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Abstract 

Economists are increasingly using weather data and climate model output in analyses of 
the economic impacts of climate change. This article introduces a set of weather data sets 
and climate models that are frequently used, discusses the most common mistakes 
economists make in using these products, and identifies ways to avoid these pitfalls.  We 
first provide an introduction to weather data, including a summary of the types of datasets 
available, and then discuss five common pitfalls that empirical researchers should be 
aware of when using historical weather data as explanatory variables in econometric 
applications.  We then provide a brief overview of climate models and discuss two 
common and significant errors often made by economists when climate model output is 
used to simulate the future impacts of climate change on an economic outcome of 
interest. 

JEL classification numbers and key words: Q54 [Climate Change, Impacts Estimation]
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INTRODUCTION 
There is a long history of using weather measures as explanatory variables in statistical 

models.  For example, Fisher (1925) examined the effects of rainfall on wheat yields and 

Wright (1928) used weather as an instrumental variable to identify a demand function for 

oils.  Because weather is exogenous and random in most economic applications, it acts 

like a “natural experiment” and thus in some settings allows researchers to statistically 

identify the causal effect of one variable on an economic outcome of interest  (Angrist 

and Krueger, 2001).  The relatively recent literature on the economic impacts of climate 

change has turned the spotlight onto quantifying the effect of climate on a number of 

economic outcomes of interest (e.g., agricultural yields, mortality rates, electricity and 

water demand). This literature has often found a nonlinear relationship between climate 

and these outcomes, with extremely warm temperatures being especially important (e.g., 

Schlenker and Roberts, 2009).  Climate is a long average of weather at a given location. 

To identify the causal effect of climate on these outcomes, the literature has generally 

relied on either climate normals (i.e., long averages of observed weather in a cross 

sectional setting) or day-to-day (or year-to-year) fluctuations in observed weather as 

explanatory variables across time and space.  The econometrician’s choice of a weather 

versus a climate measure as an explanatory variable critically affects the interpretation of 

the estimated coefficients in the econometric model: that is, whether the outcome is a true 

climate response or a short run weather elasticity.  

Anyone who has ever struggled with station-level weather data is well aware of 

the fact that since the beginning of weather monitoring in the 1800s, stations are born and 

die and almost all have a large number of missing observations.  Further, there is not 

necessarily a weather station in each location interest to the economist.  In order to 

overcome these issues, there are a number of gridded weather datasets, which provide 

complete coverage over land by extrapolating existing weather information from 

monitors over a grid.  Although many of these datasets are free and easily imported into 

formats used by economists, there are five pitfalls that researchers should be aware of 

before using these datasets, which we discuss in detail below.  First, while many of the 

gridded weather products that are available reproduce very similar average temperatures 

for the majority of grid cells, the derived deviations around the mean can be significantly 
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different. Second, if one is interested in creating a weather series for a geographic region, 

simply averaging non-missing weather station data for stations in the region introduces 

measurement error, which has well understood econometric consequences. Third, the 

correlation between weather variables (e,g., rainfall and temperature) across space varies 

significantly in sign and magnitude. This can lead to the classic problem of indeterminate 

omitted variables bias in applications that fail to control for the full suite of weather 

indicators. Fourth, weather indicators often display significant spatial correlation due to 

the underlying data generating process as well as the extrapolation methods employed. 

This may lead to significant multicollinearity, which in turn may lead to inflated standard 

errors on included weather variables. Finally, because the weather stations used to 

construct the gridded products come in and out of existence, there may be artificial 

variation and breakpoints in the temperature series, which the econometrician needs to 

examine, especially when working on a small geographic region. 

The majority of recent economic studies use the statistically estimated causal 

effect of weather on the economic outcome of interest to simulate the future impacts of 

climate change, based on the output of Global Climate Models (GCMs), on that outcome. 

GCMs2 are physics-based models that provide long run predictions of climate.  These 

models are sometimes also called AOGCMs [Atmosphere-Ocean GCMs], or simply, and 

most commonly, climate models.  

Economists are increasingly using weather data and climate model output in 

econometric analyses to simulate future economic impacts of climate change. However, 

our experience has been that most economists have little or no understanding of GCMs 

and that they often make critical mistakes in using their output.  Thus, our goal here is to 

provide economic researchers considering the use of weather and climate model output 

with a guide to what products are available and, most importantly, with a discussion of 

the most common mistakes and how to avoid them. We begin in the next section with an 

introduction to weather data, including a summary of the types of datasets available and a 

discussion of five common pitfalls that empirical researchers should be aware of before 

using these weather data products in econometric settings.  
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  Early	
  on	
  these	
  were	
  known	
  as	
  General Circulation Models (see e.g., Phillips 1956).	
  



	
   4	
  

This is followed by a brief overview of GCMs -- how they work and what output 

they provide – as well as a number of suggestions for further reading. Perhaps most 

importantly, we identify two common and significant errors that often occur when GCM 

output is used to simulate the future impacts of climate change on an outcome of interest, 

which are related to GCM model selection and spatial and temporal aggregation of GCM 

output. We present a summary and conclusions in the final section. 

 

AN INTRODUCTION TO WEATHER DATA 
As noted in the introduction, the difference between weather and climate is basically a 

matter of time. Weather is the condition of the atmosphere over a short period of time, 

while climate is the behavior of the atmosphere over a relatively long period of time. 

