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Abstract
Chemiluminescence emissions from OH™, CH”, C,", and CO, formed within the reaction
zone of premixed flames depend upon the fuel-air equivalence ratio in the burning
mixture. In the present paper, a new partial least square regression (PLS-R) based
multivariate sensing methodology is investigated and compared with an OH/CH"
intensity ratio-based calibration model for sensing equivalence ratio in atmospheric
methane-air premixed flames. Five replications of spectral data at nine different
equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models.
During model development, the PLS-R model was initially validated with the calibration
data set using the leave-one-out cross validation technique. Since the PLS-R model used
the entire raw spectral intensities, it did not need the nonlinear background subtraction of
CO, " emission that is required for typical OH/CH" intensity ratio calibrations. An
unbiased spectral data set (not used in the PLS-R model development), for 28 different
equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence

ratios using the PLS-R and the intensity ratio calibration models. It was found that the
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equivalence ratios predicted with the PLS-R based multivariate calibration model
matched the experimentally measured equivalence ratios within 7 percent; whereas, the
OH'/CH" intensity ratio calibration grossly underpredicted equivalence ratios in
comparison to measured equivalence ratios, especially under rich conditions (¢ > 1.2).
The practical implications of the chemiluminescence-based multivariate equivalence ratio

sensing methodology are also discussed.
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Nomenclature:

LOOCV leave-one-out cross validation

PCs principal components

PLS-R partial least-square regression

RMS root mean square

RMSEC root mean square error in calibration
RMSEP root mean square error in prediction

1. Introduction

Real time measurement of local and global fuel-air equivalence ratios (¢) is essential
for monitoring and closed-loop control of premixed combustion systems. Pollutant
emissions such as oxides of nitrogen (NOy) carbon monoxide (CO), unburned

hydrocarbons (HC), and particulate matter (PM) can be reduced by controlling fuel-air



equivalence ratios [1-3]. Precise control of equivalence ratio can also help in preventing
serious accidents in gas turbines such as blow-off, flashback due to pressure waves, or
damage to the combustor due to combustion oscillations as these turbines operate close to
the lean limit [3-4]. In internal combustion (IC) engines, advanced combustion strategies
such as homogeneous charge compression ignition (HCCI) [5], low temperature
combustion [6], and direct injection spark ignition [7] utilize premixed or partially
premixed combustion modes to simultaneously improve engine efficiencies and reduce
pollutant emissions. To achieve controlled premixed or partially premixed combustion in
IC engines, the real-time measurement and closed-loop control of in-cylinder local
equivalence ratios are desirable. The present work is an attempt to utilize natural
chemiluminescence emissions to diagnose equivalence ratios in premixed atmospheric
methane-air flames with two different sensing methodologies: (1) a whole-spectrum
multivariate calibration model and (2) an OH"/CH" peak intensity ratio calibration model.

Chemiluminescence emissions from OH™, CH’, and C, formed within the reaction
zone of premixed flames depend upon the air-fuel ratio in the burning mixture [8-10].
Easy, nonintrusive experimental detection of chemiluminescence coupled with fast
response times provides a convenient approach for equivalence ratio determination.
Many researchers have investigated the variations in OH", CH", and C," intensity ratios
with equivalence ratio [11-13]. For example, Docquier et al. [11] studied the effect of
pressure on OH”, CH", and C,  chemiluminescence intensity in methane-air premixed
flames. They found a strong correlation between the chemiluminescence signal and
pressure and suggested the need for a multi-wavelength sensor for direct monitoring of

equivalence ratio. Hardalupas et al. [2] showed that in natural-gas-fuelled, premixed,



counter-flow flames OH/CH" is independent of strain rate and that C, /CH" and C, /OH"
show a strong dependence on strain rate. In a recent study [14], it was shown that in
premixed counter-flow methanol and ethanol flames, OH/CH” intensity ratio also shows
dependence on strain rate. The aforementioned studies clearly indicate the need for the
development of a robust sensing methodology that is applicable over a range of
combustion conditions.

