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Motivation

Exascale computing promises to address many scientific and engineering problems of national interest by
facilitating computational simulation of physical phenomena at tremendous new levels of accuracy, fidelity,
and scale, as well as unprecedented capabilities for high-level analysis such as uncertainty quantification
for today’s petascale computational simulations. Uncertainty quantification is a broad term for a variety
of methodologies such as uncertainty propagation, model calibration, and error estimation, but here we
are primarily concerned with the forward propagation of model input data uncertainty to simulation output
quantities of interest. There are many uncertainty propagation approaches such as random sampling [4, 8,
12, 13, 14], stochastic collocation [2, 15, 16, 19], and stochastic Galerkin [5, 6, 20] that have been studied
in the literature, most of which involve sampling simulations at numerous realizations of the uncertain input
data. Unfortunately all of them generate extreme computational burdens when applied to many problems
of interest when accurately capturing rare events in high dimensional uncertain input spaces exhibiting non-
smooth behavior. It is not unusual to require thousands to millions of samples to achieve the level of accuracy
desired in many uncertainty quantification problems, which is out of reach for most large-scale simulations
on existing petascale computing architectures.

Nearly all existing uncertainty propagation methodologies wrap around deterministic simulation codes,
a good example is sampling-based methods which repeatedly call a deterministic simulation code for differ-
ent values of the model inputs. Since these samples are independent, they can easily be run in parallel on
disjoint subsets of the available compute nodes. However it is unlikely an exascale computer will provide
enough concurrency for a thousand-fold increase in concurrent sample evaluations for uncertainty propa-
gation applied in this manner. Power and cooling limitations will favor compute nodes with dramatically
increased floating-point capacity rather than substantially increased node counts [1], and thus increasing
concurrent sample evaluation will require executing each sample on a smaller number of compute nodes
or executing multiple samples simultaneously on each compute node. For reasons similar to those outlined
below, the first approach is unlikely to be effective. The question for this paper is how to implement the
second approach effectively given likely exascale architectural considerations, so that the rigorous, accurate
uncertainty quantification capabilities promised by exascale can be achieved.

Approach

It is expected that node-level floating-point capacity will increase by a factor of 1,000 to 10,000 without
increases in processor clock speed but rather increased concurrency through thousands of simple processor
cores and with a memory capacity increase by only roughly a factor of 100 [1]. This suggests multiple
samples should be executed simultaneously on each node by collections of threads sharing common data,
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and implies that at least a portion of the “uncertainty propagation loop”
must be embedded within the simulation code itself. Furthermore it is
expected that memory latency will not decrease significantly and latency
hiding through instruction-level parallelism and out-of-order execution
will be replaced by hardware multi-threading and vectorization [1]. Thus
it is imperative that calculations executing on these nodes exhibit good
data locality as well expose sufficient fine-grained parallelism, which un-
fortunately is not the case for many simulations today (particularly those
involving sparse linear algebra [3, 11]).

However we believe these challenges can be addressed by further
embedding portions of the uncertainty loop at the lowest levels of the
simulation code by replacing each scalar datum in a calculation with
an array for the uncertainty representation of that datum, such samples
in a sampling-based method or polynomial coefficients in a stochas-
tic Galerkin-type method. Then any operations on that datum can be
translated to parallel operations on the uncertainty array, both improv-
ing locality and exposing additional fine-grained parallelism. For ex-
ample, Figure la displays floating-point throughput for sparse matrix-
vector multiplication with scalars replaced by polynomial coefficients in
a stochastic Galerkin method, compared to the standard approach of a
sequence of scalar matrix-vector multiplications for increasing stochas-
tic discretization size [18]. Since the working set dictated by the uncer-
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(b) Aggregate MPI communication for mul-
tiple samples of an explicit dynamics calcu-
lation (Cray XK7 with 40 MPI ranks and 8
threads/rank).

tainty array resides in L1 cache, much higher floating-point throughput is
achieved. Similarly this approach enables amortization of expensive op-
erations such as an MPI message across multiple pieces of contiguous data, for example Figure 1b displays
the aggregate MPI communication time for multiple samples of an explicit dynamics calculation. Since the
messages for multiple realizations are incorporated into one message for the ensemble, total communication
time is reduced. Finally this approach enables new algorithmic approaches that reuse data and calculations
across uncertainty representations to reduce aggregate simulation cost, e.g., reuse of mesh calculations that
don’t depend on uncertain input data or reuse of solvers and preconditioners across an ensemble [9, 10].

Figure 1

Challenges

While this approach could enable more concurrency in the aggregate uncertainty propagation calculation
for likely exascale architectures, there are a number of challenges that must be overcome for these ideas
to be useful for practical scientific problems. First incorporating these methods directly into simulations
codes requires considerable programming effort, as well as cross-domain knowledge between simulation
technologies and uncertainty quantification methodologies. However we and others have demonstrated that
code transformation techniques based on automatic differentiation can alleviate much of this difficulty, par-
ticularly if they are incorporated early into the code design cycle [7, 17]. Second, the concept of propagating
multiple samples simultaneously at the scalar level of the simulation is predicated on the assumption that the
code paths for these samples do not diverge greatly, otherwise no or possibly negative benefit is achieved.
However many realistic scientific problems exhibit some form of non-smooth behavior that put the simula-
tion into different regimes depending on the values of the uncertain inputs. Thus careful research is needed
connecting these ideas to high-level adaptive uncertainty propagation methods that decide when and how
to group samples to be propagated together. Finally little research has been undertaken to develop solution
and preconditioning algorithms that exploit the Kronecker-product problem structure inherently generated
by this form of uncertainty propagation.
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