Since roughly 1850, weather outcomes have been measured and recorded through a 

global network of weather stations and, more recently, satellites.  Daily weather data at 

stations throughout the world are freely available from the U.S. National Oceanic and 

Atmospheric Administration (NOAA 2011a). Additional raw station data (with varying 

degrees of spatial and temporal coverage and temporal resolution) can be found at NOAA 

(2011b).  However, these sources do not provide a complete record because many 

countries regard their weather data as proprietary and often charge exorbitant fees for 

such data (e.g., India), thus effectively limiting their availability.  Moreover, the spatial 

and temporal coverage of weather stations varies greatly across the globe, with higher 

spatial density and longer time series at stations in countries with historically higher 

incomes (e.g., the U.S. and the EU 15).  

 

Gridded Weather Data Products 

Gridded weather data sets use interpolation across space and time to combine available 

weather station data into a balanced panel of observations on a fixed spatial scale or grid.  

This approach deals with the problem of missing observations at a given station or 

missing data because a station does/did not exist at a particular location.  One such 

product, the Parameter-elevation Regressions on Independent Slopes Model (PRISM, 

2009), produces monthly estimates of weather on a 2.5x2.5 mile scale for the contiguous 
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United States. Each “grid” approximates a weather measure for the spatial unit by 

interpolating the daily station data while accounting for elevation, wind direction, rain 

shadows, and many other factors. This elaborate procedure is possible in the US because 

there are several thousand weather stations that produce and make available daily records 

for many different weather indicators.   

The Climatic Research Unit at the University of East Anglia produces a global 

gridded weather data set (CRU, 2013) that provides monthly estimates on a 0.5x0.5 

degree scale. This scale corresponds roughly to grids that are 35 miles across at the 

equator. Willmott, Matsuura and Legates (2010) provide another gridded data product 

(often referred to as the “Delaware” or “UDEL” dataset because it was produced by the 

University of Delaware), which has the same spatial and temporal resolution as the CRU 

(2008) product, but uses a somewhat different dataset and extrapolation algorithm.  Most 

notably, the CRU product provides data on both monthly minimum and maximum 

temperatures (i.e., the average of all daily minimums and maximums), while the 

Delaware data set provides only the monthly average temperature.3     

Many data products include the number of stations and the dates of coverage for 

each grid.  The most pronounced absence of data is for poor regions whose governments 

do not prioritize weather data collection and for regions with few inhabitants, such as 

deserts or over oceans.  In fact, there are some grids covering land areas that do not have 

a single weather station. 

 

Data Assimilation 

An alternative approach to the spatial extrapolation algorithms just discussed that climate 

scientists have developed for filling in the “holes” for observationally sparse regions is 

“data assimilation”, which produces data sets that the climate community generally calls 

“reanalyses”. Data assimilation is the process by which observational data are combined 

with a physics-based model (similar to a climate model, which is discussed later).  The 

model increases the extent of information from locations where observations exist to 

more data-sparse regions, thus providing estimates of weather/climate for data-sparse 
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  The CRU dataset (version TS2.1) ended in 2002. The updated dataset version TS 3.2 extends coverage 
through 2011.  In early 2013, the Delaware dataset coverage ends in 2008, but it is currently also extended.	
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regions that are based on physical laws described by the model as well as observations 

elsewhere. These types of data sets have been used by applied economists studying the 

developing world (e.g. Guiteras, 2010, Schlenker and Lobell, 2010, Hsiang et al., 2011), 

but they have not been widely adopted. 

The process of data assimilation is not unlike an economist’s use of a structural 

model to interpolate missing observations.  Data assimilation seeks to minimize a loss 

function subject to a large set of difference equations, which are derived from 

fundamental physical principles (e.g., the conservation of energy).  More recently, such 

reanalysis efforts have tried to estimate the state of the global environment over a long 

sequence of periods by optimally fitting a single dynamic model to all those periods 

simultaneously.  This process is difficult and costly, and thus only a few research centers 

offer regularly updated data sets.  The National Center for Environmental Prediction 

(NCEP) in the United States (Kistler et al. 2001) and the European Center for Medium-

range Weather Forecasting (ECMWF, 2010) produce the two most commonly used 

reanalysis products.   

It is important to note that reanalysis output cannot be forced to perfectly match 

observational data.  This is because reanalysis output has both limited resolution and is 

influenced by the GCM even when observations are present.  Moreover, reanalysis is 

conducted with models that, like economic models, are imperfect and contain systematic 

biases.  Constraining these models with the data that are “fed” into them does not always 

correct satisfactorily for the model’s built-in biased behavior.  Although reanalysis 

provides estimates that may be better than what would otherwise be available for regions 

where observations are sparse or of poor quality, the reanalysis output for such regions is 

still basically a model prediction, which is likely to be less accurate than for more 

observation-rich regions.   