Many approaches have being employed for sensing equivalence ratios from
chemiluminescence spectra [15]. Muruganandam et al. [3] and Hardalupas et al. [16]
used the peak intensity ratio of OH/CH" for sensing equivalence ratio in combustors
fueled with natural gas. Artificial intelligence-based data analysis techniques have also
been explored for monitoring as well as controling combustion processes [17]. Recently,
Ballester et al. [18] applied the artificial neural network technique on chemiluminiscence
spectra obtained from combustion of natural gas blended with hydrogen in a swirl
combustor for monitoring equivalence ratios.

All of the previous studies show that the chemiluminescence emissions of OH", CH",
C,’, and CO, (the nonlinear continuous background) from the reaction zone depends on
the equivalence ratio. In this work, a new multi-wavelength (multivariate) sensing
methodology is proposed for the determination of equivalence ratios in premixed
methane-air flames. Most of the previously reported work did not consider the whole
spectrum approach. A model based on multivariate statistics is relevant for a two-
dimensional (X, Y variables) data set, where the response Y-variable (equivalence ratio)
depends on several explanatory X-variables (spectral wavelengths). A wide

chemiluminescence spectrum (250 — 650 nm) was used to develop the multivariate



calibration model. This approach ensures that the spectral intensity variations from all
the excited species within the measured wavelength range are used in the development of
the multivariate calibration model. The experimental results presented in this paper
demonstrate that the multivariate calibration model can differentiate fuel-rich, fuel-lean,
and stoichiometric premixed flames. A partial least square regression (PLS-R) based
multivariate calibration model is developed and it is shown that the PLS-R model

successfully predicts the equivalence ratios within the developed calibration range.

2. Specific Objectives
The specific objectives of the present work are

1. To develop a multi-wavelength sensing methodology for equivalence ratio estimation
and monitoring in premixed atmospheric methane-air flames.

2. To evaluate the predictive capability of the developed multivariate calibration model
and compare its performance with an OH"/CH” intensity ratio calibration model over

a range of equivalence ratios.

3. Experimental Setup

A rectangular slot burner (length: 11.2 cm, width: 0.55 cm, and height: 26 cm) was
used to generate the atmospheric, premixed methane-air flames used in this study. Fuel
(99.97%-pure methane) and oxidizer (breathing grade air) were mixed at room
temperature, prior to entering the slot burner from the bottom end. Correlated rotameters
(£2% accuracy full scale) were used to measure the flow rates of methane and air. A

schematic diagram of the experimental setup is shown in Fig. 1. To cut-off fuel supply to



the burner in case of an emergency; a safety shutdown switch was used in the fuel line as
shown in Fig. 1. A flash arrester was also attached to the fuel cylinder as a safety
precaution.

Flame equivalence ratios were calculated from the volume flow rates of fuel and air
measured with the rotameters and the measured air and fuel pressures (1% accuracy of
full scale) at the outlet of the rotameters. Both fuel and air at the rotameter outlets were
assumed to be at ambient temperature (298 K) and the ideal gas equation of state was
used to obtain the respective mass flow rates. The equivalence ratio was defined as
follows:

AFR (1)

Equivalence ratio(¢) =
q (®) AFR,

where, AFR; is the stoichiometric mass-based air-fuel ratio (17.16 for methane-air
combustion), and AFR, is the actual mass-based air-fuel ratio computed from measured
fuel and air mass flow rates.

The uncertainty of the measured equivalence ratios in this study was between 3 to

5 percent. The uncertainty was estimated using the following equation [19]:
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where, ¢ is equivalence ratio; Vi and V, are fuel and air volume flow rates respectively;

P: and P, are the pressures of fuel and air at the outlets of the respective flow meters; U,,
Uvs, Uva, Upr, and Up, are the uncertainties associated with ¢, Vi, V,, P; and P,

respectively.

