SAND2013-3989C

Toward Effective Parallel Programming:
What We Need and Don’t Need

Michael A. Heroux
Scalable Algorithms Department
Sandia National Laboratories

Collaborators: Chris Baker, Erik Boman, Carter Edwards, Mark Hoemmen, Siva
Rajamanickam, Christian Trott, Alan Williams

Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. National

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed @ Sandia
Laboratories

Outline

 Parallel Computing Trends and MPI+X.
« Reasoning about Parallelism.

* Programming Languages.

 Resilience.

» Co-Design.

Sandia
m National

Laboratories

Predictions

* Programming environment will be MPI+X+Y

 Every line of app code will be displaced, refactored.

» Data entry will be thread parallel, pipelined.

 Solver performance will not be determined by SpMV, ddot.
 Resilience will be built into libraries, then into apps.

* Pretty good performance is often good enough.

Sandia
m National

Laboratories

Why It's not Business as Usual
(Experts, check your email at this time)

i

—

ﬂv"’}

LT

Stein’s Law: If a trend cannot continue, it will stop.

Herbert Stein, chairman of the Council of Economic Advisers under Nixon and Ford.

What is Different: Old Commodity Trends Failing

 Clock Speed.
— Well-known.

— Related: Instruction-level
Parallelism (ILP).

* Number of nodes.

— Connecting 100K nodes
Is complicated.

— Electric bill is large.
* Memory per core.
— Going down (but some
hope in sight).
» Consistent performance.

Clock Frequency

10,000

L 2
L 2

)
pe o

&
v

MHz

+ Y

*p e o

= 1,000

100

*

s
v

Clock Frequency

<
r v
=i

10

Year

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

International Solid-State Circuits Conference (ISSCC 2012) Report

http:/lisscc.org/doc/2012/2012_Trends pdf

— Equal work 75 Equal execution time.
» Across peers or from one run to the next.

Sandia
National
Laboratories

|

- 7N

Big Concern: Energy Efficiency.
* Thread count.
— Occupancy rate.
— State-per-thread.
* SIMT/SIMD (Vectorization).
* Heterogeniety:
— Performance variability.
— Core specialization.

* Memory per node (not core).
— Fixed (or growing).

Take-away: Parallelism is
essential.

ew Commodity Trends and Concerns Emerge

Core Count
70

60

50

IS
o

*

w
o

Core Count

N
o

4

4>/M>
10

L 2
2 2 4!’_) /> 1} 3 L3
— | p i: g 3 ®
0 4 {—’_0 ¢ 3 . $ 3

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Year

Total Power Consumption

250
S 200 .
S ¢ * *
‘g 150
S ¢ o ¢ ‘
(7]
§ 100 $ ~
o} : / 0\‘
2 % . _ ¢ * <
o 50 ¢ 3 = * . 3

)
’1»‘,:/(0’ ::’000
0L * 8§ o o0 g |, e e e+ %

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
Year

International Solid-State Circuits Conference (ISSCC 2012) Report
http:/lisscc.org/doc/2012/2012_Trends pdf

The HPC Ecosystem

Sandia
National _
Laboratories

el r //

Three Parallel Computing Design Points

» Terascale Laptop: Uninode-Manycore

» Petascale Deskside: Multinode-Manycore

« Exascale Center: Manynode-Manycore
Goal: Make

Petascale = Terascale + more

_ Common Element
Exascale = Petascale + more

Most applications will not adopt an exascale programming
strategy that is incompatible with tera and peta scale.

Sandia
m National

Laboratories

R

N
‘-—}/

Reasons for SPMD/MPI| Success?

 Portability? Standardization? Momentum? Yes.
« Separation of Parallel & Algorithms

concerns? Big Yes.
* Preserving & Extending Sequential
Code Investment? Big, Big Yes.

 MP| was disruptive, but not revolutionary.

— A meta layer encapsulating sequential code.

« Enabled mining of vast quantities of existing code and logic.
— Sophisticated physics added as sequential code.

 Ratio of science experts vs. parallel experts: 10:1.

« Key goal for new parallel apps: Preserve these dynamics.