 

FIVE POTENTIAL PITFALLS 
We turn next to a discussion of the five main pitfalls of using these weather data products 

in econometric settings and how to avoid them. To motivate these issues it is important to 

recognize that studies on the economic impacts of climate change on economic sectors 

(e.g. agriculture) have used two distinct approaches to estimate response functions:  First, 
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early studies relied on cross-sectional variation in weather or climate in different 

locations to explain variation in the outcome variable of interest (e.g., Mendelsohn, 

Nordhaus and Shaw, 2004, Kelly, Kolstad and Mitchell, 2005).  However, one limitation 

of the cross-sectional approach is that there may be unobservable variables that vary 

across these spatial units, which are likely correlated with the climate/weather indicator 

used.  Therefore, recent studies have adopted a second approach that focuses on a panel 

data analysis, which controls for space and time fixed effects. (e.g., Auffhammer, 

Ramanathan and Vincent, 2006, Deschenes and Greenstone, 2007, Schlenker and 

Roberts, 2009).  Fixed effects estimators rely on variation across time within a spatial unit 

(e.g., a county) as the source of identifying variation rather than variation across these 

spatial units.  This means that the underlying identification relates time series deviations 

from the location-specific mean in the climate indicators to deviations in the outcome 

variable of interest.   

 

Issue 1: The Choice Of Weather Dataset Matters! 

Although the economic implications of either approach (i.e., long-run versus short-run 

adaptation in panel versus cross-sectional papers) have been discussed elsewhere (e.g., 

Lobell and Burke, Chapters 5+6, 2010), the practical issue of which weather data set to 

use has received no attention in the literature.  As we will show here, most gridded 

weather data sets agree on the average value of weather variables across space (i.e., 

places that are on average hot or cold), but they are not in full agreement about the timing 

or magnitude of deviations from this mean, which is the source of identifying variation in 

panel data studies.  This is a more serious problem for areas with a small number of 

weather stations because the data has to be interpolated from stations that are further 

removed and hence might experience idiosyncratic shocks.  We show this lack of 

correlation in the deviations using the three global gridded weather data sets discussed 

earlier: 

(i) The CRU data set (version TS2.1), which uses a statistical interpolation procedure 

without reanalysis and gives monthly minimum and maximum temperature as 

well as precipitation on a 0.5x0.5 degree grid (Mitchell and Jones, 2005).  
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(ii) The Willmott, Matsuura and Legates (2010) UDEL data set, which uses a 

statistical interpolation procedure without reanalysis and gives monthly average 

temperature as well as precipitation on a 0.5x0.5 degree grid. 

(iii) The reanalysis data from NCEP/National Center for Atmospheric Research 

(NCAR) (Kistler et al. 2001), which gives daily minimum and maximum 

temperature and total precipitation on a non-uniform grid (1.875 degrees 

longitude, and roughly 1.90 degrees latitude, although the latter is not evenly 

spaced).4  

CRU and UDEL are statistically interpolated, while NCEP uses data assimilation with a 

physical model as discussed above.  We will focus here on two variables that are 

available in all three data sets: average temperature and total precipitation.  We calculate 

country averages by taking a weighted average across grid cells that overlap a country’s 

boundary for the months of the primary maize growing season (Sacks et al., 2010).  We 

define the growing season as extending from the first of the month in which it begins to 

the end of the month when it ends because two of the three weather data sets provide only 

monthly values.  In this way we are able to average observations over the same time 

period for all three data sets.  Next, we calculate the weight given to each grid in a county 

as the share of the country’s land area that the grid covers.  This allows us to derive the 

average temperature (the average between the minimum and maximum temperatures for 

those datasets that report the minimum and maximum) as well as total precipitation by 

country over the period 1960-1999.  Several recent studies have used similar country-

level aggregates and averages (Dell et al. 2008, Schlenker and Lobell, 2010, Hsiang 

2010). 

Correlations of country level climate normals across data products.  

First, we compare average outcomes across locations by deriving average temperature 

and precipitation over 1960-1999 to get one observation per country.  We find that the 

correlation between the data based on the statistical interpolation procedures (CRU and 

UDEL) for average temperatures is 0.998, while it is 0.990 between NCEP and either 

CRU or UDEL.  For total precipitation, the correlation between CRU and UDEL for 
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  This data set is sometimes called the NCEP/NCAR/DOE (i.e., U.S. Department of Energy) reanalysis.	
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average season-total precipitation is 0.985  and 0.882 between NCEP and CRU (and 

0.883 between NCEP and UDEL).  This indicates that the three data sources provide 

similar estimates concerning which areas of the world are hot and which are cold on 

average. This is a reassuring finding for studies that rely on cross-sectional variation 

across countries.  For both average temperature and average precipitation, the correlation 

is slightly lower between the reanalysis data (NCEP) and the two statistical interpolation 

techniques (CRU and UDEL).5   

Correlations of country level annual fluctuations across data products 

It is difficult to predict how weather variables change year-to-year when you do not 

observe weather in a specific location or time period.  To illustrate this point,we construct 

annual deviations from the country-specific mean in each data set over the 1960-99 

period. This provides us with a 40-year panel rather than a single cross section of 

normals.  We find that for average temperature, the correlation coefficients between 

models are significantly lower compared to the those discussed in the previous section. 

The pairwise correlation coefficients are: CRU and UDEL: 0.917; NCEP and CRU 0.742; 

NCEP and UDEL: 0.724.  For precipitation, the correlation coefficents across datasets are 

even lower. This is likely due to the fact that precipitation is less smooth than temperature 

in space and time, which makes the extrapolation algorithm employed more important.6    

The pairwise correlation coefficients are: CRU and UDEL: 0.698; NCEP and CRU: 

0.299; and NCEP and UDEL: 0.269.  While the correlations are especially low when we 

compare deviations in the reanalysis data (NCEP) to the statistical interpolation methods 

(CRU and UDEL), the drop to a correlation coefficient below 0.7 for CRU-UDEL is 

significant as well, because both methods are statistical interpolation routines using raw 

station data.  So whether an outcome is above or below normal -- and by how much --

crucially depends on what weather data set is being used. 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  We also examined a fourth dataset, NCC (Ngo-Duc et al., 2005), which is a hybrid of NCEP and CRU. 
That is, it scales the NCEP reanalysis output using a constant monthly factor so that the 1948-2000 average 
equals the CRU average.  Not surprisingly, for our 1960-1999 sample, the correlation between NCC and 
CRU for average season-total precipitation exceeds 0.99.	
  
