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Abstract - We are developing computational models to elucidate the expansion and dynamic filling process of a 
polyurethane foam, PMDI. The polyurethane of interest is a chemically blown foam, where carbon dioxide is produced 
via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing 
reaction, which produces the polymer. A new kinetic model is implemented in a computational framework, which 
decouples these two reactions. The model predicts the polymerization reaction via condensation chemistry and foam 
expansion kinetics through a Michaelis-Menten approach. Both reactions are exothermic and temperature dependent. 
The conservation equations, including the equations of motion, an energy balance, and two rate equations for the 
polymerization and foaming reactions, are solved via a stabilized finite element method. The rheology is determined 
experimentally and is assumed to follow a generalized-Newtonian law where it depends on the degree of cure and 
temperature, but is not viscoelastic. The conservation equations are combined with a novel free-surface algorithm, 
termed the conformal decomposition finite element method (CDFEM), to determine the location of the foam front as it 
expands over time.  CDFEM combines a level set method to track the gas-foam interface and then adds mesh 
conformally at this interface to allow for easy application of interfacial physics such as capillary pressure jumps, 
creating a sharp-interface. The model predicts the velocity, temperature, viscosity, free surface location, and extent of 
polymerization of the foam. In addition, it predicts the local density and density gradients based on the Michaelis-
Menten kinetics of foam expansion. Results from the model are compared to experimental flow visualization data and 
post-test CT data for the density. 
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Introduction  
We are developing computational models to elucidate 
the expansion and dynamic filling process of low 
density polyurethane foam, polymeric methylene 
diphenyl diisocyanate (PMDI-4). Here the “4” 
indicates the density of the foam is 4 lb/ft3. The 
polyurethane of interest is chemically blown foam, 
where carbon dioxide is produced via the reaction of 
water, the blowing agent, and isocyanate. The 
isocyanate also reacts with polyol in a competing 
reaction, which produces the polymer. An example of a 
free rise sample of the PMDI is shown in figure 1. 
 

 
Figure 1. PMDI has a short pot-life: models can help 
reduce defects and improve filling process. 
 

PMDI has a short pot-life, meaning that it cures 
quickly. In addition, the foam expansion due to CO2 
generation occurs concurrently to the polymerization 
reaction. Models are needed to help reduce defects 
such as voids, density gradients, exotherms, and 
incomplete filling and to optimize processing 
parameters such as vent and gate location, oven 
temperatures and filling rates. 
 
A new kinetic model is implemented in a 
computational framework, which decouples the curing 
and foaming reactions. The model predicts the 
polymerization reaction via condensation chemistry 
and foam expansion kinetics through a Michaelis-
Menten approach. Both reactions are exothermic and 
temperature dependent.  
 
A continuum mechanics approach is taken to solving 
the foam blowing problem, coupling conservations to 
the rate equations. The resulting system of equations is 
solved via a stabilized finite element method that is 
coupled to a novel moving boundary algorithm to 
determine the location of the foam free surface as a 
function of time. The new algorithm is a hybrid 
Eulerian-moving mesh approach termed conformal 
decomposition finite element method (CDFEM) [1]. 
 
In previous papers, we focused on developing 
engineering models of foam expansion for 
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polyurethane and EFAR foams, respectively [2, 3]. The 
models were relatively complete, except that the 
density was used as an input parameter instead of 
predicted as part of the model, following ideas from 
Seo et al [4]. 
 
In this paper, we focus on the details of a 
computational model that predicts the density of the 
foam as it evolves. The details of the experiments used 
to inform and populate the model are available in a 
companion paper [5]. The paper is organized in the 
following manner. In the first section we discuss the 
equations of motion and constitutive equations for the 
foam chemo-rheology. In the next section, we briefly 
describe the numerical methods. Results from the 
model are compared to experimental flow visualization 
data and post-test CT data for the density. We conclude 
with plans for future work. 
 
