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Abstract 

Chemiluminescence emissions from OH
*
, CH

*
, C2

*
, and CO2

*
 formed within the reaction 

zone of premixed flames depend upon the fuel-air equivalence ratio in the burning 

mixture.  In the present paper, a new partial least square regression (PLS-R) based 

multivariate sensing methodology is investigated and compared with an OH
*
/CH

*
 

intensity ratio-based calibration model for sensing equivalence ratio in atmospheric 

methane-air premixed flames.  Five replications of spectral data at nine different 

equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models.  

During model development, the PLS-R model was initially validated with the calibration 

data set using the leave-one-out cross validation technique.  Since the PLS-R model used 

the entire raw spectral intensities, it did not need the nonlinear background subtraction of 

CO2
*
 emission that is required for typical OH

*
/CH

*
 intensity ratio calibrations.  An 

unbiased spectral data set (not used in the PLS-R model development), for 28 different 

equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence 

ratios using the PLS-R and the intensity ratio calibration models.  It was found that the 
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equivalence ratios predicted with the PLS-R based multivariate calibration model 

matched the experimentally measured equivalence ratios within 7 percent; whereas, the 

OH
*
/CH

*
 intensity ratio calibration grossly underpredicted equivalence ratios in 

comparison to measured equivalence ratios, especially under rich conditions (φ > 1.2).  

The practical implications of the chemiluminescence-based multivariate equivalence ratio 

sensing methodology are also discussed. 

 

Keywords: chemiluminescence, equivalence ratio, premixed combustion, multivariate 

calibration, PLS-R, cross validation, OH, CH, C2, intensity ratio, background subtraction 

 

Nomenclature: 

LOOCV leave-one-out cross validation  

PCs  principal components 

PLS-R  partial least-square regression  

RMS  root mean square  

RMSEC root mean square error in calibration  

RMSEP root mean square error in prediction 

 

1. Introduction 

Real time measurement of local and global fuel-air equivalence ratios (φ) is essential 

for monitoring and closed-loop control of premixed combustion systems.  Pollutant 

emissions such as oxides of nitrogen (NOx), carbon monoxide (CO), unburned 

hydrocarbons (HC), and particulate matter (PM) can be reduced by controlling fuel-air 
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equivalence ratios [1-3].  Precise control of equivalence ratio can also help in preventing 

serious accidents in gas turbines such as blow-off, flashback due to pressure waves, or 

damage to the combustor due to combustion oscillations as these turbines operate close to 

the lean limit [3-4].  In internal combustion (IC) engines, advanced combustion strategies 

such as homogeneous charge compression ignition (HCCI) [5], low temperature 

combustion [6], and direct injection spark ignition [7] utilize premixed or partially 

premixed combustion modes to simultaneously improve engine efficiencies and reduce 

pollutant emissions.  To achieve controlled premixed or partially premixed combustion in 

IC engines, the real-time measurement and closed-loop control of in-cylinder local 

equivalence ratios are desirable.  The present work is an attempt to utilize natural 

chemiluminescence emissions to diagnose equivalence ratios in premixed atmospheric 

methane-air flames with two different sensing methodologies: (1) a whole-spectrum 

multivariate calibration model and (2) an OH
*
/CH

*
 peak intensity ratio calibration model. 

Chemiluminescence emissions from OH
*
, CH

*
, and C2

*
 formed within the reaction 

zone of premixed flames depend upon the air-fuel ratio in the burning mixture [8-10].  

Easy, nonintrusive experimental detection of chemiluminescence coupled with fast 

response times provides a convenient approach for equivalence ratio determination.  

Many researchers have investigated the variations in OH
*
, CH

*
, and C2

*
 intensity ratios 

with equivalence ratio [11-13].  For example, Docquier et al. [11] studied the effect of 

pressure on OH
*
, CH

*
, and C2

*
 chemiluminescence intensity in methane-air premixed 

flames.  They found a strong correlation between the chemiluminescence signal and 

pressure and suggested the need for a multi-wavelength sensor for direct monitoring of 

equivalence ratio.  Hardalupas et al. [2] showed that in natural-gas-fuelled, premixed, 
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counter-flow flames OH
*
/CH

*
 is independent of strain rate and that C2

*
/CH

*
 and C2

*
/OH

*
 

show a strong dependence on strain rate.  In a recent study [14], it was shown that in 

premixed counter-flow methanol and ethanol flames, OH
*
/CH

*
 intensity ratio also shows 

dependence on strain rate.  The aforementioned studies clearly indicate the need for the 

development of a robust sensing methodology that is applicable over a range of 

combustion conditions. 