6	
  For	
   some reanalysis products precipitation is generated by the model even if precipitation observations 
exist. 	
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Across Country heterogeneity in correlations of annual fluctuations  

The average correlations for both cross-section and panel data mask considerable 

heterogeneity by country.  To illustrate this point, we construct weather shocks by 

weighting each grid cell by the amount of maize that is grown within it (Monfreda et al., 

2005), a common approach for examining the agricultural impacts of climate change. We 

find that the pairwise correlation coefficient among weather deviations for season-total 

precipitation in the United States are: CRU and UDEL: 0.963; NCEP and CRU: 0.758; 

and NCEP and UDEL: 0.714.  The deviations are much more highly correlated than when 

all countries are included, presumably because of the good observational network in the 

United States.  In contrast, precipitation shocks constructed over the maize growing area 

in Mexico have pairwise correlation coefficients of: CRU and UDEL: 0.726; NCEP and 

CRU: 0.069; and NCEP and UDEL: 0.307.  This illustrates that in regions with limited 

monitoring networks, which is generally the case in the developing world, the weather 

shock used to identify response coefficients in econometric estimation varies significantly 

depending on which data source is used. 

In summary, when economists are conducting panel studies that rely on deviations 

from averages, they should be careful about which data source they use because 

measurement errors - and related statistical concerns such as attenuation bias - are 

amplified by demeaning explicitly or via fixed effects (Fisher et al., 2012).  Conducting 

sensitivity checks by using more than one data source can be helpful in determining 

whether the results are robust. 

 

Issue 2: Averaging Daily Station-Level Data Across Space 

Another pitfall of using weather data products in econometric estimation concerns 

averaging station level data across space. Several economic studies that link economic 

outcomes to weather (or control for weather) use inverse distance-weighted averages for 

the closest available weather stations (see e.g., Mendelsohn et al. 1994, Deschenes and 

Greenstone 2007).  As with the panel versus cross section data issue, such an approach 

works well for a cross sectional analysis, but becomes problematic when fixed effects are 

included in a panel data setting, especially when both location and time fixed effects are 

included.  This is because weather station data are notoriously spotty (i.e., not only do 
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weather stations come in and out of existence, they are also often turned off or values are 

simply not recorded).  A time series of inverse distance-weighted averages of weather 

station data is likely to include variation from the birth and death of stations and 

observations that are missing for a given period.  When location fixed effects remove 

average weather outcomes at the interpolated location, and temporal fixed effects are 

included, the remaining weather variation is greatly diminished and the variation that is 

due to stations coming in and out of the sample can potentially account for a significant 

share of the overall variance.  For example, Fisher et al. (2012) provide an example 

where the noise-to-signal ratio after removing location and temporal fixed effects is 7:1, 

i.e., the measurement error greatly exceeds the variation that is used in the identification, 

which is likely to result in significant attenuation bias in estimation. 

A possible alternative to averaging weather station data that report weather 

indicators on a given day is to first fill in missing weather station data by regressing it on 

the closest surrounding stations and then to predict missing observations at a station 

(Schlenker and Roberts 2009, Auffhammer and Kellogg 2011).  Then the full weather 

record is derived by interpolating a balanced panel of “patched” weather station data. 

This approach keeps the set of stations that are used in the interpolation constant and 

ensures that the resulting variation is not caused by variation in station coverage. 

 

Issue 3: Correlation of Weather Variables 

The third pitfall relates to the classic omitted variables problem.  Many economic studies, 

including (but not limited to) those estimating climate change impacts, have focused on 

the impact of one weather variable in isolation, e.g., regressing income only on 

precipitation shocks (Miguel et al., 2004).  While precipitation shocks are exogenous and 

hence a plausible instrument for income, it is important to note that to the extent that 

precipitation and temperature are correlated, the coefficient on precipitation will measure 

the combined effect of the two variables.  This is particularly important in the climate 

change context if the estimated coefficient is used to estimate climate change impacts 

under a climate influenced by human activity.   In order to obtain unbiased estimates of 

the effects of changes in precipitation and temperatures, which are historically correlated, 
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both variables must be included in the regression equation, especially if the correlation is 

predicted to change in the future. 

To underline the importance of this observed correlation between different 

climate indicators,  Figure 1 shows the correlation coefficients between annual average 

temperature and total precipitation for each of the CRU (version 2.1) time series (TS) 

grid cells for the years 1960-1999.  The map indicates clearly that the correlations vary 

greatly and that there are regions with both significant positive and significant negative 

correlation between precipitation and temperature.  This implies that if one controls for 

only one of the two weather variables in a regression, the sign of the omitted variable bias 

will depend on the location under study.  Hot areas generally show negative correlation 

(as high as -0.7) because more precipitation and the associated evaporation results in 

cooling and lower average temperatures.  On the other hand, a positive correlation is 

generally observed in cooler areas because increased precipitation is associated with the 

import of warm and humid tropical air, and cloud cover keeps the underlying surface 

warmer.  It is noteworthy that some large and not-so-large countries have areas of both 

negative and positive correlation (e.g., US, Russia, France, Spain). 

