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Abstract

Economists are increasingly using weather data and climate model output in analyses of
the economic impacts of climate change. This article introduces a set of weather data sets
and climate models that are frequently used, discusses the most common mistakes
economists make in using these products, and identifies ways to avoid these pitfalls. We
first provide an introduction to weather data, including a summary of the types of datasets
available, and then discuss five common pitfalls that empirical researchers should be
aware of when using historical weather data as explanatory variables in econometric
applications. We then provide a brief overview of climate models and discuss two
common and significant errors often made by economists when climate model output is
used to simulate the future impacts of climate change on an economic outcome of
interest.
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INTRODUCTION

There is a long history of using weather measures as explanatory variables in statistical
models. For example, Fisher (1925) examined the effects of rainfall on wheat yields and
Wright (1928) used weather as an instrumental variable to identify a demand function for
oils. Because weather is exogenous and random in most economic applications, it acts
like a “natural experiment” and thus in some settings allows researchers to statistically
identify the causal effect of one variable on an economic outcome of interest (Angrist
and Krueger, 2001). The relatively recent literature on the economic impacts of climate
change has turned the spotlight onto quantifying the effect of climate on a number of
economic outcomes of interest (e.g., agricultural yields, mortality rates, electricity and
water demand). This literature has often found a nonlinear relationship between climate
and these outcomes, with extremely warm temperatures being especially important (e.g.,
Schlenker and Roberts, 2009). Climate is a long average of weather at a given location.
To identify the causal effect of climate on these outcomes, the literature has generally
relied on either climate normals (i.e., long averages of observed weather in a cross
sectional setting) or day-to-day (or year-to-year) fluctuations in observed weather as
explanatory variables across time and space. The econometrician’s choice of a weather
versus a climate measure as an explanatory variable critically affects the interpretation of
the estimated coefficients in the econometric model: that is, whether the outcome is a true
climate response or a short run weather elasticity.

Anyone who has ever struggled with station-level weather data is well aware of
the fact that since the beginning of weather monitoring in the 1800s, stations are born and
die and almost all have a large number of missing observations. Further, there is not
necessarily a weather station in each location interest to the economist. In order to
overcome these issues, there are a number of gridded weather datasets, which provide
complete coverage over land by extrapolating existing weather information from
monitors over a grid. Although many of these datasets are free and easily imported into
formats used by economists, there are five pitfalls that researchers should be aware of
before using these datasets, which we discuss in detail below. First, while many of the
gridded weather products that are available reproduce very similar average temperatures

for the majority of grid cells, the derived deviations around the mean can be significantly



different. Second, if one is interested in creating a weather series for a geographic region,
simply averaging non-missing weather station data for stations in the region introduces
measurement error, which has well understood econometric consequences. Third, the
correlation between weather variables (e,g., rainfall and temperature) across space varies
significantly in sign and magnitude. This can lead to the classic problem of indeterminate
omitted variables bias in applications that fail to control for the full suite of weather
indicators. Fourth, weather indicators often display significant spatial correlation due to
the underlying data generating process as well as the extrapolation methods employed.
This may lead to significant multicollinearity, which in turn may lead to inflated standard
errors on included weather variables. Finally, because the weather stations used to
construct the gridded products come in and out of existence, there may be artificial
variation and breakpoints in the temperature series, which the econometrician needs to
examine, especially when working on a small geographic region.

The majority of recent economic studies use the statistically estimated causal
effect of weather on the economic outcome of interest to simulate the future impacts of
climate change, based on the output of Global Climate Models (GCMs), on that outcome.
GCMs” are physics-based models that provide long run predictions of climate. These
models are sometimes also called AOGCMs [Atmosphere-Ocean GCMs], or simply, and
most commonly, climate models.

Economists are increasingly using weather data and climate model output in
econometric analyses to simulate future economic impacts of climate change. However,
our experience has been that most economists have little or no understanding of GCMs
and that they often make critical mistakes in using their output. Thus, our goal here is to
provide economic researchers considering the use of weather and climate model output
with a guide to what products are available and, most importantly, with a discussion of
the most common mistakes and how to avoid them. We begin in the next section with an
introduction to weather data, including a summary of the types of datasets available and a
discussion of five common pitfalls that empirical researchers should be aware of before

using these weather data products in econometric settings.

2 Early on these were known as General Circulation Models (see e.g., Phillips 1956).



This is followed by a brief overview of GCMs -- how they work and what output
they provide — as well as a number of suggestions for further reading. Perhaps most
importantly, we identify two common and significant errors that often occur when GCM
output is used to simulate the future impacts of climate change on an outcome of interest,
which are related to GCM model selection and spatial and temporal aggregation of GCM

output. We present a summary and conclusions in the final section.