Many approaches have being employed for sensing equivalence ratios from 

chemiluminescence spectra [15].  Muruganandam et al. [3] and Hardalupas et al. [16] 

used the peak intensity ratio of OH
*
/CH

*
 for sensing equivalence ratio in combustors 

fueled with natural gas.  Artificial intelligence-based data analysis techniques have also 

been explored for monitoring as well as controling combustion processes [17].  Recently, 

Ballester et al. [18] applied the artificial neural network technique on chemiluminiscence 

spectra obtained from combustion of natural gas blended with hydrogen in a swirl 

combustor for monitoring equivalence ratios.   

All of the previous studies show that the chemiluminescence emissions of OH
*
, CH

*
, 

C2
*
, and CO2

*
 (the nonlinear continuous background) from the reaction zone depends on 

the equivalence ratio.  In this work, a new multi-wavelength (multivariate) sensing 

methodology is proposed for the determination of equivalence ratios in premixed 

methane-air flames.  Most of the previously reported work did not consider the whole 

spectrum approach.  A model based on multivariate statistics is relevant for a two-

dimensional (X, Y variables) data set, where the response Y-variable (equivalence ratio) 

depends on several explanatory X-variables (spectral wavelengths).  A wide 

chemiluminescence spectrum (250 – 650 nm) was used to develop the multivariate 
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calibration model.  This approach ensures that the spectral intensity variations from all 

the excited species within the measured wavelength range are used in the development of 

the multivariate calibration model.  The experimental results presented in this paper 

demonstrate that the multivariate calibration model can differentiate fuel-rich, fuel-lean, 

and stoichiometric premixed flames.  A partial least square regression (PLS-R) based 

multivariate calibration model is developed and it is shown that the PLS-R model 

successfully predicts the equivalence ratios within the developed calibration range. 

 

2. Specific Objectives 

The specific objectives of the present work are 

1. To develop a multi-wavelength sensing methodology for equivalence ratio estimation 

and monitoring in premixed atmospheric methane-air flames. 

2. To evaluate the predictive capability of the developed multivariate calibration model 

and compare its performance with an OH
*
/CH

*
 intensity ratio calibration model over 

a range of equivalence ratios. 

 

3. Experimental Setup 

A rectangular slot burner (length: 11.2 cm, width: 0.55 cm, and height: 26 cm) was 

used to generate the atmospheric, premixed methane-air flames used in this study.  Fuel 

(99.97%-pure methane) and oxidizer (breathing grade air) were mixed at room 

temperature, prior to entering the slot burner from the bottom end.  Correlated rotameters 

(±2% accuracy full scale) were used to measure the flow rates of methane and air.  A 

schematic diagram of the experimental setup is shown in Fig. 1.  To cut-off fuel supply to 
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the burner in case of an emergency; a safety shutdown switch was used in the fuel line as 

shown in Fig. 1.  A flash arrester was also attached to the fuel cylinder as a safety 

precaution. 

Flame equivalence ratios were calculated from the volume flow rates of fuel and air 

measured with the rotameters and the measured air and fuel pressures (±1% accuracy of 

full scale) at the outlet of the rotameters.  Both fuel and air at the rotameter outlets were 

assumed to be at ambient temperature (298 K) and the ideal gas equation of state was 

used to obtain the respective mass flow rates.  The equivalence ratio was defined as 

follows: 

 
a
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AFR
ratioeEquivalenc )(  (1) 

where, AFRs is the stoichiometric mass-based air-fuel ratio (17.16 for methane-air 

combustion), and AFRa is the actual mass-based air-fuel ratio computed from measured 

fuel and air mass flow rates. 

The uncertainty of the measured equivalence ratios in this study was between 3 to 

5 percent.  The uncertainty was estimated using the following equation [19]: 
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where, φ is equivalence ratio; Vf  and Va are fuel and air volume flow rates respectively; 

Pf  and Pa are the pressures of fuel and air at the outlets of the respective flow meters; Uφ, 

Uvf, Uva, UPf, and UPa are the uncertainties associated with φ, Vf, Va, Pf  and Pa, 

respectively. 