Equations  
The continuity equation is written to emphasize the 
change in density as the source of foam velocity 
generation, where v is the mass-averaged velocity and 
 is the foam density. Here we no longer have an 
incompressible material, but rather one with an 
evolving density and density gradients.  
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Conservation of momentum takes into account 
gradients in the fluid stress, , and pressure, p, as well 
as gravitational effects. Note that gravity is applied to 
the homogenized foam material and does not take into 
account the buoyancy differences between the polymer 
and the gas bubbles that may result in creaming. 
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The stress tensor has a generalized Newtonian shear 
viscosity, in addition to a generalized Newtonian bulk 
viscosity. The bulk viscosity is associated with the fact 
that the divergence of the velocity field is non-zero and 
we have a dilatational flow [7]. The bulk viscosity term 
produce only normal stresses and not shear stresses. 
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The shear viscosity, , can be a function of 
temperature, cure, and gas fraction as discussed 
elsewhere [3,5].  
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where is the extent of reaction for the polymerization 
reaction,c is the gel point, Ea is the activation energy, 
and 00 is the uncured viscosity at a reference 
temperature T0, and b and q are exponents for the 

model, and g is the gas volume fraction. An 
expression for the bulk viscosity  for non-dilute foams 
was discussed elsewhere [3]. 
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The energy in the system must also be tracked to 
determine the temperature variations from various 
sources including oven heating and exothermic 
polymerization reactions. The energy equation has a 
variable heat capacity, Cp, and thermal conductivity, k, 
both of which depend on the gas volume fraction.  
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Polymerization Kinetics 
Once the extent of reaction and activation energy are 
determined, the reaction kinetics (e.g. rate constant and 
order of reaction) can be obtained by fitting the 
equation below to the numerically differenced data. 
The condensation chemistry form of the extent of 
reaction works well for polyurethane polymerization. 
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Where ko is the rate coefficient, cure is the extent of 
reaction, t is time, T is the temperature in Kelvin, E is 
the activation energy, R is the universal gas constant, 
and n is the reaction rate.  
 
Density Prediction Model 
In previous work, we fit the foam density to 
experimental data based on a time- and temperature-
dependent density model. This was a useful 
engineering approach to allow us to predict the filling 
behavior of the foam. Here, we follow a more science-
based approach where the model predicts the density 
from the concentration of carbon dioxide gas produced. 
The gas is produced via the reaction of water with 
isocyanate to produce carbamic acid, which then 
decomposes to form carbon dioxide. We found that it is 
possible to decouple the foaming and polymerization 
reaction, even though they both use isocyanate. We 
hypothesize that this is because isocyanate is in excess, 
especially at early times. 
 
We define α as the extent of the conversion of water to 
CO2. αmax is the maximum conversion for a universal 
correlation for foams with different water content and 
is temperature dependent. We follow a Michaelis-
Menten form of the first order kinetics that fits the 
shape of our data [6]. 
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Two rate coefficients, k and M, are used and both 
follow Arrhenius type temperature dependence. 
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The moles of gas,
2COn , can be calculated from α and 

αmax 
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The volume fraction of gas, (t), is related to the moles 
of carbon dioxide produced, the density of the gas, and 
the molecular weight. 
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The density of foam, foam, is now a predicted from the 
model. 
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Numerical Method 
Because our foam expands over time, filling the mold, 
we need a moving boundary algorithm to track the 
location of the free surface. Many free surface 
algorithms exist from Eulerian methods such as 
volume of fluid and level set methods to moving mesh 
methods. Here we use a novel method termed CDFEM, 
which is a hybrid of level set methods and moving 
mesh methods. 
 
In CDFEM, a background, non-conformal mesh is 
decomposed into elements that conform to the 
boundaries of the fluid domains, which are described in 
terms of a level set field. Enrichment takes place by 
adding nodes where the edges of the background mesh 
intersect the level sets. By dynamically adding nodes 
and associated degrees of freedom on the moving 
interfaces, weak and strong discontinuities are 
described with standard finite element shape functions. 
See Figure 2 for a cartoon describing the algorithm. 
The example is shown for a background mesh of 
quadrilateral elements, which are then enriched with 
the addition of triangular elements. In the actual 
algorithm, only triangular elements are used in 2D and 
only tetrahedral elements are used in 3D. 
 

 
Figure 2. The CDFEM algorithm begins with a base 
mesh and then creates mesh on the interface location, 

as defined by the level set. As the interface moves, the 
old CDFEM mesh is deleted and new interface mesh is 
added. A meshed interface allows for easy application 
of discontinuities and interfacial physics. 
 
Mesh is added and removed dynamically as the 
interface moves over time. This gives us the benefit of 
a level set method for handling topological changes 
with the power of a moving mesh method for handling 
discontinuities and jumps in material properties. Some 
drawbacks include mass loss similar to the underlying 
diffuse interface methods, evolving problem graph, file 
bloat and the expense of remeshing.   
 
In previous work, CDFEM was developed for 
stationary fluid interfaces [1]. Extensions of the 
stationary approach to moving boundary problems 
proved to be a research effort on its own is discussed in 
a recent report [8] and a forthcoming paper [9]. 
 