AN INTRODUCTION TO WEATHER DATA

As noted in the introduction, the difference between weather and climate is basically a
matter of time. Weather is the condition of the atmosphere over a short period of time,
while climate is the behavior of the atmosphere over a relatively long period of time.
Since roughly 1850, weather outcomes have been measured and recorded through a
global network of weather stations and, more recently, satellites. Daily weather data at
stations throughout the world are freely available from the U.S. National Oceanic and
Atmospheric Administration (NOAA 2011a). Additional raw station data (with varying
degrees of spatial and temporal coverage and temporal resolution) can be found at NOAA
(2011b). However, these sources do not provide a complete record because many
countries regard their weather data as proprietary and often charge exorbitant fees for
such data (e.g., India), thus effectively limiting their availability. Moreover, the spatial
and temporal coverage of weather stations varies greatly across the globe, with higher
spatial density and longer time series at stations in countries with historically higher

incomes (e.g., the U.S. and the EU 15).

Gridded Weather Data Products

Gridded weather data sets use interpolation across space and time to combine available
weather station data into a balanced panel of observations on a fixed spatial scale or grid.
This approach deals with the problem of missing observations at a given station or
missing data because a station does/did not exist at a particular location. One such
product, the Parameter-elevation Regressions on Independent Slopes Model (PRISM,

2009), produces monthly estimates of weather on a 2.5x2.5 mile scale for the contiguous



United States. Each “grid” approximates a weather measure for the spatial unit by
interpolating the daily station data while accounting for elevation, wind direction, rain
shadows, and many other factors. This elaborate procedure is possible in the US because
there are several thousand weather stations that produce and make available daily records
for many different weather indicators.

The Climatic Research Unit at the University of East Anglia produces a global
gridded weather data set (CRU, 2013) that provides monthly estimates on a 0.5x0.5
degree scale. This scale corresponds roughly to grids that are 35 miles across at the
equator. Willmott, Matsuura and Legates (2010) provide another gridded data product
(often referred to as the “Delaware” or “UDEL” dataset because it was produced by the
University of Delaware), which has the same spatial and temporal resolution as the CRU
(2008) product, but uses a somewhat different dataset and extrapolation algorithm. Most
notably, the CRU product provides data on both monthly minimum and maximum
temperatures (i.e., the average of all daily minimums and maximums), while the
Delaware data set provides only the monthly average temperature.’

Many data products include the number of stations and the dates of coverage for
each grid. The most pronounced absence of data is for poor regions whose governments
do not prioritize weather data collection and for regions with few inhabitants, such as
deserts or over oceans. In fact, there are some grids covering land areas that do not have

a single weather station.

Data Assimilation

An alternative approach to the spatial extrapolation algorithms just discussed that climate
scientists have developed for filling in the “holes” for observationally sparse regions is
“data assimilation”, which produces data sets that the climate community generally calls
“reanalyses”. Data assimilation is the process by which observational data are combined
with a physics-based model (similar to a climate model, which is discussed later). The
model increases the extent of information from locations where observations exist to

more data-sparse regions, thus providing estimates of weather/climate for data-sparse

3 The CRU dataset (version TS2.1) ended in 2002. The updated dataset version TS 3.2 extends coverage
through 2011. In early 2013, the Delaware dataset coverage ends in 2008, but it is currently also extended.



regions that are based on physical laws described by the model as well as observations
elsewhere. These types of data sets have been used by applied economists studying the
developing world (e.g. Guiteras, 2010, Schlenker and Lobell, 2010, Hsiang et al., 2011),
but they have not been widely adopted.

The process of data assimilation is not unlike an economist’s use of a structural
model to interpolate missing observations. Data assimilation seeks to minimize a loss
function subject to a large set of difference equations, which are derived from
fundamental physical principles (e.g., the conservation of energy). More recently, such
reanalysis efforts have tried to estimate the state of the global environment over a long
sequence of periods by optimally fitting a single dynamic model to all those periods
simultaneously. This process is difficult and costly, and thus only a few research centers
offer regularly updated data sets. The National Center for Environmental Prediction
(NCEP) in the United States (Kistler et al. 2001) and the European Center for Medium-
range Weather Forecasting (ECMWF, 2010) produce the two most commonly used
reanalysis products.

It is important to note that reanalysis output cannot be forced to perfectly match
observational data. This is because reanalysis output has both limited resolution and is
influenced by the GCM even when observations are present. Moreover, reanalysis is
conducted with models that, like economic models, are imperfect and contain systematic
biases. Constraining these models with the data that are “fed” into them does not always
correct satisfactorily for the model’s built-in biased behavior. Although reanalysis
provides estimates that may be better than what would otherwise be available for regions
where observations are sparse or of poor quality, the reanalysis output for such regions is
still basically a model prediction, which is likely to be less accurate than for more

observation-rich regions.

FIVE POTENTIAL PITFALLS

We turn next to a discussion of the five main pitfalls of using these weather data products
in econometric settings and how to avoid them. To motivate these issues it is important to
recognize that studies on the economic impacts of climate change on economic sectors

(e.g. agriculture) have used two distinct approaches to estimate response functions: First,



early studies relied on cross-sectional variation in weather or climate in different
locations to explain variation in the outcome variable of interest (e.g., Mendelsohn,
Nordhaus and Shaw, 2004, Kelly, Kolstad and Mitchell, 2005). However, one limitation
of the cross-sectional approach is that there may be unobservable variables that vary
across these spatial units, which are likely correlated with the climate/weather indicator
used. Therefore, recent studies have adopted a second approach that focuses on a panel
data analysis, which controls for space and time fixed effects. (e.g., Auffhammer,
Ramanathan and Vincent, 2006, Deschenes and Greenstone, 2007, Schlenker and
Roberts, 2009). Fixed effects estimators rely on variation across time within a spatial unit
(e.g., a county) as the source of identifying variation rather than variation across these
spatial units. This means that the underlying identification relates time series deviations
from the location-specific mean in the climate indicators to deviations in the outcome

variable of interest.