 

All optical measurements were performed approximately 2 mm above the burner 

edge.  A fused silica, plano-convex, spherical lens with 10 cm focal length and 1.27 cm 

diameter focused at the center of the burner was used to collect the chemiluminescence 
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spectra.  The collected optical signal was coupled to the single end of a bifurcated optical 

fiber (Ocean Optics, QBIF400-UV-VIS).  One of the bifurcated ends of the optical fiber 

was connected to an Ocean Optics USB 2000 spectrometer (600 grooves/mm grating) 

with a spectral resolution of 3.8 nm (full-width half-maximum) to record the 

chemiluminescence emission spectra.  The other end was used to locate spatial position in 

the flame by sending a separate laser beam through it before the experimental 

measurements were performed.  This end was closed while recording the 

chemiluminescence spectra.  Each spectrum was acquired with a 25 ms exposure time 

and each recorded spectrum was an average of 20 accumulated spectra.  A total of ten 

such averaged spectra were recorded for each equivalence ratio condition.  It is well 

known that the chemiluminescence emissions are superimposed on the dark current 

background spectrum.  Hence, the dark current background was also collected for each 

experimental condition by blocking the natural flame chemiluminescence emissions.  The 

experiments were replicated five times in the course of three days. 

 

4. Data Analysis 

Two separate analyses were performed with the recorded chemiluminescence spectra: 

(1) intensity ratio analysis, and (2) multivariate data analysis.  A MATLAB code was 

written for processing the chemiluminescence data.  In the first step, the dark current 

background was subtracted from the raw spectra and the processed spectra were saved for 

the multivariate data analysis (described below).  In the second step, the nonlinear 

background emissions were subtracted from the dark current background-subtracted 

spectra and the OH
*
, CH

*
, and C2

* 
peak intensities were saved for the intensity ratio 



8 

analysis.  The following procedure was adopted for generation of the dark current 

nonlinear background.  After selecting the 250-650 nm spectral region, the spectral peaks 

of OH
*
, CH

*
, and C2

*
 were filtered from the spectrum.  Using the rest of the spectrum, an 

n
th 

order polynomial (where n depended on the nonlinear background that varied with 

equivalence ratio) was generated by minimizing the root mean square (RMS) of error 

between the spectral intensity and the generated background. 

The multivariate data analysis was performed using The Unscrambler
®

 version 9.7 

(CAMO, Corvallis, OR, USA).  A detailed method of performing multivariate data 

analysis can be found elsewhere [20-21]; however, a brief description of the method is 

given below.  Multivariate data analysis can provide important information if the 

variation of any analytical parameter is correlated with more than one variable.  In the 

present case, the variation of equivalence ratio can be correlated with the variation of 

spectral intensities associated with various chemical species (i.e., OH
*
, CH

*
, C2

*
, and 

CO2
*
).  The key difference between the intensity ratio analysis and the multivariate data 

analysis lies in the inclusion of the nonlinear background (associated with CO2
*
 

emissions) in the latter for developing the calibration model.  Therefore, multivariate data 

analysis, as will be shown later, can provide a more robust calibration model compared to 

the intensity ratio method for sensing applications.  The partial least squares regression 

(PLS-R) approach [20] was used to develop the multivariate calibration model for 

prediction of equivalence ratios.  The inputs to the multivariate calibration model were 

the chemiluminescence spectra at different equivalence ratios.  The PLS-R relates 

variations in an analytical parameter (i.e., equivalence ratio) with variations in several 

explanatory variables (i.e., spectral intensities).  Chemiluminescence intensities from the 
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entire spectral range of interest (i.e., 250-650 nm) were considered as the explanatory 

variables.  Initially, the spectral data were stored in an “X matrix” and the equivalence 

ratio data (calculated from the measured fuel and air mass flow rates) were stored in a “Y 

matrix.”  In the X matrix, chemiluminescence intensities in the 250-650 nm spectral 

range at each equivalence ratio condition were stored in each row.  Equivalence ratios 

were stored in the corresponding row in the Y matrix, which was essentially a column 

vector.  The PLS-R determines the directions of maximum variations in the X matrix by 

simultaneously using variations in the X and Y matrices.  These directions of variations 

are indicated by the principal components (PCs), with the first principal component 

(PC1) indicating the direction of maximum variations in the entire data set, the second 

principal component (PC2) indicating the next significant direction of variations, and so 

on.  Subsequently, the spectral data were linearly regressed on the obtained PCs to 

develop the multivariate calibration model.  While PLS-R provides a reasonable 

multivariate calibration with spectroscopic data, it also has a tendency toward over-fitting 

the available data.  Therefore, it is important to analyze the “one-vector loading-weight 

plot” (the variation of the “loading weight” with the spectral wavelength), which is 

explained in detail in Section 5.2.  Additional details regarding the PLS-R approach used 

in the present work are available in Ref. [20]. 