Sandia
m National

Laboratories

,7\ \
e MPI+X Parallel Programming Model:
Multi-level/Multi-device

HPC Value-Added Inter-node/inter-device (distributed)

parallelism and resource management Message Passing

network of l
computational
nodes Node-local control flow (serial)
s L LY
Efforts 4)
Intra-node (manycore)
computational parallelism and resource Threading ‘
node with management
manycore CPUs _ J
and / or l
GPGPU Stateless, vectorizable, efficient
computational kernels stateless kernels |
run on each core

Sandia
m National
10 Laboratories

11

Effective node-level parallelism: First priority

 Future performance is mainly from node improvements.
— Number of nodes is not increasing dramatically.

 Application refactoring efforts on node are disruptive:
— Almost every line of code will be displaced.
« All current serial computations must be threaded.
— Successful strategy similar to SPMD migration of 90s.
» Define parallel pattern framework.

» Make framework scalable for minimal physics.
» Migrate large sequential fragments into new framework.

* If no node parallelism, we fail at all computing levels.

Sandia
m National

Laboratories

S
%w

12

Parallel Patterns

Sandia
National _
Laboratories

2D PDE on Regular Grid (Standard Laplace)

Profcessor 3

Processor 2

T '< “Halo” for Proc O

RIS FRRVEVE WERVENE EVENEVEENEVE [y ——

.ﬂhi
I-:‘
T

Processor 1

Processor 0

Sandia
m National
Laboratories

el r //

. -—}

SPMD Patterns for Domain Decomposition

* Single Program Multiple Data (SPMD):
— Natural fit for many differential equations.

— All processors execute same code, different subdomains.
— Message Passing Interface (MPI) is portability layer.

 Parallel Patterns:
— Halo Exchange:

« Written by parallel computing expert: Complicated code.
« Used by domain expert: DoHaloExchange() - Conceptual.

« Use MPI. Could be replace by PGAS, one-sided, ...

— Collectives:
Dot products, norms.

* All other programming:
— Sequential.
— Example: 5-point stencil computation is sequential.

Sandia
National
Laboratories

2D PDE on Regular Grid (Helmholtz)

(o =0}

—Niu—on=1{

= aaill
Thinking in Patterns

ciick to LOOK INSIDE!
- First step of parallel application design:

— ldentify parallel patterns. ‘ PATTE li..\:S
« Example: 2D Poisson (& Helmholtz) [l{l({.) (I){G]T{A:\I?\fl'\nlf :I{J(ll
— SPMD: R R)
« Halo Exchange. NN RS
 AlIReduce (Dot product, norms).
— SPMD+X:
* Much richer palette of patterns. ANA L. MASSINGILL
« Choose your taxonomy. I

« Some: Parallel-For, Parallel-Reduce,
Task-Graph, Pipeline.

Sandia
m National
Laboratories

Thinking in Parallel Patterns

* Every parallel programming environment supports basic

patterns: parallel-for, parallel-reduce.

— Intel TBB: |
parallel_for(blocked range<int>(0, n, 100), loopRangeFn(...));
— CUDA:

loopBodyFn<<< nBlocks, blockSize >>> (...);

e Thrust, ...
 Cray Autotasking (April 1989)

CMICS$ DO ALL SHARED(N, ALPHA, X, Y)

do parallel SAXPY

CMICS$1 PRIVATE(®)

10

dol10i1i=1,n

y(1) = y(1) + alpha*x(i)
continue

Sandia
National
Laboratories

Why Patterns

» Essential expressions of concurrency.
» Describe constraints.

* Map to many execution models.

« Example: Parallell-for.

— Can be mapped to SIMD, SIMT, Threads, SPMD.

— Future: Processor-in-Memory (PIM).
* Lots of ways to classify them.

Sandia
National
Laboratories

Domain Scientist’s Parallel Palette

* MPI-only (SPMD) apps:
— Single parallel construct.
— Simultaneous execution.
— Parallelism of even the messiest serial code.

* Next-generation PDE and related applications:

— Internode:
* MPI, yes, or something like it.
« Composed with intranode.

— Intranode:
* Much richer palette.
» More care required from programmer.

* What are the constructs in our new palette?

Sandia
m National

Laboratories

Obvious Constructs/Concerns

* Parallel for:
forall (i, j) in domain {...}
— No loop-carried dependence.
— Rich loops.