Issue 1: The Choice Of Weather Dataset Matters!
Although the economic implications of either approach (i.e., long-run versus short-run
adaptation in panel versus cross-sectional papers) have been discussed elsewhere (e.g.,
Lobell and Burke, Chapters 5+6, 2010), the practical issue of which weather data set to
use has received no attention in the literature. As we will show here, most gridded
weather data sets agree on the average value of weather variables across space (i.e.,
places that are on average hot or cold), but they are not in full agreement about the timing
or magnitude of deviations from this mean, which is the source of identifying variation in
panel data studies. This is a more serious problem for areas with a small number of
weather stations because the data has to be interpolated from stations that are further
removed and hence might experience idiosyncratic shocks. We show this lack of
correlation in the deviations using the three global gridded weather data sets discussed
earlier:
(1) The CRU data set (version TS2.1), which uses a statistical interpolation procedure
without reanalysis and gives monthly minimum and maximum temperature as

well as precipitation on a 0.5x0.5 degree grid (Mitchell and Jones, 2005).



(i) The Willmott, Matsuura and Legates (2010) UDEL data set, which uses a
statistical interpolation procedure without reanalysis and gives monthly average
temperature as well as precipitation on a 0.5x0.5 degree grid.

(iii)) The reanalysis data from NCEP/National Center for Atmospheric Research
(NCAR) (Kistler et al. 2001), which gives daily minimum and maximum
temperature and total precipitation on a non-uniform grid (1.875 degrees
longitude, and roughly 1.90 degrees latitude, although the latter is not evenly
spaced).’

CRU and UDEL are statistically interpolated, while NCEP uses data assimilation with a
physical model as discussed above. We will focus here on two variables that are
available in all three data sets: average temperature and total precipitation. We calculate
country averages by taking a weighted average across grid cells that overlap a country’s
boundary for the months of the primary maize growing season (Sacks et al., 2010). We
define the growing season as extending from the first of the month in which it begins to
the end of the month when it ends because two of the three weather data sets provide only
monthly values. In this way we are able to average observations over the same time
period for all three data sets. Next, we calculate the weight given to each grid in a county
as the share of the country’s land area that the grid covers. This allows us to derive the
average temperature (the average between the minimum and maximum temperatures for
those datasets that report the minimum and maximum) as well as total precipitation by
country over the period 1960-1999. Several recent studies have used similar country-
level aggregates and averages (Dell et al. 2008, Schlenker and Lobell, 2010, Hsiang
2010).

Correlations of country level climate normals across data products.

First, we compare average outcomes across locations by deriving average temperature
and precipitation over 1960-1999 to get one observation per country. We find that the
correlation between the data based on the statistical interpolation procedures (CRU and
UDEL) for average temperatures is 0.998, while it is 0.990 between NCEP and either
CRU or UDEL. For total precipitation, the correlation between CRU and UDEL for

4 This data set is sometimes called the NCEP/NCAR/DOE (i.e., U.S. Department of Energy) reanalysis.



average season-total precipitation is 0.985 and 0.882 between NCEP and CRU (and
0.883 between NCEP and UDEL). This indicates that the three data sources provide
similar estimates concerning which areas of the world are hot and which are cold on
average. This is a reassuring finding for studies that rely on cross-sectional variation
across countries. For both average temperature and average precipitation, the correlation
is slightly lower between the reanalysis data (NCEP) and the two statistical interpolation
techniques (CRU and UDEL).’

Correlations of country level annual fluctuations across data products

It is difficult to predict how weather variables change year-to-year when you do not
observe weather in a specific location or time period. To illustrate this point,we construct
annual deviations from the country-specific mean in each data set over the 1960-99
period. This provides us with a 40-year panel rather than a single cross section of
normals. We find that for average temperature, the correlation coefficients between
models are significantly lower compared to the those discussed in the previous section.
The pairwise correlation coefficients are: CRU and UDEL: 0.917; NCEP and CRU 0.742;
NCEP and UDEL: 0.724. For precipitation, the correlation coefficents across datasets are
even lower. This is likely due to the fact that precipitation is less smooth than temperature
in space and time, which makes the extrapolation algorithm employed more important.’®
The pairwise correlation coefficients are: CRU and UDEL: 0.698; NCEP and CRU:
0.299; and NCEP and UDEL: 0.269. While the correlations are especially low when we
compare deviations in the reanalysis data (NCEP) to the statistical interpolation methods
(CRU and UDEL), the drop to a correlation coefficient below 0.7 for CRU-UDEL is
significant as well, because both methods are statistical interpolation routines using raw
station data. So whether an outcome is above or below normal -- and by how much --

crucially depends on what weather data set is being used.