Full cross-validation, based on the leave-one-out cross validation (LOOCV) 

methodology, was used to validate the calibration model.  In the LOOCV method, the 

spectral data for one equivalence ratio was left out for validation while the rest of the 

spectral data set was used for developing the calibration model.  This validation process 

(LOOCV) was then repeated for each equivalence ratio in the entire data set [20].  After 
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the LOOCV was performed on the developed calibration model, the predictive capability 

of the model was further tested using an unknown data set. 

 

5. Results and Discussion 

In this section, the chemiluminescence spectra at different equivalence ratios and 

peak intensities for OH
*
, CH

*
, and C2

*
 are discussed first.  Subsequently, results from 

both the intensity ratio calibration model as well as the multivariate calibration model are 

presented and discussed.  Predicted equivalence ratios are compared to measured 

equivalence ratios for both models and the relative benefits of the multivariate calibration 

model are described. 

Equivalence ratios ranging from 0.73 to 1.48 were considered in this study for the 

development of both the intensity ratio and multivariate calibration models.  All 

equivalence ratios considered in the development of the calibration models are given in 

Table 1.  The number of replications was selected after close observation of the flame 

chemiluminescence spectra for five days, with two recordings taken every day.  A 

spectral range of 250-650 nm was used in this study as the range covers most of the 

chemiluminescence emissions from all the species of interest.  The signal-to-noise ratio 

(SNR) in these measurements was different for various spectral peaks at different 

equivalence ratios.  However, the minimum SNR of the measurements was calculated by 

determining the SNR of the OH
*
 peak at rich equivalence ratios (OH

*
 will have the 

minimum peak intensity among all spectral peaks for CH
*
, OH

*
, and C2

*
 at rich 

conditions).  Therefore, for these measurements, the minimum SNR was determined as 

the ratio of the difference between the OH
*
 peak intensity and the background to the 
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square root of the background.  The background is determined from the average spectral 

intensity in the 200-250 nm range where the chemiluminescence signal is absent.  For the 

richest equivalence ratio examined in this study (φ = 1.48), the minimum SNR for the 

OH
*
 spectral peak at 309 nm (with a 25 ms exposure time and 20 spectra accumulations) 

was 18. 

Figure 2 shows chemiluminescence spectra acquired at various equivalence ratios in 

the spectral range of interest.  All the three spectra shown in Figure 2 are plotted on the 

same scale.  Hence, the spectral intensities can be compared directly.  It can be observed 

from Fig. 2 that along with the spectral peaks of OH
*
, CH

*
, and C2

*
, the nonlinear 

background (which is primarily due to CO2
*
) varied with equivalence ratio.  Particularly 

at φ = 1.48, all the spectral peak intensities are reduced because of suppression in the 

nonlinear background.  This can be associated with lower production of CO2 in rich 

flames, where the presence of excess fuel (compared to oxidizer) favors the partial 

oxidation of some of the fuel into CO rather than CO2.  These observations support the 

inclusion of the nonlinear background in addition to the OH
*
, CH

*
 and C2

*
 spectral peaks 

in the sensing of equivalence ratios, especially in rich premixed flames. 

Figure 3 shows the variation of OH
*
, CH

*
, and C2

*
 chemiluminescence peak 

intensities as equivalence ratio was increased from a lean condition (φ = 0.78) to a near-

stoichiometric condition (φ = 0.97), and then to a rich condition (φ = 1.48).  To obtain the 

spectral peak intensity, the nonlinear background was subtracted from the spectrum by 

the method described in Section 4.  It can be observed from Fig. 3 that the OH
*
 peak 

intensity, while significantly high for lean equivalence ratios (due to the abundance of 

OH radicals), was relatively low in comparison to the CH
*
 and C2

*
 chemiluminescence 
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peak intensities for rich flames.  Also, the spectral peak of C2
*
 shows more variations 

with equivalence ratio in comparison with OH
*
, and CH

*
 spectral peak intensities.  For 

example, the C2
*
 peak intensities first increased when the equivalence ratio was increased 

from φ = 0.78 to φ = 0.97 but decreased to a lower value at the richest condition of φ = 

1.48.  It is also evident from Fig. 3 that the CH
*
 spectral peak intensities showed a similar 

behavior with equivalence ratio but the magnitude of the CH
*
 variations were much 

smaller than the C2
*
 variations. 