All optical measurements were performed approximately 2 mm above the burner
edge. A fused silica, plano-convex, spherical lens with 10 cm focal length and 1.27 cm

diameter focused at the center of the burner was used to collect the chemiluminescence



spectra. The collected optical signal was coupled to the single end of a bifurcated optical
fiber (Ocean Optics, QBIF400-UV-VIS). One of the bifurcated ends of the optical fiber
was connected to an Ocean Optics USB 2000 spectrometer (600 grooves/mm grating)
with a spectral resolution of 3.8 nm (full-width half-maximum) to record the
chemiluminescence emission spectra. The other end was used to locate spatial position in
the flame by sending a separate laser beam through it before the experimental
measurements were performed. This end was closed while recording the
chemiluminescence spectra. Each spectrum was acquired with a 25 ms exposure time
and each recorded spectrum was an average of 20 accumulated spectra. A total of ten
such averaged spectra were recorded for each equivalence ratio condition. It is well
known that the chemiluminescence emissions are superimposed on the dark current
background spectrum. Hence, the dark current background was also collected for each
experimental condition by blocking the natural flame chemiluminescence emissions. The

experiments were replicated five times in the course of three days.

4. Data Analysis

Two separate analyses were performed with the recorded chemiluminescence spectra:
(1) intensity ratio analysis, and (2) multivariate data analysis. A MATLAB code was
written for processing the chemiluminescence data. In the first step, the dark current
background was subtracted from the raw spectra and the processed spectra were saved for
the multivariate data analysis (described below). In the second step, the nonlinear
background emissions were subtracted from the dark current background-subtracted

spectra and the OH", CH", and C, peak intensities were saved for the intensity ratio



analysis. The following procedure was adopted for generation of the dark current
nonlinear background. After selecting the 250-650 nm spectral region, the spectral peaks
of OH", CH", and C, " were filtered from the spectrum. Using the rest of the spectrum, an
n™ order polynomial (where n depended on the nonlinear background that varied with
equivalence ratio) was generated by minimizing the root mean square (RMS) of error
between the spectral intensity and the generated background.

The multivariate data analysis was performed using The Unscrambler® version 9.7
(CAMO, Corvallis, OR, USA). A detailed method of performing multivariate data
analysis can be found elsewhere [20-21]; however, a brief description of the method is
given below. Multivariate data analysis can provide important information if the
variation of any analytical parameter is correlated with more than one variable. In the
present case, the variation of equivalence ratio can be correlated with the variation of
spectral intensities associated with various chemical species (i.e., OH", CH", C,, and
CO,"). The key difference between the intensity ratio analysis and the multivariate data
analysis lies in the inclusion of the nonlinear background (associated with CO,"
emissions) in the latter for developing the calibration model. Therefore, multivariate data
analysis, as will be shown later, can provide a more robust calibration model compared to
the intensity ratio method for sensing applications. The partial least squares regression
(PLS-R) approach [20] was used to develop the multivariate calibration model for
prediction of equivalence ratios. The inputs to the multivariate calibration model were
the chemiluminescence spectra at different equivalence ratios. The PLS-R relates
variations in an analytical parameter (i.e., equivalence ratio) with variations in several

explanatory variables (i.e., spectral intensities). Chemiluminescence intensities from the



entire spectral range of interest (i.e., 250-650 nm) were considered as the explanatory
variables. Initially, the spectral data were stored in an “X matrix” and the equivalence
ratio data (calculated from the measured fuel and air mass flow rates) were stored in a “Y
matrix.” In the X matrix, chemiluminescence intensities in the 250-650 nm spectral
range at each equivalence ratio condition were stored in each row. Equivalence ratios
were stored in the corresponding row in the Y matrix, which was essentially a column
vector. The PLS-R determines the directions of maximum variations in the X matrix by
simultaneously using variations in the X and Y matrices. These directions of variations
are indicated by the principal components (PCs), with the first principal component
(PC1) indicating the direction of maximum variations in the entire data set, the second
principal component (PC2) indicating the next significant direction of variations, and so
on. Subsequently, the spectral data were linearly regressed on the obtained PCs to
develop the multivariate calibration model. While PLS-R provides a reasonable
multivariate calibration with spectroscopic data, it also has a tendency toward over-fitting
the available data. Therefore, it is important to analyze the “one-vector loading-weight
plot” (the variation of the “loading weight” with the spectral wavelength), which is
explained in detail in Section 5.2. Additional details regarding the PLS-R approach used
in the present work are available in Ref. [20].