5 We also examined a fourth dataset, NCC (Ngo-Duc et al., 2005), which is a hybrid of NCEP and CRU.
That is, it scales the NCEP reanalysis output using a constant monthly factor so that the 1948-2000 average
equals the CRU average. Not surprisingly, for our 1960-1999 sample, the correlation between NCC and
CRU for average season-total precipitation exceeds 0.99.

6 For some reanalysis products precipitation is generated by the model even if precipitation observations
exist.



Across Country heterogeneity in correlations of annual fluctuations

The average correlations for both cross-section and panel data mask considerable
heterogeneity by country. To illustrate this point, we construct weather shocks by
weighting each grid cell by the amount of maize that is grown within it (Monfreda et al.,
2005), a common approach for examining the agricultural impacts of climate change. We
find that the pairwise correlation coefficient among weather deviations for season-total
precipitation in the United States are: CRU and UDEL: 0.963; NCEP and CRU: 0.758;
and NCEP and UDEL: 0.714. The deviations are much more highly correlated than when
all countries are included, presumably because of the good observational network in the
United States. In contrast, precipitation shocks constructed over the maize growing area
in Mexico have pairwise correlation coefficients of: CRU and UDEL: 0.726; NCEP and
CRU: 0.069; and NCEP and UDEL: 0.307. This illustrates that in regions with limited
monitoring networks, which is generally the case in the developing world, the weather
shock used to identify response coefficients in econometric estimation varies significantly
depending on which data source is used.

In summary, when economists are conducting panel studies that rely on deviations
from averages, they should be careful about which data source they use because
measurement errors - and related statistical concerns such as attenuation bias - are
amplified by demeaning explicitly or via fixed effects (Fisher et al., 2012). Conducting
sensitivity checks by using more than one data source can be helpful in determining

whether the results are robust.

Issue 2: Averaging Daily Station-Level Data Across Space

Another pitfall of using weather data products in econometric estimation concerns
averaging station level data across space. Several economic studies that link economic
outcomes to weather (or control for weather) use inverse distance-weighted averages for
the closest available weather stations (see e.g., Mendelsohn et al. 1994, Deschenes and
Greenstone 2007). As with the panel versus cross section data issue, such an approach
works well for a cross sectional analysis, but becomes problematic when fixed effects are
included in a panel data setting, especially when both location and time fixed effects are

included. This is because weather station data are notoriously spotty (i.e., not only do
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weather stations come in and out of existence, they are also often turned off or values are
simply not recorded). A time series of inverse distance-weighted averages of weather
station data is likely to include variation from the birth and death of stations and
observations that are missing for a given period. When location fixed effects remove
average weather outcomes at the interpolated location, and temporal fixed effects are
included, the remaining weather variation is greatly diminished and the variation that is
due to stations coming in and out of the sample can potentially account for a significant
share of the overall variance. For example, Fisher et al. (2012) provide an example
where the noise-to-signal ratio after removing location and temporal fixed effects is 7:1,
i.e., the measurement error greatly exceeds the variation that is used in the identification,
which is likely to result in significant attenuation bias in estimation.

A possible alternative to averaging weather station data that report weather
indicators on a given day is to first fill in missing weather station data by regressing it on
the closest surrounding stations and then to predict missing observations at a station
(Schlenker and Roberts 2009, Auffhammer and Kellogg 2011). Then the full weather
record is derived by interpolating a balanced panel of “patched” weather station data.
This approach keeps the set of stations that are used in the interpolation constant and

ensures that the resulting variation is not caused by variation in station coverage.

Issue 3: Correlation of Weather Variables

The third pitfall relates to the classic omitted variables problem. Many economic studies,
including (but not limited to) those estimating climate change impacts, have focused on
the impact of one weather variable in isolation, e.g., regressing income only on
precipitation shocks (Miguel et al., 2004). While precipitation shocks are exogenous and
hence a plausible instrument for income, it is important to note that to the extent that
precipitation and temperature are correlated, the coefficient on precipitation will measure
the combined effect of the two variables. This is particularly important in the climate
change context if the estimated coefficient is used to estimate climate change impacts
under a climate influenced by human activity. In order to obtain unbiased estimates of

the effects of changes in precipitation and temperatures, which are historically correlated,
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both variables must be included in the regression equation, especially if the correlation is
predicted to change in the future.

To underline the importance of this observed correlation between different
climate indicators, Figure 1 shows the correlation coefficients between annual average
temperature and total precipitation for each of the CRU (version 2.1) time series (TS)
grid cells for the years 1960-1999. The map indicates clearly that the correlations vary
greatly and that there are regions with both significant positive and significant negative
correlation between precipitation and temperature. This implies that if one controls for
only one of the two weather variables in a regression, the sign of the omitted variable bias
will depend on the location under study. Hot areas generally show negative correlation
(as high as -0.7) because more precipitation and the associated evaporation results in
cooling and lower average temperatures. On the other hand, a positive correlation is
generally observed in cooler areas because increased precipitation is associated with the
import of warm and humid tropical air, and cloud cover keeps the underlying surface
warmer. It is noteworthy that some large and not-so-large countries have areas of both
negative and positive correlation (e.g., US, Russia, France, Spain).