It is also important to note that climatic variables other than temperature and 

precipitation (e.g., relative humidity, solar radiation, wind speed and direction) may bias  

empirical estimates through the classic omitted variables problem.  The existence of these 

other variables and their correlation with temperature or precipitation may be location 

specific.  For example, in a panel regression with country and year fixed-effects and 

country-specific trends, Hsiang (2010) finds that exposure to hurricane winds in 

Caribbean Basin countries is correlated over time with a country’s local surface 

temperature, with each one degree Celsius increase in a country’s summer surface 

temperature being correlated with a 2.6 (+/-1.2) meter per second increase in area-

averaged wind exposure in that country. This increase in wind exposure is substantial, 

since it raises expected hurricane damages by 20% (Hsiang and Narita, 2012), suggesting 

potentially biased estimates of temperature impacts if wind exposure is excluded from the 

analysis. 

In summary, if temperature, precipitation and other atmospheric variables are 

correlated, a study that seeks to extrapolate (based on an estimated response function) 
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potential climate impacts must include all of these variables in order to obtain an 

unbiased estimate of the effect of each variable. 

 

Issue 4: Spatial Correlation 

Climate variables are inherently correlated across space and time.  While variation in 

weather is often considered random across time, variation across space displays 

significantly less “randomness”, especially at smaller spatial scales.  This means that 

some of the weather or climate variables that we use in econometric estimation are highly 

spatially correlated and that estimates of standard errors will be biased unless steps are 

taken to correct for spatial correlation.   

To provide a sense of the degree of spatial correlation in these datasets, Figure 2 

shows the average correlation of annual mean temperature at each CRU (version TS 2.1) 

grid cell with the eight surrounding grid cells for the 1960-1999 period. As discussed 

earlier, errors might propagate from one grid cell to the next for both interpolated station 

data and data assimilation methods.  If the model correctly accounts for all weather 

variables, the spatial dependence of the regressors will not be a problem.  Most economic 

studies to date control only for temperature and precipitation. However, other weather 

variables such as wind direction, humidity, and vapor pressure might also have an impact, 

and these omitted variables are presumably spatially correlated as well. If they have a 

causal effect on the outcome of interest, as for example, vapor pressure deficit (which is 

closely related to relative humidity) has on crop yields (Roberts et al., forthcoming), then 

they become part of the error term, which will then also be spatially correlated.  Thus, it 

is imperative to take this spatial correlation into account in econometric estimation.7 

There are three main approaches to account for spatial correlation:  

(i) Use a spatial weighting matrix. This is most efficient when the weighting 

matrix is known, but it will result in biased estimates if the weighting 

matrix is misspecified;  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7	
  This will generally result in significantly larger standard errors.  For example, Schlenker and Roberts 
(2009) find that accounting for spatial correlation increases standard errors by a factor of 6.	
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(ii) Use the nonparametric approach provided by Conley (1991), which does not 

require one to specify a weighting matrix; or  

(iii) Use a grouped bootstrap where years are resampled and replaced.  This 

approach requires that year-to-year fluctuations be random, but errors 

within a year can be correlated.8   

Finally, it is important to note that many of the gridded weather data sets 

discussed above simply interpolate station data.  In data-sparse regions, several grids 

might be linked to the same set of weather stations.  This will lead to highly 

multicollinear weather variables that do not allow for proper identification (especially in 

a panel setting where grid averages are removed) because the remaining variation is 

simply due to the fact that slightly different weights have been used for different weather 

stations. 

In summary, one has to adjust for spatial correlation to obtain unbiased standard 

errors and valid confidence bands. 

 

Issue 5: Endogenous Weather Coverage 

The final pitfall concerns why we observe weather stations in some areas and time 

periods and not in others. One strand of the economics literature examines how the 

relationship between weather variables and economic variables of interest might change 

due to large policy changes, such as a country becoming independent, or an extreme 

exogenous shock, such as a natural disaster (Kahn, 2005).  The most obvious method for 

accounting for such changes is the now standard difference-in-difference analysis.  One 

concern with this approach is that if the degree of measurement error varies between the 

pre and post intervention (or event) date, the treatment effect estimate will very likely be 

biased because of classical attenuation bias concerns. However, if weather variables are 

measured consistently, the difference-in-difference regression design will be free of this 

bias. Thus it is important that weather station coverage not change with the policy change 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8	
  However, in many areas of the world, the independence of year-to-year variation is questionable because 
of planetary-scale climate oscillations, such as the El Niño-Southern Oscillation, which may be 
autoregressive (Hsiang et al., 2011). 	
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(or exogenous shock) because it could introduce measurement error and result in a 

downward bias in the estimated coefficients in the post-intervention period.9   

To examine this issue in more detail, we downloaded daily data from the Global 

Summary of the Day database maintained by NOAA’s National Climatic Data Center 

(NOAA, 2011a), counted the number of days a weather station within a country had non-

missing observations, and summed it across all stations. This provides the total count of 

daily station-level observations in a country.  While most countries show an upward trend 

in this measure over time, the results for some transition countries are striking.  For 

example, Romania had an upward trend until it peaked at 67,727 station-days in 1988.  