Full cross-validation, based on the leave-one-out cross validation (LOOCV)
methodology, was used to validate the calibration model. In the LOOCV method, the
spectral data for one equivalence ratio was left out for validation while the rest of the
spectral data set was used for developing the calibration model. This validation process

(LOOCV) was then repeated for each equivalence ratio in the entire data set [20]. After



the LOOCYV was performed on the developed calibration model, the predictive capability

of the model was further tested using an unknown data set.

5. Results and Discussion

In this section, the chemiluminescence spectra at different equivalence ratios and
peak intensities for OH", CH", and C, are discussed first. Subsequently, results from
both the intensity ratio calibration model as well as the multivariate calibration model are
presented and discussed. Predicted equivalence ratios are compared to measured
equivalence ratios for both models and the relative benefits of the multivariate calibration
model are described.

Equivalence ratios ranging from 0.73 to 1.48 were considered in this study for the
development of both the intensity ratio and multivariate calibration models. All
equivalence ratios considered in the development of the calibration models are given in
Table 1. The number of replications was selected after close observation of the flame
chemiluminescence spectra for five days, with two recordings taken every day. A
spectral range of 250-650 nm was used in this study as the range covers most of the
chemiluminescence emissions from all the species of interest. The signal-to-noise ratio
(SNR) in these measurements was different for various spectral peaks at different
equivalence ratios. However, the minimum SNR of the measurements was calculated by
determining the SNR of the OH" peak at rich equivalence ratios (OH™ will have the
minimum peak intensity among all spectral peaks for CH", OH’, and C, at rich
conditions). Therefore, for these measurements, the minimum SNR was determined as

the ratio of the difference between the OH" peak intensity and the background to the
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square root of the background. The background is determined from the average spectral
intensity in the 200-250 nm range where the chemiluminescence signal is absent. For the
richest equivalence ratio examined in this study (¢ = 1.48), the minimum SNR for the
OH" spectral peak at 309 nm (with a 25 ms exposure time and 20 spectra accumulations)
was 18.

Figure 2 shows chemiluminescence spectra acquired at various equivalence ratios in
the spectral range of interest. All the three spectra shown in Figure 2 are plotted on the
same scale. Hence, the spectral intensities can be compared directly. It can be observed
from Fig. 2 that along with the spectral peaks of OH", CH", and C,’, the nonlinear
background (which is primarily due to CO,’) varied with equivalence ratio. Particularly
at ¢ = 1.48, all the spectral peak intensities are reduced because of suppression in the
nonlinear background. This can be associated with lower production of CO; in rich
flames, where the presence of excess fuel (compared to oxidizer) favors the partial
oxidation of some of the fuel into CO rather than CO,. These observations support the
inclusion of the nonlinear background in addition to the OH", CH" and C," spectral peaks
in the sensing of equivalence ratios, especially in rich premixed flames.

Figure 3 shows the variation of OH", CH", and C," chemiluminescence peak
intensities as equivalence ratio was increased from a lean condition (¢ = 0.78) to a near-
stoichiometric condition (¢ = 0.97), and then to a rich condition (¢ = 1.48). To obtain the
spectral peak intensity, the nonlinear background was subtracted from the spectrum by
the method described in Section 4. It can be observed from Fig. 3 that the OH” peak
intensity, while significantly high for lean equivalence ratios (due to the abundance of

OH radicals), was relatively low in comparison to the CH™ and C,” chemiluminescence
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peak intensities for rich flames. Also, the spectral peak of C,” shows more variations
with equivalence ratio in comparison with OH", and CH" spectral peak intensities. For
example, the C," peak intensities first increased when the equivalence ratio was increased
from ¢ =0.78 to ¢ = 0.97 but decreased to a lower value at the richest condition of ¢ =
1.48. Itis also evident from Fig. 3 that the CH" spectral peak intensities showed a similar
behavior with equivalence ratio but the magnitude of the CH” variations were much

smaller than the C,” variations.