It is also important to note that climatic variables other than temperature and
precipitation (e.g., relative humidity, solar radiation, wind speed and direction) may bias
empirical estimates through the classic omitted variables problem. The existence of these
other variables and their correlation with temperature or precipitation may be location
specific. For example, in a panel regression with country and year fixed-effects and
country-specific trends, Hsiang (2010) finds that exposure to hurricane winds in
Caribbean Basin countries is correlated over time with a country’s local surface
temperature, with each one degree Celsius increase in a country’s summer surface
temperature being correlated with a 2.6 (+/-1.2) meter per second increase in area-
averaged wind exposure in that country. This increase in wind exposure is substantial,
since it raises expected hurricane damages by 20% (Hsiang and Narita, 2012), suggesting
potentially biased estimates of temperature impacts if wind exposure is excluded from the
analysis.

In summary, if temperature, precipitation and other atmospheric variables are

correlated, a study that seeks to extrapolate (based on an estimated response function)
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potential climate impacts must include all of these variables in order to obtain an

unbiased estimate of the effect of each variable.

Issue 4: Spatial Correlation
Climate variables are inherently correlated across space and time. While variation in
weather is often considered random across time, variation across space displays
significantly less “randomness”, especially at smaller spatial scales. This means that
some of the weather or climate variables that we use in econometric estimation are highly
spatially correlated and that estimates of standard errors will be biased unless steps are
taken to correct for spatial correlation.

To provide a sense of the degree of spatial correlation in these datasets, Figure 2
shows the average correlation of annual mean temperature at each CRU (version TS 2.1)
grid cell with the eight surrounding grid cells for the 1960-1999 period. As discussed
earlier, errors might propagate from one grid cell to the next for both interpolated station
data and data assimilation methods. If the model correctly accounts for all weather
variables, the spatial dependence of the regressors will not be a problem. Most economic
studies to date control only for temperature and precipitation. However, other weather
variables such as wind direction, humidity, and vapor pressure might also have an impact,
and these omitted variables are presumably spatially correlated as well. If they have a
causal effect on the outcome of interest, as for example, vapor pressure deficit (which is
closely related to relative humidity) has on crop yields (Roberts et al., forthcoming), then
they become part of the error term, which will then also be spatially correlated. Thus, it
is imperative to take this spatial correlation into account in econometric estimation.’

There are three main approaches to account for spatial correlation:

(1) Use a spatial weighting matrix. This is most efficient when the weighting

matrix is known, but it will result in biased estimates if the weighting

matrix is misspecified;

7 This will generally result in significantly larger standard errors. For example, Schlenker and Roberts
(2009) find that accounting for spatial correlation increases standard errors by a factor of 6.
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(i1) Use the nonparametric approach provided by Conley (1991), which does not

require one to specify a weighting matrix; or

(ii1)) Use a grouped bootstrap where years are resampled and replaced. This

approach requires that year-to-year fluctuations be random, but errors
within a year can be correlated.”

Finally, it is important to note that many of the gridded weather data sets
discussed above simply interpolate station data. In data-sparse regions, several grids
might be linked to the same set of weather stations. This will lead to highly
multicollinear weather variables that do not allow for proper identification (especially in
a panel setting where grid averages are removed) because the remaining variation is
simply due to the fact that slightly different weights have been used for different weather
stations.

In summary, one has to adjust for spatial correlation to obtain unbiased standard

errors and valid confidence bands.

Issue 5: Endogenous Weather Coverage

The final pitfall concerns why we observe weather stations in some areas and time
periods and not in others. One strand of the economics literature examines how the
relationship between weather variables and economic variables of interest might change
due to large policy changes, such as a country becoming independent, or an extreme
exogenous shock, such as a natural disaster (Kahn, 2005). The most obvious method for
accounting for such changes is the now standard difference-in-difference analysis. One
concern with this approach is that if the degree of measurement error varies between the
pre and post intervention (or event) date, the treatment effect estimate will very likely be
biased because of classical attenuation bias concerns. However, if weather variables are
measured consistently, the difference-in-difference regression design will be free of this

bias. Thus it is important that weather station coverage not change with the policy change

8 However, in many areas of the world, the independence of year-to-year variation is questionable because
of planetary-scale climate oscillations, such as the El Nifio-Southern Oscillation, which may be
autoregressive (Hsiang et al., 2011).
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(or exogenous shock) because it could introduce measurement error and result in a
downward bias in the estimated coefficients in the post-intervention period.’

To examine this issue in more detail, we downloaded daily data from the Global
Summary of the Day database maintained by NOAA’s National Climatic Data Center
(NOAA, 2011a), counted the number of days a weather station within a country had non-
missing observations, and summed it across all stations. This provides the total count of
daily station-level observations in a country. While most countries show an upward trend
in this measure over time, the results for some transition countries are striking. For
example, Romania had an upward trend until it peaked at 67,727 station-days in 1988.
Following the fall of the iron curtain in 1989, the number decreased rapidly until it
stabilized around 11,000 station-days in 2003-2007, decreasing coverage by a factor of
six. This suggests that the results from a difference-in-difference analysis of how, for
example, farmers responded to weather shocks before and after the fall of the iron curtain
would have to be interpreted with caution.

