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Project Description

 Project Goal:

— Explore the extent to which energy-consuming proteins can be
used in artificial systems for the active transport, assembly,
and reconfiguration of nanomaterials

Mesoscale Behaviors & Active Proteins
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: _ Copyright © 2006 Nature Publishing Group
Video Credit: Caldwell Lab, UC-Berkeley Nature Reviews | Molecular Cell Biolagy

Soldati & Schliwa, 2006, Nat. Rev. Mol. Cell Biol., 7, 897
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Background & Significance

Kinesin motors and microtubule (MT) filaments — active transport of
cellular nanomaterials; enable emergent behaviors

Can these principles, components, and/or synthetic analogs be
used to assemble dynamic and adaptive materials?

Tubulin
* Dimer
e Fuel = GTP
» Polymerization forms
MT filaments

Kinesin motor domains

e Dimer
e Fuel = ATP
° Video Credits: “Inner Life of Cell”
Use MTS as Conceptualized by Dr. Alain Viel Ph.D., and Dr. Robert Lue Ph.D., Molecular and Cellular
[11 ” . . .
traCkS for Biology, Harvard University

Animated by John Lieber of XVIVO, Inc.
Funded by the Howard Hughes Medical Institute

materials transport
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Project Structure
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Key Expertise

Investigator

George Bachand (SNL) Pl & Task Lead (Active Proteins) + biomaterials

Erik Spoerke (SNL) Task Lead (Artificial Microtubules) + bio-inspired materials
Bruce Bunker (SNL) Former Pl, chemistry of programmable materials (retired SNL)
Darryl Sasaki (SNL) Lipid synthesis, supported bilayers, vesicles

James McElhanon (SNL) Dendrimers, polymer synthesis
Mark Stevens (SNL) Theory & modeling of natural & artificial microtubules

Dominic McGrath (Univ. Dendrimer synthesis & self-assembly
Arizona)
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i Self-Assembling MT Nanowires
Do stabilized MT grow, and if so, Time-lapse from MD simulation
how? t=0ns t=20ns

« MD simulations — large oligomers and
even assembled tubes can “fuse”
during assembly

* Do natural MTs grow through a similar
mechanism?

t =60 ns

Impact: Established a mechanistic understanding of uniqgue mode of MT
growth via self-organization of stabilized filaments
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Project

Hightight Self-Assembling MT Nanowires

Do stabilized MT grow, and if so,
how?
« MD simulations — large oligomers and

even assembled tubes can “fuse”
during assembly

* Do natural MTs grow through a similar
mechanism?
e Unique MT growth mode:

— [tubulin] >> [MTs] = spontaneous
polymerization

— [tubulin] > [MTs] = nucleated
polymerization

— [tubulin] << [MTs] = MT fusion

Impact: Established a mechanistic understanding of uniqgue mode of MT
growth via self-organization of stabilized filaments
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Project

Hightight Confining Motor-Driven Assembly

How does microscale
confinement affect motor-
driven self-assembly?

 Inverted motility of microtubule
filaments
— Kinesin monolayer on substrate

with motor domains extending
outward from surface

— Microtubules “glide” across the
kinesin monolayer when ATP is
present

— Gliding direction is stochastic and
limited only by the presence of
fuel

Impact: Understanding how energy dissipative assembly and microscale
confine collaborate in non-equilibrium materials self-assembly
Liu & Bachand (2011), Soft Matt. 7, 3087; Liu & Bachand (2013), Cell. Mol. Bioeng. 6, 98
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Project

Hightight Confining Motor-Driven Assembly

How does microscale
confinement affect motor-
driven self-assembly?