5.1 Intensity Ratio Calibration

In the literature, many researchers have employed the OH"/CH" peak intensity ratio as
a metric for sensing equivalence ratios. As a first step in the development of the intensity
ratio calibration model, the variations of the OH/CH" chemiluminescence intensity ratios
with equivalence ratio are shown in Fig. 4 along with data from Kojima et al. [13], who
did similar studies but wused Cassegrain optics instead for collecting the
chemiluminescence spectra. As evident from Fig. 4, the general behavior of the
OH’/CH" data in the present work is similar to previously reported results [3, 13, 16].
However, despite the similarity of the general trends, comparison of the present data with
those from Kojima et al shows significant differences in the absolute magnitudes of the
OH'/CH” intensity ratios. This can be attributed to the difference in the detection
efficiencies of the spectrometers used in the present study and in the study of Kojima et
al. Also, since Kojima et al used Cassegrain optics for the collection of highly resolved
optical signal with better collection efficiencies, their peak intensities could have been

higher. In Fig. 4, the increasing trend of OH/CH" intensity ratio with decreasing
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equivalence ratio is associated with the high OH" production for lean equivalence ratios
(due to excess air) [22]. The standard deviations shown with the data points for the
present study were calculated based on the experimental results of five replications.

A three-parameter exponential decay curve was fitted to the calibration data. The

equation of the best-fitted curve for the OH"/CH” intensity ratios is given below:

OH o037+ 594.84exp(-8.91p) 3

- =

CH
As given in Fig. 4, the R? (goodness of fit) of the fitted curve was 0.97. Root mean
square error in calibration (RMSEC), which is another measure of the overall goodness of
fit of the OH"/CH” intensity ratio calibration model, needs to be carefully studied during
model development. The calculated RMSEC for the OH"/CH" intensity ratio analysis

was 0.05. The RMSEC for any calibration model is defined below:

(4)

where, Y¢ is the dependent variable data (intensity ratio in this case) used in the
development of the calibration, YP is the predicted dependent variable data (again,
intensity ratio here) by using the developed OH"/CH” intensity ratio calibration model
(the exponential decay equation), and n is the number of equivalence ratios used in

developing the calibration model.

5.2 Multivariate Calibration
A PLS-R based multivariate calibration model was developed for sensing equivalence
ratios in premixed methane-air flames. In this process, the multivariate model was first

developed and calibrated with an initial data set consisting of chemiluminescence spectra

13



at different equivalence ratios and later its equivalence ratio prediction capabilities were
validated with an unknown spectral data set. In the model development phase, the PLS-R
based regression was performed on spectra collected at nine different equivalence ratios
in the range of 0.73 to 1.48 with five replications at each equivalence ratio. The
equivalence ratios used in the development of the multivariate calibration model were
calculated from measured fuel and air mass flow rates. Data from the forty-five spectra
were processed for developing the multivariate calibration model. As mentioned before,
a whole spectrum approach was used in developing the multivariate calibration model. In
this approach, the entire spectrum in the spectral range of interest (including the nonlinear
background) was used to develop the calibration model. This method helped in
investigating the importance of the nonlinear background vis-a-vis the predictive
capabilities of the calibration model and also to ascertain if the nonlinear background
showed any variations with equivalence ratio.

As discussed in Section 4, the PLS-R determines the directions of maximum
variations in the X matrix (each row of X has the spectral intensities over the entire range
of wavelengths for a given equivalence ratio) by simultaneously using variations in the X
and Y matrices (where the Y matrix is a column vector storing the corresponding
measured equivalence ratios). Since the PCs indicate the directions of variations in the
data set, the number of PCs included in the development of the multivariate calibration
model is very important [20]. To understand how many PCs are needed for the
development of an accurate calibration model, it is useful to examine the residual
validation variance for the developed calibration model as the number of PCs used for

model development is increased. The residual validation variance for Y (equivalence
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ratio in the present case) is a measure of how well the model will perform in predictions
with a similar but unknown X-data set [20]. In other words, the smaller the residual
variance, the better the model will perform in predictions with an unknown X-data set
and vice versa. For the present X-data set (with LOOCV validation), the residual
validation Y-variance for the PLS-R based model is shown as a function of the number of
PCs in Fig. 5. As evident from this figure, the residual variance decreases sharply as the
number of PCs is increased from O to 3 and then remains constant (near zero) as the
number of PCs is increased beyond 3 (up to a maximum of 20). Thus, Fig. 5 clearly
establishes that it is sufficient to employ only three PCs in the development of the
multivariate calibration model. If additional PCs are used, then no additional benefits are
realized in the calibration model. On the other hand, if four or more PCs are used in the
model development for the present data set, then the model may attempt to over-fit the
available X-data (and result in modeling “noise™) instead of accurately capturing the
actual variations in the X-data set; therefore, the prediction accuracy of the multivariate
calibration model could potentially be compromised.