— Use of shared memory for temporal reuse, efficient
device data transfers.

 Parallel reduce:
forall (i, j) in domain {
xnew(i, j) = ...;
delx+= abs(xnew(i, j) - xold(i,)));
}
— Couple with other computations.
— Concern for reproducibility.

Sandia
m National

Laboratories

Other construct: Pipeline

« Sequence of filters.
« Each filter is:
— Sequential (grab element ID, enter global assembly) or
— Parallel (fill element stiffness matrix).
* Filters executed in sequence.
* Programmer’s concern:
— Determine (conceptually): Can filter execute in parallel?
— Write filter (serial code).
— Register it with the pipeline.
 Extensible:
— New physics feature.
— New filter added to pipeline.

Sandia
m National

Laboratories

23

Other construct: Thread team

 Characteristics:
— Multiple threads.
— Fast barrier.
— Shared, fast access memory pool.
— Example: Nvidia SM, Intel MIC
— X86 more vague, emerging more clearly in future.

* Qualitatively better algorithm:
— Threaded triangular solve scales.

— Fewer MPI ranks means fewer iterations, better
robustness.

— Data-driven parallelism.

Sandia
m National

Laboratories

e

Programming Today for Tomorrow’s Machines

* Parallel Programming in the small:
— Focus: writing sequential code fragments.

— Programmer skKills:
* 10%: Pattern/framework experts (domain-aware).
* 90%: Domain experts (pattern-aware)

» Languages needed are already here.
— MPI+X.
— Exception: Large-scale data-intensive graph?

Sandia
m National

Laboratories

e

&
sy

What we need from Programming Models:
Support for patterns

« SPMD:
— MPI does this well. (TBB/pthreads/OpenMP... support the rest.)
— Think of all that mpiexec does.
 Parallel_for, Parallel_reduce:
— Should be automatic from vanilla source (OpenACC a start).
— Make CUDA obsolete. OpenMP sufficient?
» Task graphs, pipelines
— Lightweight.
— Smart about data placement/movement, dependencies.
* Thread team:
— Needed for fine-grain producer/consumer algorithms.
 Others too.
Goals:
1) Allow domain scientist think parallel, write sequential.
2) Support rational migration strategy.) o

Laboratories

Needs: Data management

» Break storage association:
— Physics i,j,k should not be storage 1i,j,k.
 Layout as a first-class concept:
— Construct layout, then data objects.
— Chapel has this right.
» Better NUMA awareness/resilience:
— Ability to “see” work/data placement.
— Ability to migrate data: MONT
« Example:

— 4-socket AMD with dual six-core per socket (48 cores).

— BW of owner-compute: 120 GB/s.
— BW of neighbor-compute: 30 GB/s.

— Note: Dynamic work-stealing is not as easy as it seems.

* Maybe better thread local allocation will mitigate impact.

Sandia
National
Laboratories

Multi-dimensional Dense Arrays

* Many computations work on data stored in multi-dimensional
arrays:

— Finite differences, volumes, elements.
— Sparse iterative solvers.
* Dimension are (k,I,m,...) where one dimension is long:
— A(3,1000000)
— 3 degrees of freedom (DOFs) on 1 million mesh nodes.
* A classic data structure issue is:
— Order by DOF: A(1,1), A(2,1), A(3,1); A(1,2) ... or
— By node: A(1,1), A(1,2), ...
* Adherence to raw language arrays forces a choice.

Sandia
m National

Laboratories

=~ aall

Struct-of-Arrays vs. Array-of-Structs

A False Dilemma

Sandia
rl'| National
Laboratories

29

With C++ as your hammer,
everything looks like your thumb.

ol

Compile-time Polymorphism

eria
/ Kernel
reac
Kernel

rus

Kokkos functor
(e.g., AxpyOp)

Kernel

—

Sandia
|||mmm
Laboratories

= g

MDArray Introduction

 Challenge: Manycore Portability with Performance

— Multicore-CPU and manycore-accelerator (e.g., NVIDIA)
— Diverse memory access patterns, shared memory utilization, ...