« Addition of nanoparticles
(e.g., Qdots) to gliding
microtubules leads to self-
assembly of ring
nanocomposites

1000

See:

Bachand et al., (2005), J.
Nanosci. Nanotechnol., 5, 718;

Liu et al., (2008), Adv. Mater.,
20, 4476

100

Log [sQD energy] (pJ)

10

140 120 100 80 60 40 20

fluorescence

Biotinylated tubulin (pJ)

Impact: Understanding how energy dissipative assembly and microscale
confine collaborate in non-equilibrium materials self-assembly
Liu & Bachand (2011), Soft Matt. 7, 3087; Liu & Bachand (2013), Cell. Mol. Bioeng. 6, 98
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Project

Hightight Confining Motor-Driven Assembly

How does microscale
confinement affect motor-
driven self-assembly?

* Physical patterns = channels and
posts

» Selective kinesin adhesion using
SAMs

 Kinesin adhesion and microtubule
transport defined by chemical and
physical confinement

Impact: Understanding how energy dissipative assembly and microscale
confine collaborate in non-equilibrium materials self-assembly
Liu & Bachand (2011), Soft Matt. 7, 3087; Liu & Bachand (2013), Cell. Mol. Bioeng. 6, 98
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Project

Hightight Confining Motor-Driven Assembly

How does microscale confinement
affect motor-driven self-assembly? g i

€
» Post patterns — lattice spacing and feature E ‘ %‘} T
size define: S
Size Density 5 7]
o
Shape Location "

2 5 10
fluorescence Post diameter (um)

SLm SEM

Impact: Understanding how energy dissipative assembly and microscale
confine collaborate in non-equilibrium materials self-assembly
Liu & Bachand (2011), Soft Matt. 7, 3087; Liu & Bachand (2013), Cell. Mol. Bioeng. 6, 98
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Project -
Highlight 3D Nanomaterials Assembly

How are cellular nanomaterials fluorescence
organized into functional 3D
assemblies?

* MTs naturally assemble into
complex 3D structures based on Jum
interactions with MT-associated
proteins (MAPS)

» Biomolecular templating of QDs on
MT constructs crates unique 3D T
composite architectures

* Dynamic assembly — Qdot-MT
aster composites reversibly
assemble & disassemble

5pm

Impact: Learned how cooperative biomolecular interactions may be
used for hierarchical 3D assembly and organization of nanomaterials
Spoerke et al. (2013), ACS Nano 7(3), 2012
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Project -
Highlight 3D Nanomaterials Assembly

How are cellular nanomaterials
organized into functional 3D
assemblies?

* MTs naturally assemble into
complex 3D structures based on
interactions with MT-associated
proteins (MAPS)

* Dynamic assembly — Qdot-MT
aster composites reversibly
assemble & disassemble

* Mineralization — functional
semiconductor asters and rings
formed using 3D MT templates

Impact: Learned how cooperative biomolecular interactions may be
used for hierarchical 3D assembly and organization of nanomaterials
Spoerke et al. (2013), ACS Nano 7(3), 2012
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Project

Highlight “Living” Nanotube Networks

Can active transport impart self-
healing behaviors?

* Branches grow, fuse, & collapse,
while network maintains overall
morphology & function = self-healing

» Nanotubular networks of >10 mm in
total length may be dynamically
assembled by motors & MTs within 5-
15 min

2=y
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Impact: Understanding of how energy-dissipation (i.e., MT gliding) can
self-assemble lipid networks capable of self-healing

Bouxsein et al. (2013), Langmuir 29, 2992
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Project

Highlight “Living” Nanotube Networks

Can active transport impart self-
healing behaviors?
* Branches grow, fuse, & collapse,

while network maintains overall
morphology & function = self-healing

» Nanotubular networks of >10 mm in
total length may be dynamically
assembled by motors & MTs within 5-
15 min

Impact: Understanding of how energy-dissipation (i.e., MT gliding) can
self-assemble lipid networks capable of self-healing

Bouxsein et al. (2013), Langmuir 29, 2992
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Project

Highlight Nanotube Transport Highways

Can lipid networks support
nanomaterials transport?
* Branches grow, fuse, & collapse, ?