Figure 6 shows the predicted equivalence ratios obtained from the multivariate
calibration model using the calibration data set versus the measured equivalence ratios.
As mentioned above, the multivariate calibration model was developed with three PCs.
In other words, the calibration model used three directions of variations in the original
spectral data matrix to explain the variations of the chemiluminescence spectra with
equivalence ratios. The measured equivalence ratios in Fig. 6 refer to the equivalence
ratios that were calculated from the measured fuel and air mass flow rates, i.e., the

equivalence ratios in the Y-matrix. In a comparison plot such as Fig. 6, a perfect
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calibration model would ensure that all of the data points in Fig. 6 lie on the 45-degree
line (i.e., predicted equivalence ratios will be exactly equal to the measured equivalence
ratios at all conditions). The high R? value (goodness of fit) for the data points in Fig. 6
indicates good fidelity in the multivariate calibration model. Compared to the OH/CH"
intensity ratio calibration (R®> = 0.97), it is evident that the R? improved for the
multivariate calibration model to 0.99. During the development of any calibration model,
minimizing the RMSEC is very important [20]. Both the RMSEC and the root mean
square error in prediction (RMSEP) of the multivariate calibration model (with LOOCV
validation) were evaluated using an equation similar to Equation 4. As shown in Fig. 6,
both the RMSEC and RMSEP for the multivariate calibration model were 0.02 (which
was equal to the minimum uncertainty in the equivalence ratio measurements); by
comparison, the RMSEC value for the OH"/CH” intensity ratio calibration model was
0.05. Despite these favorable indications for the multivariate calibration model, the final
test of this model will be its ability to predict equivalence ratios in an unknown spectral
data set. The outcomes of this test for both the multivariate calibration and the intensity
ratio calibration are discussed in Section 5.3.

The “loading-weight” plot is another very important plot that should be analyzed
while developing multivariate calibration models with spectroscopic data. The loading-
weight provides information on the extent to which each explanatory variable (i.e., each
spectral wavelength in the present scenario) has contributed in explaining the analytical
parameter (equivalence ratio) along each PC in the multivariate calibration model [20].
Figure 7 shows the variation of loading weights with wavelength along each PC (i.e.,

“one-vector loading-weight” plot) for the developed multivariate calibration model.
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Wavelengths with large (non-zero) loading-weights along a particular PC exert more
influence on the developed multivariate calibration model compared to others. In other
words, a PLS-R based multivariate calibration model may vyield inaccurate (or even
completely false) results if it does not have significant contributions from the spectral
wavelengths that are known to be important in a given situation. For example, in the
present case, it is well established that the spectral peak intensities of OH", CH", and C,"
vary significantly with equivalence ratio (see Fig. 3); in fact, this was the foundation on
which the OH'/CH” intensity ratio calibration discussed above was developed.
Therefore, during the development of the PLS-R based multivariate calibration model, it
may be expected that the one-vector loading-weight plot must show relatively large
loading-weights at wavelengths corresponding to the spectral peaks of interest (OH",
CH", and C,). Otherwise, the developed multivariate calibration may not explain the
variations in equivalence ratios correctly. In fact, it is quite evident from Fig. 7 that,
along PC1, the spectral wavelengths corresponding to OH", CH”, and C," show non-zero
loading-weights. Moreover, the nonlinear background (especially between 300 and 500
nm) also shows non-zero loading-weights. Hence, along PC1, the spectral information
from the nonlinear background (due to CO, chemiluminescence emissions) as well as
from the OH", CH", C," chemiluminescence emissions was used to model the variations
in equivalence ratios. The loading-weights along PC2 also show similar trends but with
relatively larger loading-weights at wavelengths corresponding to OH”, CH", and C,
spectral peak intensities and lower contributions from the nonlinear background
compared to PC1. Finally, along PC3, the loading-weight curve shows that only OH",

CH", and C, spectral peaks were used in the development of the PLS-R based
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multivariate calibration model, with minimal contribution from the nonlinear
background. In summary, the loading-weight trends in Fig. 7 clearly establish that while
the OH", CH", and C, spectral peak intensities were certainly very important
contributors, the nonlinear CO,  background also played a non-trivial part in the

development of the PLS-R based multivariate calibration model.