 Via a Library, not a language
— C++ with template meta-programming

— In the spirit of Thrust or Threading Building Blocks (TBB)
— Concise and simple API: functions and multidimensional arrays

e Data Parallel Functions

— Deferred task parallelism, pipeline parallelism, ...
— Simple parallel_for and parallel_reduce semantics

* Multidimensional Arrays
— versus “arrays of structs” or “structs of arrays”

31

Sandia
National _
Laboratories

=S

Kokkos Array Abstractions

* Manycore Device

— Has many threads of execution sharing a memory space

— Manages a memory space separate from the host process
 Physically separate (GPU) or logically separate (CPU)
* or with non-uniform memory access (NUMA)

e Data Parallel Function

— Created in the host process, executed on the manycore device
— Performance can be dominated by memory access pattern
* E.g., NVIDIA coalesced memory access pattern

* Multidimensional Array

» Map array data into a manycore device’s memory

— Partition array data for data parallel work

— Function + parallel partition + map -> memory access pattern

32

Sandia
National _
Laboratories

Performance Portability (Multicore)
Node level performance: dual Sandy Bridge 16 cores @ 2.6GHz / C2075

miniMD
Threaded

3OM'|IIIIIII LN Y I Y O O B B I 7 I

EEERE ' — = mMD Ref MPI
i — mMD KA Threads
I10M ‘ * mMD Ref Threads

Performance (atomsteps/s)

SMEF . - i}

OI llllllllllllllll Illlllllllllllllllllllll |

4096 16384 65536 262144 1048576 4194304
of atoms

Sandia
m National

Laboratories

=

Performance Portability (GPU)

S
<

G
<

S
<

10 M

Performance (atomsteps/s)
o O
< =

miniMD
GPU

|

"~
- 'Itu__.-

— mMD KA C2075
- LAMMPS CUDA C2075
— = mMD Ref MPI

|llllllllll|llllIllllllllllllllllllllllll

4096 16384 65536 262144 1048576 4194304

of atoms

Sandia
National _
Laboratories

35

Resilience

Sandia
National
Laboratories

Our Luxury in Life (wrt FT/Resilience)

The privilege to think of a computer as a
reliable, digital machine.

36

Paradigm Shift is Coming

Fault rate is growing exponentially therefore faults will
eventually become continuous.

Faults will be continuous and across all levels from HW to
Apps (no one level can solve the problem -- solution must
be holistic)

Expectations should be set accordingly with users and
developers

Self-healing system software and application codes needed

Development of such codes requires a fault model and a
framework to test resilience at scale

Validation in the presence of faults is critical for scientists to
have faith in the results generated by exascale systems

Sandia
m National _
Laboratories

» Published June 1980
» Sequential ISA.
* Preserved today.
* lllusion:
— Out of order exec.

— Branch prediction.
— Shadow registers.

« Cost: Complexity, energy.

| GPU

COMPUTING GEMS
Emerald Editic

" Intel® Xeon Phi™
.-, Coprocessor
. I; High Performance

WEN-MEI W. HWU
COLOr -in ot

Global checkpoint restart

* Preserve the illusion:
— reliable digital machine.
— CP/R model: Exploit latent properties.

 SCR: Improve performance 50-100%.

 NVRAM, etc.
* More tricks are still possible.
* End game predicted many times.

Resilient applications

« Expose the reality:

— Fault-prone analog machine.

— New fault-aware approaches.
* New models:

— Programming, machine, execution.
* New algorithms:

— Relaxed BSP.

— LFLR.

— Selective reliability.

Sandia
m National
Laboratories

- G
Resilience Problems: Already Here, Already Being
Addressed, Algorithms & Co-design Are Key

 Already impacting performance: Performance variability.

— HW fault prevention and recovery introduces variability.

— Latency-sensitive collectives impacted.

— MPI non-blocking collectives + new algorithms address this.
* Localized failure:

— Now: local failure, global recovery.

— Needed: local recovery (via persistent local storage).

— MPI FT features + new algorithms: Leverage algorithm reasoning.
 Soft errors:

— Now: Undetected, or converted to hard errors.

— Needed: Apps handle as performance optimization.

— MPI reliable messaging + PM enhancement + new algorithms.

s Key to addressing resilience: algorithms & co-design. i) i

Laboratories

40

Resilience Issues Already Here

* First impact of unreliable HW?
— Vendor efforts to hide it.
— Slow & correct vs. fast & wrong.