 

5.1 Intensity Ratio Calibration 

In the literature, many researchers have employed the OH
*
/CH

*
 peak intensity ratio as 

a metric for sensing equivalence ratios.  As a first step in the development of the intensity 

ratio calibration model, the variations of the OH
*
/CH

*
 chemiluminescence intensity ratios 

with equivalence ratio are shown in Fig. 4 along with data from Kojima et al. [13], who 

did similar studies but used Cassegrain optics instead for collecting the 

chemiluminescence spectra.  As evident from Fig. 4, the general behavior of the 

OH
*
/CH

*
 data in the present work is similar to previously reported results [3, 13, 16].  

However, despite the similarity of the general trends, comparison of the present data with 

those from Kojima et al shows significant differences in the absolute magnitudes of the 

OH
*
/CH

*
 intensity ratios.  This can be attributed to the difference in the detection 

efficiencies of the spectrometers used in the present study and in the study of Kojima et 

al.  Also, since Kojima et al used Cassegrain optics for the collection of highly resolved 

optical signal with better collection efficiencies, their peak intensities could have been 

higher.  In Fig. 4, the increasing trend of OH
*
/CH

*
 intensity ratio with decreasing 
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equivalence ratio is associated with the high OH
*
 production for lean equivalence ratios 

(due to excess air) [22].  The standard deviations shown with the data points for the 

present study were calculated based on the experimental results of five replications.   

A three-parameter exponential decay curve was fitted to the calibration data.  The 

equation of the best-fitted curve for the OH
*
/CH

*
 intensity ratios is given below: 

 )91.8exp(84.59437.0
*

*

CH

OH
 (3) 

As given in Fig. 4, the R
2 

(goodness of fit) of the fitted curve was 0.97.  Root mean 

square error in calibration (RMSEC), which is another measure of the overall goodness of 

fit of the OH
*
/CH

*
 intensity ratio calibration model, needs to be carefully studied during 

model development.  The calculated RMSEC for the OH
*
/CH

*
 intensity ratio analysis 

was 0.05.  The RMSEC for any calibration model is defined below: 

 
n

YY

RMSEC

n

i

c
i

p
i

1

2)(

 (4) 

where, Y
c
 is the dependent variable data (intensity ratio in this case) used in the 

development of the calibration, Y
p
 is the predicted dependent variable data (again, 

intensity ratio here) by using the developed OH
*
/CH

*
 intensity ratio calibration model 

(the exponential decay equation), and n is the number of equivalence ratios used in 

developing the calibration model.  

 

5.2 Multivariate Calibration 

A PLS-R based multivariate calibration model was developed for sensing equivalence 

ratios in premixed methane-air flames.  In this process, the multivariate model was first 

developed and calibrated with an initial data set consisting of chemiluminescence spectra 
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at different equivalence ratios and later its equivalence ratio prediction capabilities were 

validated with an unknown spectral data set.  In the model development phase, the PLS-R 

based regression was performed on spectra collected at nine different equivalence ratios 

in the range of 0.73 to 1.48 with five replications at each equivalence ratio.  The 

equivalence ratios used in the development of the multivariate calibration model were 

calculated from measured fuel and air mass flow rates.  Data from the forty-five spectra 

were processed for developing the multivariate calibration model.  As mentioned before, 

a whole spectrum approach was used in developing the multivariate calibration model.  In 

this approach, the entire spectrum in the spectral range of interest (including the nonlinear 

background) was used to develop the calibration model.  This method helped in 

investigating the importance of the nonlinear background vis-à-vis the predictive 

capabilities of the calibration model and also to ascertain if the nonlinear background 

showed any variations with equivalence ratio. 

As discussed in Section 4, the PLS-R determines the directions of maximum 

variations in the X matrix (each row of X has the spectral intensities over the entire range 

of wavelengths for a given equivalence ratio) by simultaneously using variations in the X 

and Y matrices (where the Y matrix is a column vector storing the corresponding 

measured equivalence ratios).  Since the PCs indicate the directions of variations in the 

data set, the number of PCs included in the development of the multivariate calibration 

model is very important [20].  To understand how many PCs are needed for the 

development of an accurate calibration model, it is useful to examine the residual 

validation variance for the developed calibration model as the number of PCs used for 

model development is increased.  The residual validation variance for Y (equivalence 
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ratio in the present case) is a measure of how well the model will perform in predictions 

with a similar but unknown X-data set [20].  In other words, the smaller the residual 

variance, the better the model will perform in predictions with an unknown X-data set 

and vice versa.  For the present X-data set (with LOOCV validation), the residual 

validation Y-variance for the PLS-R based model is shown as a function of the number of 

PCs in Fig. 5.  As evident from this figure, the residual variance decreases sharply as the 

number of PCs is increased from 0 to 3 and then remains constant (near zero) as the 

number of PCs is increased beyond 3 (up to a maximum of 20).  Thus, Fig. 5 clearly 

establishes that it is sufficient to employ only three PCs in the development of the 

multivariate calibration model.  If additional PCs are used, then no additional benefits are 

realized in the calibration model.  On the other hand, if four or more PCs are used in the 

model development for the present data set, then the model may attempt to over-fit the 

available X-data (and result in modeling “noise”) instead of accurately capturing the 

actual variations in the X-data set; therefore, the prediction accuracy of the multivariate 

calibration model could potentially be compromised. 