The equations of motion, extent of reaction equations, 
and level set equations are discretized with the finite 
element method. A pressure stabilized Petrov-Galerkin 
method is used to reduce the condition number of the 
matrix, allow for equal order interpolation, and enable 
the use of Krylov-based iterative solvers [10]. Further 
details of the modeling approach and equations, the 
numerical methods used and the finite element 
implementation can be found in a paper Rao et al.  [3].  
It has been found that decoupling the problem into 
three matrix systems is the fastest approach to solving 
the problem. The momentum equations and continuity 
equation are solved as one system of equations, that 
require GMRES solve with ILUT fill factor 3. The 
energy equations and reactions equations are solved in 
a separate matrix and the level set method has its own 
matrix. The three matrices are loosely coupled and 
solved at each time step. 
 
In Figure 3, we can see results from a CDFEM 
simulation of a Raleigh-Taylor instability. The inital 
condition shows a heavy green fluid over a lighter 
yellow fluid. The simulation maintains its symmetry to 
a great extent, and gives the result of a stable 
stratification of the yellow over the green fluid at long 
times, with very little mass loss. 
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Figure 3. CDFEM algorithm is robust through entire 
Rayleigh-Taylor instability 
 
The simulation is able to capture the both the coarse 
and fine features of this complex flow instability. 
 
Results and Discussion  
The mold and the finite element mesh for our 
validation efforts are shown in Figure 4. This is a good 
test case, since its complex geometry includes 
contractions, expansions, and a sinusoidal channel. In 
addition, there is a large section in the bottom of the 
mold that can have exotherms producing hot spots in 
the foam.  

 
Figure 4. Kansas City mold (left) and finite element 
mesh (right).  
 
We were able to fill a mold with PMDI-4 and record 
the images as seen in Figure 5. The corresponding 
finite element simulations can be compared to the flow 
visualization experiments and are also shown in Figure 
5. From this figure, we can see that there is a good 
agreement between the model and the experiment. 
 

 
Figure 5. Flow visualization (top) compared to finite 
element simulations (bottom) for filling of the Kansas 
City Mold with PMDI-4. 
 
Volume as a function of time can be seen in Figure 6.  
Here we can see that there is excellent quantitative 
agreement between the model and experiment. For this 
agreement to be possible, careful measurements had to 
be undertaken to determine the initial volume and 
density in the mold.  
 

 
Figure 6. Volume as a function of time for finite 
element simulations and flow visualization 
experiments.  

 
Once the PMDI-4 had polymerized and cooled down, it 
was possible to remove the sample from the mold. 
Because the foam adheres strongly to the mold, the top 
section of the mold with the sinusoidal flow feature did 
not release and was not included in the density 
analysis. Calibration samples were made of known 
density to determine the density of the part. Results 
from an X-Ray CT of the foam are shown in Figure 7. 
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Figure 7. Experimental CT gives density gradients in 
the Kansas City Mold. 

 
The density varies from 0.09 g/cc, at the bottom of the 
mold, to 0.11g/cc, in the center of the mold. High 
density regions of 0.30 g/cc can be seen near 
contractions in the mold. These are thought to be 
associated with bubble breakage due to high shear 
rates. 

 
We can compare densities from our model to the 
experimental CT data.  The results from this are shown 
in Figure 8.  

 
Figure 8. CDFEM model of extent of reaction for CO2 
generation gives correct trends of foam density 
variations. The foam density starts homogeneously at 
0.95 g/cc and ends with a small gradient of 0.15 to 0.16 
g/cc. 
 
We initiate the model with a uniform foam density of 
0.95 g/cc. In the final snap shot, it ends with a small 
gradient of 0.15g/cc at the bottom of the mold to 0.16 
g/cc near the top of the mold. The experiments show at 
least an 18% variation in foam density. The 
simulations are only predicting a 7% variation in foam 
density, though this is an improvement over our 
previous model that predicted no density gradients [2, 
3]. 
 

 
Conclusions  
A new model has been developed to predict density 
gradients and final density in polyurethane foamed 
parts. The model couples the polymerization and 
foaming reactions to predict the degree of cure as the 
foam expands. A new numerical algorithm, CDFEM, 
has been used to determine the location of the foam-air 
interface over time. 
 
The model is an improvement to the previous model 
(7% density variation vs .0%), but still has issues once 
the foam extent of reaction has reached completion. 
We are currently working to address these issues. New 
formulations are being tested, including a CDFEM 
implementation of the foam model that would allow a 
compressible gas phase.  
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