* Result:
— Unpredictable timing.

— Non-uniform execution across cores.

* Blocking collectives:

Patch Hyperbolic Integration Time
Cray XT4
180 T { T I T I T I T I T I T l T I

Time (seconds)
T
|

1 ‘ 1 | 1 | 1 | 1 | 1 | 1 | 1 |
140 0 1000 2000 3000 4000 5000 6000 7000 8000

Processor
Brian van Straalen, DOE Exascale Research

Conference, April 16-18, 2012. Impact of persistent

ECC memory faults.

Sandia
National _
Laboratories

_o=="" Latency-tolerant Algorithms + MPI 3:
Recoverlng scalablllty

3 | | |]
—t GMRES cGS 5 ; ﬁ j
—— GMRES mGS
2.5 - —*— 1L.GMRES -
—&— pl.GMRES
p(1)-GMRES .
5 L p(2)-GMRES. . _

—e— p(3)-GMRES

[a—
(]

x1000 iterations/s

0.5

|

180

80 100 120 140 160 200

x1000 nodes

Hiding global communication latency in the GMRES algorithm on massively parallel machines,

P. Ghysels T.J. Ashby K. Meerbergen W. Vanroose, Report 04.2012.1, April 2012, m

41 ExaScience Lab Intel Labs Europe

Up is good

Sandia
National _
Laboratories

e

What is Needed to Support Latency Tolerance?

* MPI 3 (SPMD):
— Asynchronous global and neighborhood collectives.
* A “relaxed” BSP programming model:
— Start a collective operation (global or neighborhood).
— Do “something useful”.
— Complete the collective.
* The pieces are coming online.
* With new algorithms we can recover some scalabillity.

Sandia
m National

Laboratories

Enabling Local Recovery from Local Faults

 Current recovery model:

Local node failure, R N S S =
global kill/restart. e SN
1 ST TIPS 0‘ £/ ﬂ’ll’.{f’ _ "’““‘:;“;\
- Different approach:) '%:::gq';e‘}'%%ﬂggw
) : . . \\\\ N WY A ” "'
— App stores key recovery data in « -

persistent local (per MPI rank) s

storage (e.g., buddy, NVRAM),

and registers recovery function.
— Upon rank failure:

* MPI brings in reserve HW, assigns
to failed rank, calls recovery fn.

« App restores failed process state via
its persistent data (& neighbors’?).

 All processes continue.

Sandia
m National
Laboratories

43

el r //

e

Local Recovery from Local Faults Advantages

* Enables fundamental algorithms work to aid fault recovery:

44

— Straightforward app redesign for explicit apps.

— Enables reasoning at approximation theory level for implicit apps:
« What state is required?
« What local discrete approximation is sufficiently accurate?
« What mathematical identities can be used to restore lost state?

— Enables practical use of many exist algorithms-based fault tolerant
(ABFT) approaches in the literature.

Sandia
m National

Laboratories

What is Needed for
Local Failure Local Recovery (LFLR)?

 LFLR realization is non-trivial.
* Programming API (but not complicated).

* Lots of runtime/OS infrastructure.
— Persistent storage API (frequent brainstorming outcome).

* Research into messaging state and recovery.
* New algorithms, apps re-work.

* But:
— Can leverage global CP/R logic in apps.

* This approach is often considered next step in beyond
CP/R.

Sandia
m National

Laboratories

= |
Every calculation matters Soft Error Resilience

Description FLOPS E::Itg‘j;\lle Solution Error
= « New Programming Model Elements:

All Correct 343M 4.6e-15 1.0e-6
Calcs

lter=2, y[1] +=

1.0 35 343M 6.7e-15 3.7e+3
SpMV incorrect

Ortho subspace

Q[1][11+=1.0 N/C N/A 7.7e-02 5.9e+5
Non-ortho
subspace

« Small PDE Problem: ILUT/GMRES

e Correct result:35 lters, 343M
FLOPS

» 2 examples of a single bad op.

» Solvers:
— 50-90% of total app operations.
— Soft errors most likely in solver.

* Need new algorithms for soft errors:

— Well-conditioned wrt errors.
— Decay proportional to number of errors.
46 — Minimal impact when no errors.