Figure 6 shows the predicted equivalence ratios obtained from the multivariate 

calibration model using the calibration data set versus the measured equivalence ratios.  

As mentioned above, the multivariate calibration model was developed with three PCs.  

In other words, the calibration model used three directions of variations in the original 

spectral data matrix to explain the variations of the chemiluminescence spectra with 

equivalence ratios.  The measured equivalence ratios in Fig. 6 refer to the equivalence 

ratios that were calculated from the measured fuel and air mass flow rates, i.e., the 

equivalence ratios in the Y-matrix.  In a comparison plot such as Fig. 6, a perfect 
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calibration model would ensure that all of the data points in Fig. 6 lie on the 45-degree 

line (i.e., predicted equivalence ratios will be exactly equal to the measured equivalence 

ratios at all conditions).  The high R
2
 value (goodness of fit) for the data points in Fig. 6 

indicates good fidelity in the multivariate calibration model.  Compared to the OH
*
/CH

*
 

intensity ratio calibration (R
2
 = 0.97), it is evident that the R

2
 improved for the 

multivariate calibration model to 0.99.  During the development of any calibration model, 

minimizing the RMSEC is very important [20].  Both the RMSEC and the root mean 

square error in prediction (RMSEP) of the multivariate calibration model (with LOOCV 

validation) were evaluated using an equation similar to Equation 4.  As shown in Fig. 6, 

both the RMSEC and RMSEP for the multivariate calibration model were 0.02 (which 

was equal to the minimum uncertainty in the equivalence ratio measurements); by 

comparison, the RMSEC value for the OH
*
/CH

*
 intensity ratio calibration model was 

0.05.  Despite these favorable indications for the multivariate calibration model, the final 

test of this model will be its ability to predict equivalence ratios in an unknown spectral 

data set.  The outcomes of this test for both the multivariate calibration and the intensity 

ratio calibration are discussed in Section 5.3. 

The “loading-weight” plot is another very important plot that should be analyzed 

while developing multivariate calibration models with spectroscopic data.  The loading-

weight provides information on the extent to which each explanatory variable (i.e., each 

spectral wavelength in the present scenario) has contributed in explaining the analytical 

parameter (equivalence ratio) along each PC in the multivariate calibration model [20].  

Figure 7 shows the variation of loading weights with wavelength along each PC (i.e., 

“one-vector loading-weight” plot) for the developed multivariate calibration model.  
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Wavelengths with large (non-zero) loading-weights along a particular PC exert more 

influence on the developed multivariate calibration model compared to others.  In other 

words, a PLS-R based multivariate calibration model may yield inaccurate (or even 

completely false) results if it does not have significant contributions from the spectral 

wavelengths that are known to be important in a given situation.  For example, in the 

present case, it is well established that the spectral peak intensities of OH
*
, CH

*
, and C2

*
 

vary significantly with equivalence ratio (see Fig. 3); in fact, this was the foundation on 

which the OH
*
/CH

*
 intensity ratio calibration discussed above was developed.  

Therefore, during the development of the PLS-R based multivariate calibration model, it 

may be expected that the one-vector loading-weight plot must show relatively large 

loading-weights at wavelengths corresponding to the spectral peaks of interest (OH
*
, 

CH
*
, and C2

*
).  Otherwise, the developed multivariate calibration may not explain the 

variations in equivalence ratios correctly.  In fact, it is quite evident from Fig. 7 that, 

along PC1, the spectral wavelengths corresponding to OH
*
, CH

*
, and C2

*
 show non-zero 

loading-weights.  Moreover, the nonlinear background (especially between 300 and 500 

nm) also shows non-zero loading-weights.  Hence, along PC1, the spectral information 

from the nonlinear background (due to CO2
*
 chemiluminescence emissions) as well as 

from the OH
*
, CH

*
, C2

*
 chemiluminescence emissions was used to model the variations 

in equivalence ratios.  The loading-weights along PC2 also show similar trends but with 

relatively larger loading-weights at wavelengths corresponding to OH
*
, CH

*
, and C2

*
 

spectral peak intensities and lower contributions from the nonlinear background 

compared to PC1.  Finally, along PC3, the loading-weight curve shows that only OH
*
, 

