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How relevant is hard gold as a tribological material (solid lubricant)? 

Ni or Co hardened Au �lms (electroplated and 
electroless) protect copper connectors in many 
printed circuit boards (PCBs)

200 - 500 nm thick electroless 
plating on soldered connections 
to prevent oxidation

1 - 3 µm thick electroplate 
used on edge connections 
that are susceptible to wear

Reference: Gold Survey, Gold Fields Mineral Services Ltd., 2001

280 METRIC TONS of gold used in 2001 on 
electronics related applications, most of it 
in electroplated connectors and contacts
(0.15% of world supply per year)

equivalent to a cube comprised of ~23,333 
standard gold bars (12 kg/26.4 lb each):

2.4 m
 (8 ft) tall6 ft

2.4 m (8 ft) wide

*2.4 m (8 ft) deep

~ $13 BILLION spent
in 2001 on gold

for use in electronics
(mostly electroplating)
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substrate (e.g. copper, brass)

Ni strike or di�usion barrier

hard Au
pure Au strike

type (purity) / code or grade (hardness) / class (minimum thickness)

type
> 99.7% Au

(hardest)  > 99.0% Au

(softest)  > 99.9% Au

suggested applications (ASTM)
I general-purpose, high-reliability electrical contacts

II general-purpose, wear resistance;  low temperature only

III soldering; limits impact of oxidation of codeposited material
IIIA semiconductor components, nuclear eng., high temperature

EAu ~ 80 GPa

ENi ~ 200 GPa

ECu ~ 115 GPa

increased
hardness

more Ni/Co/Fe content
(in the 0 to 2 vol. %)

reduced wear and
increased electrical
contact resistance

250 nm - 5.0µm

250 nm *

* if operating at high temperature and on a
   Cu substrate then > 1.2 µm is recommended

hard gold �lms are de�ned by the following speci�cations:

Speci�cation for electroplated hard gold coatings (ASTM B488-11 / MIL-DTL-45204D)
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Reference:  Lo, Augis, and Pinnel, JAP (1979)

Hardness of hard gold is primarily the
result of Hall-Petch strengthening
(Lo, Augis, Pinnel, JAP 1979):

Hardness of hard gold is a function of grain size (Hall-Petch strengthening)

measured hardness
(deviation from H-P occurs at grain size below ~ 100 nm)
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soft (pure) gold

hard (alloy) gold

Example of actual surface roughness:
(roughness standards, via SWLI)
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lapped surface (Ra ~  110 nm)

lapped surface (Ra ~  50 nm)

height axis scaling factor is 5x

~ 100 nm

global contact force
F = Σ fi

f1 f2
f3

e- e- e- e- e-e-

current constriction

constriction
of electrical
current leads
to large local
current density
(~ 1-100 MA/cm2

  is typical!)
the width of the line corresponds
to a 100 nm thick �lm

For metal contacts the real area is a 
function of hardness and contact force
(Bowden & Tabor, 1939):

... adhesion related to real area.
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Film surface EBSD maps of pure and 0.1% alloy gold reveals 5x grain size reduction

2 µm

2 µm

111

101001

surface normal orientation

(EBSD = electron backscatter di�raction)

pure gold �lm
(highly textured)

0.1 vol. % alloy
(random texture)

pure gold grain size was bimodal
and textured in the surface
normal direction, with
average grain size > 500 nm

gold nanocomposite grain size
was signi�cantly smaller and not
preferentially oriented, with an 
average grain size ~ 100 nm

black pixels imply regions
with grain sizes < 50 nm
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Alloying produces more consistently “low” friction & contact resistance
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... and signi�cant increases in wear resistance
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average wear track cross-section in same sliding conditions against Neyoro G rider:

electroplated type I hard goldpure gold �lm

average linescans over
50% of wear track length

500 µm

(example of topographical map)

58.0 µm2
3.4 µm2

17x wear reduction

worn through
(�lm ~ 500 nm thick)
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Nanoscale modeling: molecular dynamics (MD) simulations

Question
What is the atomic origin of reduced friction/wear?

Large scale MD simulations
utilizing embedded atom method

(particularly suited to metals)

Approach
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Color coding for grain analysis...

grains
(crystallites)

- locally FCC atoms colored according to Euler angle
- locally HCP atoms colored red (twins & stacking faults)
- grain boundaries colored black

grain boundaries
(high disorder)

stacking faults
and twins (red)
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MD simulations done with silver and copper, not gold (comparable systems)

- Few potentials for Au and Ag alloys available, but Ag/Cu works

- Cu/Ag are similarly insoluble (at deposition temperatures, T < 300°C)
   as Au/Ni, Au/Co, etc. (hard gold)
- Sterling silver (7.5 wt. % Cu) was used as a substitute
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A recipe for making nanocrystalline surfaces 

Melt and quench
- start with bulk FCC

- melt at 1800K (20 ps)

- rapid quench (100 ps)

- grains ~ 5 nm

- can then grow grains easily

Note on metallurgy...
- twins indicate {111} surface

- growth nucleates at surface

time step 1

mostly melt grain nucleation

time step 2

time step 3

time step 5

time step 4

greater disorder/�ner 
grain size where the grain 
nucleation fronts meet
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Nanocrystalline tip on slab shear simulation of pure Ag

L

H

shear nanocrystalline Ag tip and slab

- slab dimensions:  
    width = 17 nm
    height = 34 nm
    length = 67 nm

- tip radius = 10 nm

- shear velocity was 2 m/s (constant)

- constant separation or force
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Cold welding veri�ed in single asperity experiments