« SW-enabled, highly reliable:
- Data storage, paths.
« Compute regions.

|dea: New algorithms with minimal
usage of high reliability.

First new algorithm: FT-GMRES.
« Resilient to soft errors.
« Outer solve: Highly Reliable
* Inner solve: “bulk” reliability.

General approach applies to many
algorithms.

Sandia
m National

Laboratories

=
FT-GMRES Algorithm

Input: Linear system Ax = b and initial guess X “Unreliably” computed.

o := b —Axo, 5 := [[1o|2, g1 := 1o/ Standard solver library call.

forj =1,2,... until convergence do . :
Inner solve: Solve for z; in g = Az Majority of computational cost.

Vir1 := Az

fori=1,2,...,kdo > Orthogonalize v 1
H(i.j) := G Vi1, Vit = Vig1 — GiH(i.)

end for

H(j+1,)) = [[Vj1]l2
Update rank-revealing decomposition of H(1:/,1:/)

if H(j +1,) is less than some tolerance then | captyres true linear operator issues, AND
if H(1:/,1:/) not full rank then Can use some “garbage” soft error results.

Try recovery strategies

else
Converged; return after end of this iteration

end if
else

Qi1 = Vi1 /H(+1,))
end if
yj = argmin, ||[H(1:j +1,1:/)y — Bes|l2 > GMRES projected problem
X=X+ (21,22, .., 2]y > Solve for approximate solution 'l" Sandia

end for Laboratories

48

=

Selective reliability enables “running through” faults

B FT—GMRES| can run through faults and still converge.
» Standard GMRES, with or without restarting, cannot.

Faut-Tolerant GMRES, restarted GMRES, and nonrestansd GMRES
(Geterministic faulty SpMVS In Inner solves)
1 1 1 1

1 1 1
—— FT-GMRES(50,10)
+— GMRES(30), 10 restart cycies

—e— GMRES(300)
10° ¢
107t . \

1 2 3 4 5 6 7 8 9 10 11
Outer Itsration number

FT-GMRES vs. GMRES on
lll_Stokes (an ill-conditioned
discretization of a Stokes PDE).

Faut-Tolerant GMRES, restarted GMRES, and nonrestaned GMRES
(deterministic faulty SpMVs In Inner solves)

10°

—— ET-GMRES(30,10)
+— GMRES(30), 10 restart cycies
—— GMRES{500)

1071

107

107°}F

FT-GMRES vs. GMRES on
mult_dcop_ 03 (a Xyce circuit
simulation problem).

Sandia
m National
Laboratories

49

Desired properties of FT methods

« Converge eventually
— No matter the fault rate
— Or it detects and indicates failure
— Not true of iterative refinement!

« Convergence degrades gradually as fault rate
Increases

— Easy to trade between reliability and extra work
* Requires as little reliable computation as possible
» Can exploit fault detection if available

— e.g., if no faults detected, can advance aggressively

Sandia
m National
Laboratories

Selective Reliability Programming

« Standard approach: * New approach:

— System over-constrains reliability — System lets app control reliability
— “Fail-stop” model — Tiered reliability
— Checkpoint / restart — “Run through” faults

— Application is ignorant of faults — App listens and responds to faults

Sandia
m National
50 Laboratories

=
What is Needed for Selective Reliability?

* A lot, lot.

* A programming model.

* Algorithms.

* Lots of runtime/OS infrastructure.
« Hardware support?

« Containment domains a good start.

Sandia
m National
Laboratories

Strawman Resilient Exascale System

 Best possible global CP/R:

— Maybe, maybe not.
— Multicore permitted simpler cores.

— Resilient apps may not need more reliable CP/R.
* “Thanks, but we've outgrown you.”

» Async collectives:
— Workable today.
— Make robust. Educate developers.
— Expect big improvements when apps adapt to relaxed BSP.

« Support for LFLR:
— Next milestone.
— FT in MPI: Didn’t make into 3.0...
 Selective reliability.
« Containment domains.
* Lots of other clever work: e.g., flux-limiter, UQ, ...