while network maintains overall
morphology & function = self-healing

« Nanotubular networks of >10 mm in
total length may be dynamically
assembled by motors & MTs within
5-15 min

» “Surfing” — Qdots bound to lipid on
outer leaflet move through networks

via 1D thermal motion (D =2.3+£0.4
um s™)

Impact: Measurement of 1D diffusive transport of nanomaterials on
highly interconnected tubular networks
Bouxsein et al. (2013), Langmuir 29, 2992
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ik Simulating Artificial MT Assembly
How do molecular interactions 6 ,
govern molecular self-assembly of ag oo mx X x X

O

artificial MTs?

* |nitial simulations — asymmetric shape
and attractive sites crucial to tubule
formation

>

» Optimal tubule formation — both the
attractive lateral and vertical binding
interaction energies ~10 kgT

N

—
T

Vertical interaction strength
w

» Fewer defects when lateral interaction
strength slightly exceed vertical
interaction strength

P

1 2 3 4 5 6
Lateral interaction strength

Impact: Established design rules for developing synthetic tubulin analog
capable of assembling into tubule structures

Cheng et al. (2012), Soft Matter 8, 5666
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Project

Hightight Peptide Nanofiber Assembly

Do MD simulation design rules
translate into synthetic MT —
mimics?

« Asymm-Wedge: hydrophilic, charged ;

5 n 4 hvd Nobi ' A Nanofiber
- bundle
ranc. es_ an ydrop O”IC tai Q\S/ r ' J; fles
o Amphiphilicity (hydrophilic fl/ o A
asymmetry) — critical driving force for gﬁ wr-.f
assembly I} o
* B-sheet formation from isoleucines \4 -
creates vertical interactions, drives L+ ) f
assembly of extended fibers - O,
» Temperature-dependent disassembly I‘Q
by disrupting hydrogen bonds Pas

Impact: Peptide chemistry and versatility provide a platform for studying
artificial MT assembly and tailoring functional interactions
Gough et al. (2013), Soft Matter (in review)

U.S. DEPARTMENT OF Office of
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Project -
Highlight Dendronized Polymer Assembly
Can thermally reversible A@ © %
assembly of polymers mimic T e T 9 3 Moca@bf};f
MT dynamics? K> ?0') [;g; ; ;;, ] oY
« Furan-maleimide Diels-Alder S @ %odi’&bc@
chemistry W P
* AA-BB system: A= furan; B = GPC Traces
maleimide — 1
AB system: maleimide and furan _ | 20min a0 min
@ opposing ends ~ | 30min __ 30min
L o |\ 20 min Jl 20 min
» Polymerization ~50°C /J\K 10 min ’ _/’J\k 10 min
Depolymerization ~110°C /W\ £ min /'\M & min
» Rate of polymerization << rate of | JAR" M}L t,
depolymerization GMW - W

Impact: Assembly/disassembly of synthetic “tubulin” dendimers informs
a path toward more complex MT analogs
Polaske et al. (2011), Macromolecules, 44, 3203; Polaske et al., (2010), Macromolecules 43, 1270
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Proposed Work

Major themes underlying proposed work:

» Understanding of non-equilibrium materials assembly, both for native
proteins and artificial materials

» Exploring the use of non-equilibrium assembly in novel
nanocomposite materials and to elicit emergent phenomena

» Extending materials assemblies into 3D architectures
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[ roposed MT Dynamics & Nanowire Growth

Polar aligned, minus end-capped MTs

Exploring nanowire growth based on

MT polymerization & self-organization @@
» Understanding/manipulate transition
between nucleated polymerization and MT o
fusion to generate MTs with chemically >
unique regions o
(G

* Nucleated polymerization (and potentially =
fusion) on planar surfaces for step-growth
of heterostructured nanowires

 PDMS microfluidic devices for rapid
exchange of molecular building blocks to
regulate dynamic growth

Expected Impact: Platform to study MT dynamic assembly and self-
organization and understand how such processes can be used for the
directed and logical growth of nanowires and heterostructures

r%) ENERGY oo 22 @ Sandia National Laboratories



Loposed Assembly & Transport in 3D

KYSr— YW,

How does molecular confinement top view

define and enhance functionality?