In summary, when using any of the gridded data products available, it is crucial to
determine whether the underlying station data have changed over time (i.e., before and

after a major shock or event).

CLIMATE MODELS AND THEIR OUTPUT

If the econometrician has successfully estimated the causal “dose-response” relationship
between socio-economic outcomes and historical weather or climate data, often the
logical next step is to use that estimated relationship to predict future impacts due to
anthropogenic climate change. This step requires making forecasts of future climate
under the assumption of heightened atmospheric concentrations of greenhouse gases,
which is usually accomplished by employing output from a spatially-explicit physics-
based model of the global climate, which, as discussed in the Introduction, is known as a
Global Climate Model or GCM. Below we describe what GCMs are and some of the

major potential pitfalls for economists using these in the simulation of future economic

9 This issue is closely related to the discussion about spatial correlation that is due to different interpolation
methods over a sparse data matrix.
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impacts of climate change.

Components and Properties of GCMs
Although GCMs have several components that are parameterized using statistical
procedures, the core of every GCM is a set of deterministic mathematical equations that
describe the laws of motion for a fluid. These laws were derived in fluid mechanics
laboratories over centuries and GCMs use numerical approximations of these laws. To
solve these equations, GCMs approximate the atmosphere and ocean, which are
continuous fluids, with some form of numerical discretization. The simplest way to
visualize this procedure (though it is less sophisticated than what is typically used in
current practice) is a three-dimensional grid of “boxes,” each of which possesses several
state variables, for example temperature or air pressure, which vary across space from
one box to the next and evolve over time, but are uniform within each box.'° Given a
three-dimensional structure of these state-variables at time ¢, a GCM solves for the
variables’ structure at time ¢#+/ using the model’s numerical representation of fluid-
mechanical laws. Following an initialization that specifies the structure of these variables
in the very first time period, GCMs iteratively repeat this calculation for time-steps of
about 30 minutes, gradually constructing a projection for the future state of the world."'

GCMs typically take forecasts of human activity as exogenous. To make climate
projections across different GCMs comparable, modelers simulate future climate
outcomes under a set of standardized “scenarios” that exogenously prescribe a time series
of future greenhouse gas emissions, aerosols, and other short-lived pollutants based on
demographic, economic and regulatory assumptions.'

When the emissions scenario is held fixed, GCMs differ primarily in their

numerical representations of the climate’s state and its various processes. Having

10 The Intergovernmental Panel on Climate Change (IPCC 2011a) provides a brief description and graphic
to illustrate this structure.

11 For introductory materials on the structure of these models, see Tebaldi C. and Knutti, R. (2010) and
Section 8.1.3 of IPCC (2007). For more advanced descriptions consult Warner (2011) or IPCC (2007).
Donner, Schubert and Somerville (2011), Weart (2008) and Weart (2011) provide detailed histories of
GCM development.

12 These assumptions and their resulting scenarios were established in the IPCC’s Special Report on
Emissions Scenarios (SRES) (IPCC, 2000) and are summarized in IPCC (2011b).
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discretized the atmosphere and ocean with grid-cells (the aforementioned “boxes”) of
various resolutions'®, GCMs selectively represent processes that occur on spatial scales
smaller than these grid-cells - known as “sub-grid scales” - using “parameterizations,”
which are formulations that are not based as directly on the known laws of physics as are
the resolved fluid dynamics, but incorporate a greater degree of empiricism or theoretical
construction. For example, chemical reactions, vegetation responses, cloud formation,
and rainfall are all sub-grid scale processes whose numerical representations may vary
across GCMs (Section 8.2 in IPCC, 2007). Unlike the core fluid-mechanical equations
that have a standard representation in a discretized global model, there is no standard
representation of these sub-grid scale processes, and thus the improvement of their
representation in GCMs continues to be an active area of research. There have been
various community efforts to try to accelerate advances in this area by comparing the
performance of models, most notably the Coupled Model Intercomparison Project or
CMIP (see Meehl et al, 2007), and conducting studies that attempt to score the forecast
ability, known as “skill”, of different models along various dimensions (see Reichler and
Kim (2008) and Sections 8.3 and 8.4 of IPCC (2007)). Different models have different
“skill,” and thus we advise economics researchers who are studying specific regions or
processes and are interested in selecting a GCM projection to first consult the appropriate

literature as well as specialists in the field."

Differences in Model Predictions

There are over 20 well-known climate models, all with readily available output.”” This

3 See the supplemental tables to Reichler and Kim (2008) or IPCC Scientific Basis Table 8.1
[http://www.ipcc.ch/publications_and_data/ar4/wgl/en/ch8s8-2.html] for a concise summary of these
climate model properties.