Sandia
m National _
Laboratories

‘;,' Co-Design Cray-style (circa 1996

(This is not a brand new idea)

Lino Lakes Hugo

354
White:
Shoreview Bear Lake
“den Hills
5 Little
Canada North
‘oseville St Paul
{12} St Paul- Maplewoo,
Mendota Ssto,;l:‘ it
Heig!
Inver Grove
A Heights
L35¢) 9 Cottage
Grove
agan *
. Mississippi
National River and
l:g?o’:?a’: ::; Recreation Area

Rasemount

Grant

Lwincltiesrestaurantblog,com

sty

Coachman Supper Club X

Coachman Supper Club
795 Energy St, Baldwin, WI 54002
(715) 684-3355

Write a review

Search nearby Save to map more~

— New
& Richmont
G Portage WI Supper Club Bloomer

Famous Prime Rib, Fish Fry, Old

Fashioneds. Friendly and Nostalgic!

www.trailslounge.com/

Wilow River
State Park
Bayport
Lake EImo @
Hudson — B H
Lake
Wissota
@9) Menomonie Lake Hallie
River Falls T
)
State Park
Eau Claire
T
] ‘ ®

Sandia
National
Laboratories

Charon and miniFE solver efficiency
cores per node, 2x12 Magny-Cours

100
01 » 30 000583W0EV04. 164000sec
I 90 B Charon
. . : : T n 80 B miniFE
: E ! S 70
: <
: S 60
. g T 50
N
S 40
£ 30
A S
START 1024X1024 SQOFPS aekm 20
10
0
4 8 12 16 20 24

Number of cores

Source: http://www.exponent.com/human_motion_modeling_simulation

 Scientific apps are a model of real physics.
* Proxy apps are a model of real application performance.

* Analogy is strong:
— Model are simplified, known strengths, weaknesses.

— Validation is important.

Sandia
m National _
Laboratories

=2

Proxy Apps are not Benchmarks

* Benchmarks:
— Static.
— Rigid specification of algorithm.
— Reduces design space choices.
* Proxy apps:
— About design space exploration.
— Meant to be re-written.
— Meant to enable “co-design”.

* Note: Actively working to avoid benchmarkification.
* Mantevo: Started 6+ years ago.
* Miniapps: Central to 3 ASCR Co-design Centers.

Sandia
m National _
Laboratories

_

56

},.'

Verification

Software Engineering and HPC

Efficiency vs. Other Quality Metrics Validation
How focusi Source:
m § e P g‘ & /§ Code Complete
below affects s|l2|olE|l 2] T 8 Steve McConnell
S|lZ|8|l3|E| 8| E]| 2
the factor to el2|S|l=s]| 2| &l2]2
the right S|2|T|2|E(Z2]|<2]|2
Correctness 4 44 4 *
Usability f 44
— —_—
Efficiency * 4 " * * + __>
* —
Reliability 4 t (1 t "
Integrity * 1‘ f
Adaptability v| 4 4
Accuracy f * * * * * Helps it f
Robustness + 4 * * * 4 * t

. Sandia
Hurts it + (Fy) teiona

Laboratories

I
\

57

What we need and don’t need

Sandia
National
Laboratories

e

&
sy

What we need from Programming Models:
Support for patterns

« SPMD:

— MPI does this well. (TBB supports the rest.)

— Think of all that mpiexec does.
» Task graphs, pipelines

— Lightweight.

— Smart about data placement/movement, dependencies.
 Parallel_for, Parallel_reduce:

— Should be automatic from vanilla source.

— Make CUDA obsolete. OpenMP sufficient?
e Thread team:

— Needed for fine-grain producer/consumer algorithms.
 Others too.
Goals:
1) Allow domain scientist think parallel, write sequential.
2) Support rational migration strategy.) o

Laboratories

Needs: Data management

» Break storage association:
— Physics i,j,k should not be storage 1i,j,k.
 Layout as a first-class concept:
— Construct layout, then data objects.
— Chapel has this right.
» Better NUMA awareness/resilience:
— Ability to “see” work/data placement.
— Ability to migrate data: MONT
« Example:

— 4-socket AMD with dual six-core per socket (48 cores).

— BW of owner-compute: 120 GB/s.
— BW of neighbor-compute: 30 GB/s.

— Note: Dynamic work-stealing is not as easy as it seems.

* Maybe better thread local allocation will mitigate impact.