5.3 Prediction of Equivalence Ratios from Unknown Spectral Data Set

The predictive power of the OH/CH” intensity ratio and multivariate calibration
models developed in Sections 5.1 and 5.2, respectively, were evaluated using an
unknown, unbiased spectral data set for twenty-eight (28) different equivalence ratios
between 0.71 and 1.67. This data set was taken independently after developing the two
calibration models and was not used either as a training or validation data set for the
LOOCV methodology used to develop the PLS-R based multivariate calibration model.
The predicted equivalence ratios from the unknown unbiased spectral data are shown in
Fig. 8 (a) for the OH/CH” intensity ratio calibration model and in Fig. 8 (b) for the
multivariate calibration model. In each of these figures, two sets of data are presented:
open circles represent equivalence ratio conditions that were included in the model
development and filled circles represent equivalence ratio conditions that were not
included in model development. The 45 degree line (indicating perfect calibration) and
the uncertainty bands for measured equivalence ratios are also shown in both figures.
The uncertainty at each equivalence ratio was calculated using Equation 2 and the errors
associated with the volume flow rate and pressure measurements. Comparing Figs. 8 (a)

and 8 (b), it is evident that the prediction results of the PLS-R based calibration model are
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better than the OH/CH” intensity ratio model. The performance of the OH/CH"
intensity ratio model was poor especially for rich equivalence ratios and for ¢ values not
used in the original calibration. The poor predictive capability of the OH"/CH” intensity
ratio model at rich conditions was also observed by Hardalupas et al. in their work
reported in Ref. [16]. The reasons for this trend may be associated with lower OH™ peak
intensities and a relatively low change in the OH"/CH” intensity ratio with changing ¢ for
rich flames. On the other hand, PLS-R based multivariate calibration yielded better
predictions even at rich equivalence ratios, ostensibly due to the fact that additional
spectral information from other species (C,” and CO,") were included in the development
of the multivariate calibration model. Additional support for this hypothesis (i.e.,
improvement of multivariate PLS-R predictions due to the inclusion of C,” and CO;"
spectral information) is found qualitatively in Figs. 2 and 3. In Fig. 2, it can be seen that
the nonlinear background (due to CO, chemiluminescence) changes significantly with
equivalence ratio. For example, for ¢ = 1.48, the nonlinear background is suppressed
probably due to partial fuel oxidation, which reduces CO, production, and therefore,
chemiluminescence emissions from CO, . In addition, for rich conditions (as shown in
Fig. 3), the C,” spectral peaks vary more significantly with equivalence ratio compared to
the OH" and CH” peaks. Therefore, it may be argued that one reason for the better
performance of the multivariate calibration model compared to the OH/CH” intensity

ratio model may be the inclusion of the C," and CO," chemiluminescence.
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5.4 Discussion of the Practical Implications of the Present Work

The proposed chemiluminescence-based sensing methodology has several practical
advantages as well as some potential issues. A significant advantage of the multivariate
calibration methodology over the OH’/CH” intensity ratio approach for equivalence ratio
sensing is the removal of the need to perform nonlinear background subtraction from the
raw measured spectra. This is especially important because nonlinear background
subtraction, if performed without adequate care, could induce artificial errors in intensity
ratio-based approaches. In addition, the inclusion of the nonlinear background may
actually be beneficial under some conditions for the multivariate calibration model (e.g.,
for rich equivalence ratios as observed in Fig. 8 (b)). On the other hand, an obvious
concern with both approaches is signal trapping, which can lead to significant errors in
chemiluminescence-based equivalence ratio measurements. For example, sooty flames
and other optically dense scenarios in practical combustors may impede the collection of
chemiluminescence emissions, thus confounding or even completely preventing the
sensing of equivalence ratios. To resolve these issues, a correction factor could be added
to overcome the error introduced by signal trapping. However, in other practical
combustors that encounter lean premixed flames or flameless (volumetric) combustion
under low soot conditions (e.g., HCCI and lean-burn spark ignition engines), the
proposed methodology may still be applied. Another difficult situation could arise in
high-pressure  combustion  environments, as spectral peak intensities in
chemiluminescence spectra are pressure-dependent [4]. Therefore, it is important to