14 For researchers seeking intuition for the numerical setup of GCMs, they can download a one-dimensional
climate model tutorial built by the Goddard Institute of Space Studies for teaching purposes
(http://icp.giss.nasa.gov/education/geebitt/). More ambitious researchers can download and run a full open
source GCM, the Community Earth System Model, produced by the National Center for Atmospheric

Research (http://www.cesm.ucar.edu/models/cesm1.0/).

15 Climate projections from GCMs running IPCC’s Special Report on Emissions Scenarios are available
free of charge, and model output can be downloaded from the IPCC’s data distribution website
(http://www.ipcc-data.org/) or the CMIP data distribution website (https://esg.lInl.gov:8443/index.jsp). For
summaries of climate projections from GCMs running SRES scenarios, see IPCC (2007) chapter 10 for
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section demonstrates that the choice of GCM has significant ramifications for impact
estimation. In their survey of economic assessments of climate change impacts, Burke et
al. (2011) found that 50% of the studies used the model developed by the Hadley Centre
to calculate economic climate change impacts across a variety of sectors, of which 17%
used only the Hadley model. Among health impact studies, 38% relied on the Hadley
model alone. However, there is no evidence that the Hadley model or, in fact, any other
model should be the preferred climate model to use. This is supported by the fact that for
some climate indicators, such as precipitation, the predictions for certain regions vary
drastically across models. In the extreme, some models predict wetter summers for West
Africa and others predict drier summers — all using the same SRES scenarios.

One solution to overcoming the issue of having to choose one GCM is to use
model or ensemble averages (e.g., Tebaldi and Knutti, 2007). This decreases the reliance
on a single model. However we believe it is important to either report the impacts for a
number of climate models separately or to average them and indicate the variability in
impacts across models. This is not difficult to do and, given the low costs of data storage
on personal computers and the access to free bandwidth for most academics, there is no
reason not to. Alternatively, if predicted changes within a study area vary more across
than within climate models, then presenting a set of uniform scenarios might be
informative and also highlight the sensitivity of the results.

We next turn to a set of issues that arise when one tries to match the time and

spatial scale of the GCM to that of the econometric model for simulation purposes.

Aggregation Bias

As described earlier, GCMs effectively divide the earth’s surface into a discrete grid,
where there is variation in climate across discrete grid cells, but climate statistics are
homogenous within each cell. For example, if one uses a climate model that provides
output on a monthly basis, it is assumed that temperatures within the month and among
all locations within the grid cell are constant'®. Such temporal and spatial aggregation

might be inappropriate and produce biased impact estimates. While going forward, many

global summaries and chapter 11 for regional summaries. The IPCC also provides an interactive data
visualization application online (http://www.ipcc-data.org/ddc_visualisation.html).
'® There are some models which have within grid deterministic variation, but this is a relative recent effort.
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models are being run at a resolution that is higher than 2x2 degree (for the next IPCC
(ARS) report), most current economic impact studies (e.g., Deschenes and Greenstone,
2007) used model output at a 2x2 degree or coarser resolution. While a 2x2-degree cell
may be “small” from the perspective of the global climate, it is not small from the
perspective of human systems. For example, a 2x2-degree grid spacing at the equator is
equivalent to a grid width of 222 kilometers (138 miles). It is not hard to imagine that a
stretch of this length will have vastly varying climates (e.g., driving east from San
Diego’s coastal climate to El Centro’s dry and hot desert climate). This aggregation issue
becomes especially problematic if the underlying topography is mountainous or located
near the ocean.

Quantifying Aggregation Bias

To examine the severity of this aggregation bias, we compare average temperatures
predicted by the Hadley III GCM to a fine-scaled (2.5x2.5 mile grid) weather data set
(PRISM, 2009) for the 48 contiguous United States (see Figure 3). Figure 3 shows quite
clearly that this bias is most significant in mountainous areas, which are also usually less
populated areas. At the extremes, we see that the bias can reach +25°C at some
mountaintops. This is not surprising because surface temperatures tend to fall about 7°C
per 1000m in elevation, which means that mountains are much colder than areas at lower
elevations in the same grid cell. The aggregation bias exists not only for remote
mountainous regions but also for heavily populated areas, which are often located near
oceans. In fact, figure 3 indicates that the entire western seaboard has biases, and that
those biases are significantly greater than any predicted warming. The average absolute
difference in temperature across the entire United States is 3.0°C and the root mean
squared error is 4.0°C, which are both significantly larger than the average predicted
changes by the end of the century under the SRES forced climate change scenarios. This
means that if one simply interprets GCM output at a grid cell as an unbiased forecast of
climate at any location in a grid cell, the bias may be a much larger driver of projected
impacts than actual warming.

Moreover while the severity of the aggregation bias varies by location, it also
varies by the climate indicator one is using. For example, if we use the annual mean

temperature rather than the average daily maximum July temperature, the absolute error
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reduces to 1.8°C, and the root mean squared error to 2.4°C. Thus the magnitude of the
bias varies by location and indicator used.