Following the fall of the iron curtain in 1989, the number decreased rapidly until it 

stabilized around 11,000 station-days in 2003-2007, decreasing coverage by a factor of 

six.  This suggests that the results from a difference-in-difference analysis of how, for 

example, farmers responded to weather shocks before and after the fall of the iron curtain 

would have to be interpreted with caution.   

In summary, when using any of the gridded data products available, it is crucial to 

determine whether the underlying station data have changed over time (i.e., before and 

after a major shock or event). 

 

CLIMATE MODELS AND THEIR OUTPUT 
If the econometrician has successfully estimated the causal “dose-response” relationship 

between socio-economic outcomes and historical weather or climate data, often the 

logical next step is to use that estimated relationship to predict future impacts due to 

anthropogenic climate change.  This step requires making forecasts of future climate 

under the assumption of heightened atmospheric concentrations of greenhouse gases, 

which is usually accomplished by employing output from a spatially-explicit physics-

based model of the global climate, which, as discussed in the Introduction, is known as a 

Global Climate Model or GCM. Below we describe what  GCMs are and some of the 

major potential pitfalls for economists using these in the simulation of future economic 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9	
  This issue is closely related to the discussion about spatial correlation that is due to different interpolation 
methods over a sparse data matrix.	
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impacts of climate change. 

 

Components and Properties of GCMs 

Although GCMs have several components that are parameterized using statistical 

procedures, the core of every GCM is a set of deterministic mathematical equations that 

describe the laws of motion for a fluid.  These laws were derived in fluid mechanics 

laboratories over centuries and GCMs use numerical approximations of these laws.  To 

solve these equations, GCMs approximate the atmosphere and ocean, which are 

continuous fluids, with some form of numerical discretization.  The simplest way to 

visualize this procedure (though it is less sophisticated than what is typically used in 

current practice) is a three-dimensional grid of “boxes,” each of which possesses several 

state variables, for example temperature or air pressure, which vary across space from 

one box to the next and evolve over time, but are uniform within each box.10 Given a 

three-dimensional structure of these state-variables at time t, a GCM solves for the 

variables’ structure at time t+1 using the model’s numerical representation of fluid-

mechanical laws.  Following an initialization that specifies the structure of these variables 

in the very first time period, GCMs iteratively repeat this calculation for time-steps of 

about 30 minutes, gradually constructing a projection for the future state of the world.11   

GCMs typically take forecasts of human activity as exogenous. To make climate 

projections across different GCMs comparable, modelers simulate future climate 

outcomes under a set of standardized “scenarios” that exogenously prescribe a time series 

of future greenhouse gas emissions, aerosols, and other short-lived pollutants based on 

demographic, economic and regulatory assumptions.12   

When the emissions scenario is held fixed, GCMs differ primarily in their 

numerical representations of the climate’s state and its various processes.  Having 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10	
  The Intergovernmental Panel on Climate Change (IPCC 2011a) provides a brief description and graphic 
to illustrate this structure.	
  
11	
  For introductory materials on the structure of these models, see Tebaldi C. and Knutti, R. (2010) and 
Section 8.1.3 of IPCC (2007). For more advanced descriptions consult Warner (2011) or IPCC (2007). 
Donner, Schubert and Somerville (2011), Weart (2008) and Weart (2011) provide detailed histories of 
GCM development.	
  
12	
  These assumptions and their resulting scenarios were established in the IPCC’s Special Report on 
Emissions Scenarios (SRES) (IPCC, 2000) and are summarized in IPCC (2011b).	
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discretized the atmosphere and ocean with grid-cells (the aforementioned “boxes”) of 

various resolutions13, GCMs selectively represent processes that occur on spatial scales 

smaller than these grid-cells - known as “sub-grid scales” - using “parameterizations,” 

which are formulations that are not based as directly on the known laws of physics as are 

the resolved fluid dynamics, but incorporate a greater degree of empiricism or theoretical 

construction.  For example, chemical reactions, vegetation responses, cloud formation, 

and rainfall are all sub-grid scale processes whose numerical representations may vary 

across GCMs (Section 8.2 in IPCC, 2007).  Unlike the core fluid-mechanical equations 

that have a standard representation in a discretized global model, there is no standard 

representation of these sub-grid scale processes, and thus the improvement of their 

representation in GCMs continues to be an active area of research.  There have been 

various community efforts to try to accelerate advances in this area by comparing the 

performance of models, most notably the Coupled Model Intercomparison Project or 

CMIP (see Meehl et al, 2007), and conducting studies that attempt to score the forecast 

ability, known as “skill”, of different models along various dimensions (see Reichler and 

Kim (2008) and Sections 8.3 and 8.4 of IPCC (2007)).  Different models have different 

“skill,” and thus we advise economics researchers who are studying specific regions or 

processes and are interested in selecting a GCM projection to first consult the appropriate 

literature as well as specialists in the field.14  

 

Differences in Model Predictions 

There are over 20 well-known climate models, all with readily available output.15  This 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13  See the supplemental tables to Reichler and Kim (2008) or IPCC Scientific Basis Table 8.1 
[http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch8s8-2.html] for a concise summary of these 
climate model properties. 	
  