CH
*
, and C2

*
 spectral peaks were used in the development of the PLS-R based 
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multivariate calibration model, with minimal contribution from the nonlinear 

background.  In summary, the loading-weight trends in Fig. 7 clearly establish that while 

the OH
*
, CH

*
, and C2

*
 spectral peak intensities were certainly very important 

contributors, the nonlinear CO2
*
 background also played a non-trivial part in the 

development of the PLS-R based multivariate calibration model. 

 

5.3 Prediction of Equivalence Ratios from Unknown Spectral Data Set 

The predictive power of the OH
*
/CH

*
 intensity ratio and multivariate calibration 

models developed in Sections 5.1 and 5.2, respectively, were evaluated using an 

unknown, unbiased spectral data set for twenty-eight (28) different equivalence ratios 

between 0.71 and 1.67.  This data set was taken independently after developing the two 

calibration models and was not used either as a training or validation data set for the 

LOOCV methodology used to develop the PLS-R based multivariate calibration model.  

The predicted equivalence ratios from the unknown unbiased spectral data are shown in 

Fig. 8 (a) for the OH
*
/CH

*
 intensity ratio calibration model and in Fig. 8 (b) for the 

multivariate calibration model.  In each of these figures, two sets of data are presented: 

open circles represent equivalence ratio conditions that were included in the model 

development and filled circles represent equivalence ratio conditions that were not 

included in model development.  The 45 degree line (indicating perfect calibration) and 

the uncertainty bands for measured equivalence ratios are also shown in both figures.  

The uncertainty at each equivalence ratio was calculated using Equation 2 and the errors 

associated with the volume flow rate and pressure measurements.  Comparing Figs. 8 (a) 

and 8 (b), it is evident that the prediction results of the PLS-R based calibration model are 
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better than the OH
*
/CH

*
 intensity ratio model.  The performance of the OH

*
/CH

*
 

intensity ratio model was poor especially for rich equivalence ratios and for φ values not 

used in the original calibration.  The poor predictive capability of the OH
*
/CH

*
 intensity 

ratio model at rich conditions was also observed by Hardalupas et al. in their work 

reported in Ref. [16].  The reasons for this trend may be associated with lower OH
*
 peak 

intensities and a relatively low change in the OH
*
/CH

*
 intensity ratio with changing φ for 

rich flames.  On the other hand, PLS-R based multivariate calibration yielded better 

predictions even at rich equivalence ratios, ostensibly due to the fact that additional 

spectral information from other species (C2
*
 and CO2

*
) were included in the development 

of the multivariate calibration model.  Additional support for this hypothesis (i.e., 

improvement of multivariate PLS-R predictions due to the inclusion of C2
*
 and CO2

*
 

spectral information) is found qualitatively in Figs. 2 and 3.  In Fig. 2, it can be seen that 

the nonlinear background (due to CO2
*
 chemiluminescence) changes significantly with 

equivalence ratio.  For example, for φ = 1.48, the nonlinear background is suppressed 

probably due to partial fuel oxidation, which reduces CO2 production, and therefore, 

chemiluminescence emissions from CO2
*
.  In addition, for rich conditions (as shown in 

Fig. 3), the C2
*
 spectral peaks vary more significantly with equivalence ratio compared to 

the OH
*
 and CH

*
 peaks.  Therefore, it may be argued that one reason for the better 

performance of the multivariate calibration model compared to the OH
*
/CH

*
 intensity 

ratio model may be the inclusion of the C2
*
 and CO2

*
 chemiluminescence. 
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5.4 Discussion of the Practical Implications of the Present Work 

The proposed chemiluminescence-based sensing methodology has several practical 

advantages as well as some potential issues.  A significant advantage of the multivariate 

calibration methodology over the OH
*
/CH

*
 intensity ratio approach for equivalence ratio 

sensing is the removal of the need to perform nonlinear background subtraction from the 

raw measured spectra.  This is especially important because nonlinear background 

subtraction, if performed without adequate care, could induce artificial errors in intensity 

ratio-based approaches.  In addition, the inclusion of the nonlinear background may 

actually be beneficial under some conditions for the multivariate calibration model (e.g., 

for rich equivalence ratios as observed in Fig. 8 (b)).  On the other hand, an obvious 

concern with both approaches is signal trapping, which can lead to significant errors in 

