ranking of
these radionuclides as to their relative migration rates in Hanford
groundwaters as affected by possible changes in solution composition, pH, Eh,
temperature, pressure, radionuclide concentration, and solids composition.
The experimental conditions strongly affect Kd values. These experimental
conditions, therefore, will simulate repository conditions as closelv as
possible.
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The Kd used in the sorption work was considered to be a function of the
solution-geologic material contact time duration. The primary reason for
expressing the distribution coefficient as a function of time was the slow
approach of the rock-solution system and, consequently, the radionuclide-
rock-solution system to equilibrium at temperatures below 100°C. The most
water-soluble portion of the basalts at all temperatures was the glassy
groundmass. The glass is 70 to 80 wt® 5102, according to electron
microprobe results and can, therefore, be considered essentially an amorphous
silica. The addition of several salts to the solution to simulate analyzed
natural Hanford basalt groundwaters depressed glass solubilities at 239¢
and, hence, may have facilitated the approach to rock-solution eguilibrium.
Equilibrium was approached in the Kd results, but very likely not attained.









































































































































































































































































