Sandia
National
Laboratories

Other needs

* Metaprogramming support:
— Compile-time polymorphism
— Fortran, C are not suitable.
— C++ is, but painful.
— Are new languages?
* Reliability expression:
— Bulk vs. high reliability.
« Composable with other environments.

— Interoperable with MPI, threading runtimes.

Sandia
National
Laboratories

A Different Approach

| don’t want to be considered a Luddite...
* Massively threaded approaches have promise.
» Makes coding much simpler, at least on a node.

» Key question:
Is there enough demand to produce high quality system?

Sandia
m National
Laboratories

What | cannot use

* |solated tools:
— “Great ideas with marginal chance of being products.”
— Fortran 2003 features: Still not available!
— CAF, UPC: Too little, too late.
— Rose: Where is ‘sudo apt-get install rose’?
* Any programming environment effort:
— Must have product plan, from desktop up, e.g., OpenMP.
— Or must extend an existing product, e.g., TBB.

* We use commodity chips because only a few orgs have
the billions of dollars to design and fab.

* We use commodity programming environments for the
same reason.

Sandia
m National
Laboratories

Summary

Node-level parallelism is new commodity curve (today):
Threads (laptop: 8 on 4 cores), vectors (Intel SB/KNC: Gath/Scat).

Domain experts need to “think” in parallel.

Building a parallel pattern framework is an effective approach.

Most future programmers won't need to write parallel code.

Pattern-based framework separates concerns (parallel expert).
Domain expert writes sequential fragment. (Even if you are both).

Fortran/C can be used for future parallel applications, but:

Resilience is a major front in extreme-scale computing.

Complex parallel patterns are very challenging (impossible).
Parallel features lag, lack of compile-time polymorphism hurts.

Storage association is a big problem.

Resilience with current algorithms base is not feasible.
Need algorithms-driven resilience efforts.

i

Sandia
National
Laboratories

Summary

» Ongoing efforts needed in MPI to address emerging needs.

— New MPI features address most important exascale concerns.

— Co-design from discretizations to low-level HW enables resilience.
« Migrating to emerging industry X platforms: Critical, urgent.

— Good preparation for beyond MPI:
* Isolation of computation to stateless kernels.
 Abstraction of data layout.

— Requires investment outside of day-to-day apps efforts.

— Essential now for near-term manycore success.

 Can get start right now:
— Think patterns, ID asynch work, develop local recovery algs...
— Future architecture features are already here. Start using them!

64

— Write or mine (from existing prototypes) miniapps.

— Explore OpenACC, vectorization, hyper-threading, ...

i

Sandia
National
Laboratories

Conclusions

* Preserving the illusion of computers as reliable digital
devices is expensive:
— Engineering, TCO, ...
— Also: Performance variability.
« Asynchronous approaches can mitigate some variability.

 Preserving global CP/R is expensive:
— Engineering, infrastructure.
— Analogy: Sequential x86.

* We should permit faults to occur during execution:
— If runtime/power costs are high for hiding them and
—We have a means to select reliability levels.

Sandia
National
Laboratories

Conclusions

* Algorithms can handle soft errors:
— Detection is straight-forward in many cases.
— Majority of computation can occur in low-reliability mode.
— We can even make use of garbage results.

« Make highly reliable data/computation the default.
— Low reliability should be a performance optimization.
— Inter-node activities (i.e., MPI) should be highly reliable.

« Future programming, machine, execution models:
— Help apps reason about and express fault-resilient algorithms.
— Give us markup for reliability attributes: Data and computation.

— Give us tools for fine-grain state checkpoint, app-driven state recovery.

 Long-term goal: Make hard faults into soft faults.
— Resilience tools and introspection could greatly reduce failures.

Sandia
National
Laboratories

67

Predictions

* Programming environment will be MPI+X+Y
— MPl is evolving. Industry provides X, Y.
— But AGAS/manytasking lurking.
 Every line of app code will be displaced.
— Physic indexing will not be array indexing.
— Apps will use library data containers.

— Apps developers will write functors, lambdas, loop bodies.

» Data entry will be thread parallel, pipelined.

 Solver performance will not be determined by SpMV, ddot.
— New algorithms, new execution models, new kernels.

 Resilience will be built into libraries, then into apps.

« Efficiency affects other quality metrics: Beware!

Sandia
National
Laboratories