Lu, Nature Nanotech, 2010 -47 nN

55 nN

simulation shows coalescence
and grain growth after 2 ps

of contact under compression
(without sliding)

cold welding of gold nanowires
occured  with little external force

during 1.5 seconds
(single crystals)
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Can’t measure alloy friction with tip/slab geometry... switch to slab/slab

Cannot measure friction with tip/slab due to signi�cant normal load drift,
perhaps related to work of adhesion (Ag/Cu alloy exhibits 2x that of Ag/Ag)

Alloying suppressed coalescence (commensurate contact) due to shear

two examples of
normal force drift
while shearing
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Nanocrystalline pure metal surfaces coalesce and weld (high friction)

0 nm 4 nm

10 nm 14 nm

30 nm 14 nm, liftoff

- initially distinct grains
- after shear (adhesive load), coalescence occurs -- now a mode II crack
- single grain forms across interface -- stress induced grain growth



S andia National  L ab oratories

Pure Ag slab/slab contacts coalesced, sheared at stacking faults NOT junction

Instead, used Ag slab/slab geometry, made by duplicating and rotating a slab
(now using a compressive normal load, about 50 nN)

- observed stress induced grain growth, as with tip/slab

- shear occurred at stacking faults, not the junction -- slabs coalesced

example of alloy slabs with initial roughness (yellow = Cu) pure Ag slabs after shearing (completely welded)
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Shear induces commensurate contact for Ag/Ag contact (high friction, µ >1)
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friction coe�cient, µ > 1

- layering of tip atoms

- stick-slip behavior

- shear induced commensurate contact

- commensurability leads to high friction

... do composites/alloys supress this behavior?
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Alloy slab/slab contacts prevents coalescence, alloys sliding at junction

Ag slabs Ag/Cu slabs

- higher disorder

- shear occurred primarily at the junction

- coalescence was suppressed

- shear occurred primarily at 
stacking faultsin the bulk

- grains coalesced and grew
across junction

friction coe�cient, µ ~ 0.22 friction coe�cient, µ ~ 0.02
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At the nanoscale, commensurate means high friction

a2

a1

a2

a1

incommensurate interface
(smooth sliding)

a2a1 =

commensurate interface
(stick-slip)

a2a1 =~

Ref: Gosvami et al, Phys. Rev. Lett. 2011

experimental (AFM) dataMD simulation MD simulation
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Qualitative agreement with low contact stress experiments

Courtesy: WG Sawyer, U. Florida

... reduction with alloying,
but not to µ ~ 0.02

for pure Au contact µ ~ 0.2
(in agreement with simulation AND with
AFM experiments; soft tip = no ploughing!)

material independent friction 
behavior was observed
(all friction was ploughing)

Using rigid tip in tip/slab contact can
arti�cally supress grain growth: 

µ ~ 1.0

µ ~ 1.3

alloy µ was higher
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Rigid slab sliding on slab supresses grain growth and ploughing...

rigid slab

elastic slab

By using a slabs -> suppress ploughing

By rigidizing top slab -> suppress grain growth

shear
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Pure Ag slabs (one rigit/one elastic) formed transfer �lm, sheared at junction

: 2.7 ns

: 4.2 ns

transfer �lm
formed

transfer �lm
formed

- transfer �lm formed between rigid/elastic slabs

- sliding occurred along grain boundary of transfer �lm,
or stacking fault, depending on local availability

- grain growth mostly suppressed

elapsed time
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Alloy slabs sheared at boundary and throughout substrate; friction was reduced

: 3 ns

: 8 ns

Alloy slabs slide at boundary and also throughout the substrate

Friction behavior
was materials
dependent

elapsed time

Alloy shear stress 23%
higher than pure metal
(650 MPa vs 530 MPa)
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Conclusions

1. Reductions in friction and wear are attributed to grain re�nement and grain boundary
segregation of alloy species (typically an insoluble material) in the 1-2 wt. %

2. Friction reduces from µ > 1 to µ ~ 0.3 to 0.5 with order 1 wt. % alloying of various 
species -- wear reduces 17x over pure gold for a “gold/gold” contact (Neyoro G vs 
Au �lm) -- grain size reduced from > 500 nm to ~ 100 nm with 0.1 vol. % alloying

1. Pure metal contacts (without protective oxide �lms) will cold weld and undergo
grain reorientation -- shear will occur along slip planes (dislocation mediated
plasticity) -- and commensurate interfaces (self-mated materials) will exhibit the
highest friction (µ > 1)

- Somuri Prasad and Michael Dugger for fruitful discussions and support
- Joeseph Michael and Bonnie McKenzie for SEM/EBSD microscopy
- Rand Gar�eld for tribotesting specimen preparation

2. Alloys such as hard gold will still cold weld, but grain reorientation is suppressed
-- shear occured along transfer �lm boundary -- grain boundary mediated shear

Macro-scale experiments with hard gold (”engineering”)

MD simulations with hard gold-like materials (”fundamental science”)

Acknowledgments
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Embedded Atom Method

non-bonded

4ε [ (σ/r)12 – (σ/r)6 ]   r < rc

embedding energy

Fα(Σi≠jρβ(rij) )

+
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Slab Velocity Pro�les from Rigid/Elastic Slab/Slab Simulation

Velocity Profiles

Velocity profiles indicate liquid-like shearing

Ag shears at transfer film

AgCu shears at boundary, also throughout substrate

Can extract pseudo-viscosities:  Ag = 19 Pa.s,  AgCu = 10 Pa.s

Compare to Merkle and Marks, Wear (2008): Au = 2 Pa.s

Ag AgCu

transfer film 
boundary
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