ensure that the calibration process for both the multivariate calibration model as well as
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the OH'/CH” intensity ratio calibration model is performed under practically relevant
pressure conditions.

A potential benefit of the multivariate calibration methodology may be realized when
sensing equivalence ratios in recirculation zones in combustors where exhaust gas may
mix with the fresh fuel-air mixture or in IC engines with significant residual or recycled
exhaust gas within the cylinder. Under these conditions, it may be necessary to revisit
the definition of the parameter that quantifies mixture strength. The issue of redefinition
of the equivalence ratio will also arise for oxygenated fuels (with oxygen atoms present
in the fuel molecule), or when fuel molecules are present in the oxidizer [23]. Instead of
using the traditional “fuel-air equivalence ratio,” it may be more meaningful to define and
use an oxygen-based equivalence ratio to quantify mixture strength. Nevertheless, the
authors believe that the chemiluminescence-based sensing methodology could still work
under these conditions. The only difference would be that instead of using the traditional
equivalence ratio to “calibrate” the multivariate calibration model, the variations in the
spectral data associated with variations in the new quantity that characterizes mixture
strength (e.g., oxygen-based equivalence ratio or fuel-oxygen ratio) should be used. In
this manner, any other quantity (similar to equivalence ratio) can be predicted (after
careful initial calibrations) using the multivariate data analysis methodology presented in
this paper. Finally, the output from chemiluminescence-based sensors will also vary with
variations in operating conditions of practical combustors. This must be considered
carefully during the calibration process and the calibration data set must include as wide a

range of practically relevant operating conditions as possible.
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6. Conclusions
Real time measurement of local fuel-air equivalence ratios (¢) can be helpful in
monitoring pollutant formation in premixed combustors, prevention of damages to
combustors, and in the development of advanced combustion strategies, amongst other
applications. In the present paper, a new partial least square regression (PLS-R) based
multivariate sensing methodology was investigated and compared with an OH/CH"
intensity ratio-based calibration model for sensing equivalence ratio in atmospheric
methane-air premixed flames, ranging from fuel-lean to fuel-rich conditions. Five
replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48
were used in the calibration of both models. An unbiased spectral data set (not used in
the PLS-R model development), for 28 different equivalence ratio conditions ranging
from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the
intensity ratio calibration models. The major experimental results presented in this paper
can be summarized as follows:
¢ Since the PLS-R model used raw spectral intensities from the entire spectrum, it did
not need subtraction of the nonlinear background CO, emission, which was required
in the OH'/CH’ intensity ratio calibration model to obtain OH™ and CHspectral peak
intensities.
e The PLS-R based multivariate calibration model ensured a better calibration of the
original spectral data set compared to the OH/CH" intensity ratio calibration model
with an improved R? value (0.97 to 0.99) value and lower root mean square error in

calibration (0.05 to 0.02).
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e The OH'/CH” intensity ratio calibration model grossly underpredicted equivalence
ratios in the unknown spectral data set compared to measured equivalence ratios,
especially under rich conditions (¢ > 1.2). By comparison, the PLS-R based
multivariate calibration model performed better in predicting equivalence ratios (to

within 7 percent of measurements) from the unknown spectral data set

These results demonstrate a proof-of-concept for the development of multivariate
sensing strategies for monitoring and/or control of equivalence ratios in practical
combustors. Further studies are required to evaluate the performance of the multivariate
calibration model in high-pressure environments and for premixed flames with other
fuels. Finally, the multivariate measurement methodology needs to be demonstrated and

validated in practical premixed combustors.
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