14	
  For researchers seeking intuition for the numerical setup of GCMs, they can download a one-dimensional 
climate model tutorial built by the Goddard Institute of Space Studies for teaching purposes 
(http://icp.giss.nasa.gov/education/geebitt/).  More ambitious researchers can download and run a full open 
source GCM, the Community Earth System Model, produced by the National Center for Atmospheric 
Research (http://www.cesm.ucar.edu/models/cesm1.0/).	
  
15	
  	
  Climate projections from GCMs running IPCC’s Special Report on Emissions Scenarios are available 
free of charge, and model output can be downloaded from the IPCC’s data distribution website 
(http://www.ipcc-data.org/) or the CMIP data distribution website (https://esg.llnl.gov:8443/index.jsp). For 
summaries of climate projections from GCMs running SRES scenarios, see IPCC (2007) chapter 10 for 
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section demonstrates that the choice of GCM has significant ramifications for impact 

estimation. In their survey of economic assessments of climate change impacts, Burke et 

al. (2011) found that 50% of the studies used the model developed by the Hadley Centre 

to calculate economic climate change impacts across a variety of sectors, of which 17% 

used only the Hadley model. Among health impact studies, 38% relied on the Hadley 

model alone. However, there is no evidence that the Hadley model or, in fact, any other 

model should be the preferred climate model to use. This is supported by the fact that for 

some climate indicators, such as precipitation, the predictions for certain regions vary 

drastically across models. In the extreme, some models predict wetter summers for West 

Africa and others predict drier summers – all using the same SRES scenarios.  

One solution to overcoming the issue of having to choose one GCM is to use 

model or ensemble averages (e.g., Tebaldi and Knutti, 2007). This decreases the reliance 

on a single model.  However we believe it is important to either report the impacts for a 

number of climate models separately or to average them and indicate the variability in 

impacts across models.  This is not difficult to do and, given the low costs of data storage 

on personal computers and the access to free bandwidth for most academics, there is no 

reason not to.  Alternatively, if predicted changes within a study area vary more across 

than within climate models, then presenting a set of uniform scenarios might be 

informative and also highlight the sensitivity of the results.  

We next turn to a set of issues that arise when one tries to match the time and 

spatial scale of the GCM to that of the econometric model for simulation purposes. 

 

Aggregation Bias 

As described earlier, GCMs effectively divide the earth’s surface into a discrete grid, 

where there is variation in climate across discrete grid cells, but climate statistics are 

homogenous within each cell.  For example, if one uses a climate model that provides 

output on a monthly basis, it is assumed that temperatures within the month and among 

all locations within the grid cell are constant16.  Such temporal and spatial aggregation 

might be inappropriate and produce biased impact estimates.  While going forward, many 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
global summaries and chapter 11 for regional summaries.  The IPCC also provides an interactive data 
visualization application online (http://www.ipcc-data.org/ddc_visualisation.html). 
16 There are some models which have within grid deterministic variation, but this is a relative recent effort. 
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models are being run at a resolution that is higher than 2x2 degree (for the next IPCC 

(AR5) report), most current economic impact studies (e.g., Deschenes and Greenstone, 

2007) used model output at a 2x2 degree or coarser resolution. While a 2x2-degree cell 

may be  “small” from the perspective of the global climate, it is not small from the 

perspective of human systems.  For example, a 2x2-degree grid spacing at the equator is 

equivalent to a grid width of 222 kilometers (138 miles).  It is not hard to imagine that a 

stretch of this length will have vastly varying climates (e.g., driving east from San 

Diego’s coastal climate to El Centro’s dry and hot desert climate).  This aggregation issue 

becomes especially problematic if the underlying topography is mountainous or located 

near the ocean. 

Quantifying Aggregation Bias 

To examine the severity of this aggregation bias, we compare average temperatures 

predicted by the Hadley III GCM to a fine-scaled (2.5x2.5 mile grid) weather data set 

(PRISM, 2009) for the 48 contiguous United States (see Figure 3).   Figure 3 shows quite 

clearly that this bias is most significant in mountainous areas, which are also usually less 

populated areas.  At the extremes, we see that the bias can reach +25°C at some 

mountaintops.  This is not surprising because surface temperatures tend to fall about 7°C 

per 1000m in elevation, which means that mountains are much colder than areas at lower 

elevations in the same grid cell.  The aggregation bias exists not only for remote 

mountainous regions but also for heavily populated areas, which are often located near 

oceans.  In fact, figure 3 indicates that the entire western seaboard has biases, and that 

those biases are significantly greater than any predicted warming.  The average absolute 

difference in temperature across the entire United States is 3.0°C and the root mean 

squared error is 4.0°C, which are both significantly larger than the average predicted 

changes by the end of the century under the SRES forced climate change scenarios.  This 

means that if one simply interprets GCM output at a grid cell as an unbiased forecast of 

climate at any location in a grid cell, the bias may be a much larger driver of projected 

impacts than actual warming.  

Moreover while the severity of the aggregation bias varies by location, it also 

varies by the climate indicator one is using.  For example, if we use the annual mean 

temperature rather than the average daily maximum July temperature, the absolute error 
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reduces to 1.8°C, and the root mean squared error to 2.4°C. Thus the magnitude of the 

bias varies by location and indicator used.  