This bias is especially relevant for studies of the economic impacts of climate
change. These studies generally parameterize a response function between for example,
electricity demand and temperature, using observations from a weather station-based
dataset and observed electricity demand. In order to calculate the counterfactual
electricity demand under a scenario with climate change, one must have a baseline
climate and a counterfactual climate. However, if one uses an average of observed
gridded weather product discussed above as the baseline climate and predictions of
climate from a GCM as the counterfactual climate at a future date, the resulting estimated
impacts will be due to both the simulated warming and the bias displayed in Figure 3. If
the response function is nonlinear in weather/climate, as has been shown to be the case in
agriculture (e.g., Schlenker and Roberts, 2009) and electricity demand (e.g., Aufthammer
and Aroonruengsawat 2011 & 2012), then this bias may be amplified or offset depending
on the nature of the non-linearity. However, in either case, the resulting impact estimates
will be biased. We next turn to a simple approach, which overcomes this issue.

Correcting Aggregation Bias

The literature has suggested several mechanisms to correct such biases. In addition to
using climate models with finer resolutions, the most commonly used approach is based
on regression methods, whereby the researcher establishes a correlation between the
historical grid values from the GCM and local station-based data and then uses this fitted
regression relationship with future values of GCM output to arrive at “downscaled” GCM
predictions.!”” Fowler et al. (2007) provide a review of the main approaches used in
practice and compare their performance at selected locations. They note that there is a
large literature examining the performance of different downscaling approaches for
different regions and climate variables. They conclude that there is no single best
approach for all variables (e.g, maximum temperature, rainfall, wind speed) and
locations. Moreover, they find that downscaled versions of all GCMs at a desired

temporal resolution covering all regions of interest are simply not available. If one is

17 Innovations on this basic approach have involved non-linear estimation, neural networks, and Bayesian
methods.
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interested in daily values, which are important for many economic applications, including
agriculture and electricity demand, then a downscaled version of a climate model
delivering daily output is needed. Such data sets are available for some regions, such as
California (Cayan, 2009), or at coarser time resolution nationally (e.g., Maurer et al,
2007) and globally (e.g., Maurer 2009).

In the absence of an appropriate downscaled dataset for the region and time
resolution of interest, the most common practice is to derive predicted changes for each
(coarse) GCM grid and then add these to an average of the historic baseline data used in
the parameterization of the response function, thereby preserving within-GCM grid
variation. This approach subtracts out the location-specific bias only if this bias is
stationary in time. However, this approach shifts the historic time-series at a location by
the predicted change, leaving its variance unchanged. If researchers are concerned about
predicted changes in the mean and the variance, then the fine-scaled historic deviations
from location-specific averages can be rescaled by the ratio of the predicted variance at
the GCM grid in the future relative to the baseline. It should be noted, however, that
there is much less consensus among models concerning the predicted changes in the
variance than in the mean.

In summary, it is crucial that economists not simply use GCM output as a direct
forecast of future climate when estimating impacts relative to a weather station-based
baseline climate. One simple solution is to simply add the predicted change in weather to

the baseline climate when calculating impacts.

CONCLUSIONS

This article has reviewed the most common gridded weather products and outlined five
pitfalls when using them as regressors in econometric models. Specifically, we
emphasize that weather anomalies (deviations from normal) vary greatly between data
sources, and are highly correlated between weather measures and across space.
Researchers should incorporate these features when constructing and using weather
shocks. Simply averaging weather stations without correcting for missing values will
result I anomalies that consist to a large part of noise. We also discuss the basic features

of Global Climate Models and outline significant issues related to spatial scale when
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using these in the estimation of economic impacts.

In closing, we want to emphasize that when using gridded datasets of historical or
future climate, it is important to recognize that both types of datasets are very different
from observed weather. Moreover, although historical gridded data products are very
convenient because they often provide highly disaggregated weather for large geographic
regions over long time periods, this increased coverage comes at a cost. That is, the birth
and death of weather stations, the frequent occurrence of missing values, and the spatial
correlation introduced by extrapolation algorithms, all create potential biases in the
estimated coefficients and standard errors if one uses these weather products as
independent variables in econometric analyses. In addition, when using Global Climate
Model output as a counterfactual of future climate, the choice of model has significant
implications for the sign and magnitude of the estimated impacts. This means it is
important to account for the location-specific biases of each model to prevent further bias

impact estimates.
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Figure 1: Correlation between Annual Average Temperature and Total Precipitation in
Each Grid Cell (CRU TS 2.1 Data 1960-1999)
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Source[s]: Authors’ calculations.
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Figure 2: Correlation of Average Annual Temperature at CRU Grid with Surrounding
Eight Grid Cells (CRU TS 2.1 Data 1960-1999).
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Source[s]: Authors’ calculations.
Notes: We have chosen a highly nonlinear scale (correlation to the power of 100) because
all correlations are extremely close to one.
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Figure 3: Aggregation Bias: Hadley Grid Averages versus PRISM Grid Averages in Each
PRISM Grid (1961-1999)

Sources: Authors’ calculations.

Notes: The figure plots the difference in the average daily maximum temperature in the
month of July in the years 1960-1999 between the GCM (Hadley III), which has the
coarser resolution, and the fine scale weather grid (PRISM 2009). A positive number
indicates that the GCM grid average exceeds the PRISM average, which is based on
interpolated station data.
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