chemiluminescence-based equivalence ratio measurements.  For example, sooty flames 

and other optically dense scenarios in practical combustors may impede the collection of 

chemiluminescence emissions, thus confounding or even completely preventing the 

sensing of equivalence ratios.  To resolve these issues, a correction factor could be added 

to overcome the error introduced by signal trapping.  However, in other practical 

combustors that encounter lean premixed flames or flameless (volumetric) combustion 

under low soot conditions (e.g., HCCI and lean-burn spark ignition engines), the 

proposed methodology may still be applied.  Another difficult situation could arise in 

high-pressure combustion environments, as spectral peak intensities in 

chemiluminescence spectra are pressure-dependent [4].  Therefore, it is important to 

ensure that the calibration process for both the multivariate calibration model as well as 
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the OH
*
/CH

*
 intensity ratio calibration model is performed under practically relevant 

pressure conditions. 

A potential benefit of the multivariate calibration methodology may be realized when 

sensing equivalence ratios in recirculation zones in combustors where exhaust gas may 

mix with the fresh fuel-air mixture or in IC engines with significant residual or recycled 

exhaust gas within the cylinder.  Under these conditions, it may be necessary to revisit 

the definition of the parameter that quantifies mixture strength.  The issue of redefinition 

of the equivalence ratio will also arise for oxygenated fuels (with oxygen atoms present 

in the fuel molecule), or when fuel molecules are present in the oxidizer [23].  Instead of 

using the traditional “fuel-air equivalence ratio,” it may be more meaningful to define and 

use an oxygen-based equivalence ratio to quantify mixture strength.  Nevertheless, the 

authors believe that the chemiluminescence-based sensing methodology could still work 

under these conditions.  The only difference would be that instead of using the traditional 

equivalence ratio to “calibrate” the multivariate calibration model, the variations in the 

spectral data associated with variations in the new quantity that characterizes mixture 

strength (e.g., oxygen-based equivalence ratio or fuel-oxygen ratio) should be used.  In 

this manner, any other quantity (similar to equivalence ratio) can be predicted (after 

careful initial calibrations) using the multivariate data analysis methodology presented in 

this paper.  Finally, the output from chemiluminescence-based sensors will also vary with 

variations in operating conditions of practical combustors.  This must be considered 

carefully during the calibration process and the calibration data set must include as wide a 

range of practically relevant operating conditions as possible. 
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6. Conclusions 

Real time measurement of local fuel-air equivalence ratios (φ) can be helpful in 

monitoring pollutant formation in premixed combustors, prevention of damages to 

combustors, and in the development of advanced combustion strategies, amongst other 

applications.  In the present paper, a new partial least square regression (PLS-R) based 

multivariate sensing methodology was investigated and compared with an OH
*
/CH

*
 

intensity ratio-based calibration model for sensing equivalence ratio in atmospheric 

methane-air premixed flames, ranging from fuel-lean to fuel-rich conditions.  Five 

replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 

were used in the calibration of both models.  An unbiased spectral data set (not used in 

the PLS-R model development), for 28 different equivalence ratio conditions ranging 

from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the 

intensity ratio calibration models.  The major experimental results presented in this paper 

can be summarized as follows: 

 Since the PLS-R model used raw spectral intensities from the entire spectrum, it did 

not need subtraction of the nonlinear background CO2
*
 emission, which was required 

in the OH
*
/CH

*
 intensity ratio calibration model to obtain OH

*
 and CH

*
spectral peak 

intensities. 

 The PLS-R based multivariate calibration model ensured a better calibration of the 

original spectral data set compared to the OH
*
/CH

*
 intensity ratio calibration model 

with an improved R
2
 value (0.97 to 0.99) value and lower root mean square error in 

calibration (0.05 to 0.02).   
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 The OH
*
/CH

*
 intensity ratio calibration model grossly underpredicted equivalence 

ratios in the unknown spectral data set compared to measured equivalence ratios, 

especially under rich conditions (φ > 1.2).  By comparison, the PLS-R based 

multivariate calibration model performed better in predicting equivalence ratios (to 

within 7 percent of measurements) from the unknown spectral data set  

 

These results demonstrate a proof-of-concept for the development of multivariate 

sensing strategies for monitoring and/or control of equivalence ratios in practical 

combustors.  Further studies are required to evaluate the performance of the multivariate 

calibration model in high-pressure environments and for premixed flames with other 

fuels.  Finally, the multivariate measurement methodology needs to be demonstrated and 

validated in practical premixed combustors. 
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