This bias is especially relevant for studies of the economic impacts of climate 

change.  These studies generally parameterize a response function between for example, 

electricity demand and temperature, using observations from a weather station-based 

dataset and observed electricity demand.  In order to calculate the counterfactual  

electricity demand under a scenario with climate change, one must have a baseline 

climate and a counterfactual climate.  However, if one uses an average of observed 

gridded weather product discussed above as the baseline climate and predictions of 

climate from a GCM as the counterfactual climate at a future date, the resulting estimated 

impacts will be due to both the simulated warming and the bias displayed in Figure 3.  If 

the response function is nonlinear in weather/climate, as has been shown to be the case in 

agriculture (e.g., Schlenker and Roberts, 2009) and electricity demand (e.g., Auffhammer 

and Aroonruengsawat 2011 & 2012), then this bias may be amplified or offset depending 

on the nature of the non-linearity.  However, in either case, the resulting impact estimates 

will be biased. We next turn to a simple approach, which overcomes this issue. 

Correcting Aggregation Bias 

The literature has suggested several mechanisms to correct such biases. In addition to 

using climate models with finer resolutions, the most commonly used approach is based 

on regression methods, whereby the researcher establishes a correlation between the 

historical grid values from the GCM and local station-based data and then uses this fitted 

regression relationship with future values of GCM output to arrive at “downscaled” GCM 

predictions.17  Fowler et al. (2007) provide a review of the main approaches used in 

practice and compare their performance at selected locations.  They note that there is a 

large literature examining the performance of different downscaling approaches for 

different regions and climate variables.  They conclude that there is no single best 

approach for all variables (e.g., maximum temperature, rainfall, wind speed) and 

locations.  Moreover, they find that downscaled versions of all GCMs at a desired 

temporal resolution covering all regions of interest are simply not available.  If one is 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17	
  Innovations on this basic approach have involved non-linear estimation, neural networks, and Bayesian 
methods.  	
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interested in daily values, which are important for many economic applications, including 

agriculture and electricity demand, then a downscaled version of a climate model 

delivering daily output is needed. Such data sets  are available for some regions, such as 

California (Cayan, 2009), or at coarser time resolution nationally (e.g., Maurer et al, 

2007) and globally (e.g., Maurer 2009). 

In the absence of an appropriate downscaled dataset for the region and time 

resolution of interest, the most common practice is to derive predicted changes for each 

(coarse) GCM grid and then add these to an average of the historic baseline data used in 

the parameterization of the response function, thereby preserving within-GCM grid 

variation. This approach subtracts out the location-specific bias only if this bias is 

stationary in time. However, this approach shifts the historic time-series at a location by 

the predicted change, leaving its variance unchanged.  If researchers are concerned about 

predicted changes in the mean and the variance, then the fine-scaled historic deviations 

from location-specific averages can be rescaled by the ratio of the predicted variance at 

the GCM grid in the future relative to the baseline.  It should be noted, however, that 

there is much less consensus among models concerning the predicted changes in the 

variance than in the mean. 

In summary, it is crucial that economists not simply use GCM output as a direct 

forecast of future climate when estimating impacts relative to a weather station-based 

baseline climate. One simple solution is to simply add the predicted change in weather to 

the baseline climate when calculating impacts. 

 

CONCLUSIONS 
This article has reviewed the most common gridded weather products and outlined five 

pitfalls when using them as regressors in econometric models.  Specifically, we 

emphasize that weather anomalies (deviations from normal) vary greatly between data 

sources, and are highly correlated between weather measures and across space.  

Researchers should incorporate these features when constructing and using weather 

shocks.  Simply averaging weather stations without correcting for missing values will 

result I anomalies that consist to a large part of noise.  We also discuss the basic features 

of Global Climate Models and outline significant issues related to spatial scale when 
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using these in the estimation of economic impacts.  

In closing, we want to emphasize that when using gridded datasets of historical or 

future climate, it is important to recognize that both types of datasets are very different 

from observed weather. Moreover, although historical gridded data products are very 

convenient because they often provide highly disaggregated weather for large geographic 

regions over long time periods, this increased coverage comes at a cost. That is, the birth 

and death of weather stations, the frequent occurrence of missing values, and the spatial 

correlation introduced by extrapolation algorithms, all create potential biases in the 

estimated coefficients and standard errors if one uses these weather products as 

independent variables in econometric analyses. In addition, when using Global Climate 

Model output as a counterfactual of future climate, the choice of model has significant 

implications for the sign and magnitude of the estimated impacts. This means it is 

important to account for the location-specific biases of each model to prevent further bias 

impact estimates.  
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Figure 1: Correlation between Annual Average Temperature and Total Precipitation in 
Each Grid Cell (CRU TS 2.1 Data 1960-1999) 

 
Source[s]: Authors’ calculations. 
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Figure 2: Correlation of Average Annual Temperature at CRU Grid with Surrounding 
Eight Grid Cells (CRU TS 2.1 Data 1960-1999). 

 
Source[s]: Authors’ calculations. 
Notes: We have chosen a highly nonlinear scale (correlation to the power of 100) because 
all correlations are extremely close to one. 
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Figure 3: Aggregation Bias: Hadley Grid Averages versus PRISM Grid Averages in Each 
PRISM Grid (1961-1999) 

 
Sources: Authors’ calculations. 
Notes: The figure plots the difference in the average daily maximum temperature in the 
month of July in the years 1960-1999 between the GCM (Hadley III), which has the 
coarser resolution, and the fine scale weather grid (PRISM 2009).  A positive number 
indicates that the GCM grid average exceeds the PRISM average, which is based on 
interpolated station data. 