* Biological phenomena — coordinated
interactions of processes across
crowded 3D space

 MT assembly in biocompatible gels
(sol-gel, peptide gels, etc.)

» Hypothesis: molecular confinement
alter system dynamics such as MT
polymerization and kinesin run length

» 3D scaffold for active color change \) g
based on nanoparticle transport E

N \
across segmented MTs ( ensiongon )- ® cwrtioen®en ® @ -:) — )

Expected Impact: A model system to study how active transport and
MT dynamics in 3D architectures enhance emergent properties such as
color changing observed in organisms

AT,
Aoy ko
2 E ] )

U.S. DEPARTMENT OF Ofﬂce Of . . ]
ENERGY science 23 @ Sandia National Laboratories




Proposed

Work LNT Communication Networks

Learning to manipulate of lipid
nanotubes and vesicles
« Understand nanotube junctions

among different networks;
continuous or discontinuous

» Co-transport of particles surfing
outside as well as within the
confined, interstitial space

0802

e Lipid nanotube formation w/
biphasic liposomes

c D
» Vesicle budding — can vesicles “(; m@
be extruded based on motor ~ A

protein transport?

Polishchuk et al. (2013). Mol. Biol. Cell 14, 4470.

Expected Impact: LNT networks and vesicle dynamics can be used
as primitive “communication networks” to study 1D diffusion in larger,
iInterconnected networks (surfing and interstitial transport)

[/ US.DEPARTMENTOF | (ffice of 24 @ Sandia National Laboratories
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[ roposed Energy & Artificial MTs

Advanced MD simulations of
artificial MT assembly
e GTP/GDP bound states of

tubulin essential to the
catastrophic depolymerization

Vertical, A,

Lateral, A,

» Explore how shape changes in
GDP- and GTP-bound tubulin
affect polymer assembly
mechanical properties, stability

 Monomer with two (or three)
states; transitions implemented
with Monte Carlo type step

o ) _ o Lateral site Vertical site
within the MD simulations Hawkins et al.. 2010. J. shifted in/out shifted
Biomechanics, 43, 23 up/down

Expected Impact: Simulations will lay foundation for understanding
the role of energy-dissipative, conformationally dependent elements in
the dynamic assembly/ disassembly of artificial MTs
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oS Platform for Artificial MT Assembly
o p

i A
Vers_ayle molecular tpolbox for - ~ ~
artificial MT exploration

» Drive nanofiber assembly and
disassembly through controllable

amphiphilicity / \
* Enable -sheet formation (vertical / psheet  Dimerization  P-sheet
. . Thermally- forming  jinkage form!ng
[ nte raCt| 0 nS) controllable peptide pep_tlde
hydrophobe chain chain
« Establish mechanism for aropnllc  poptde.
interactions with other materials ‘ peptide head  chemistry

(e.g., motors)

» Dimerizing linkage: reduce synthetic
challenges + allow element
swapping

Expected Impact: Modular nature of platform facilitates the
exploration of an extremely diverse set of chemistries and approaches
for biomimetic assembly of artificial MTs

g U.S. DEPARTMENT OF Office of
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Proposed

Work Platform for Artificial MT Assembly

Dimerization
linkage

B-sheet
forming
chain

N
. . Gn ST
(0]

Below T, Above T,

B-sheet
forming
chain
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Poster Session

Lipid Membrane Transport Systems Molecular Tools for Artificial
via Microtubule Processing Microtubule Development

BF

Darryl Sasaki

Passive Steering and Structural Stability Simulations of Artificial

of Bio-Motor Driven Filaments Microtubule Assembly
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