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Computational fluid dynamics (CFD) is a powerful analysis tool for engineering analysis
of aerodynamic devices. Though great effort has been expended to assist the CFD praci-
tioner in mesh generation efforts, investigation of spatial discretization error is still one of
the primary time costs associated with field simulations. As complexity in both physics
and geometry continues to increase, uniform grid refinement studies are not always practi-
cal from either a time or computational cost perspective. Error transport equations have
been investigated by many researchers in recent years with the goal of providing greater
confidence in simulation results while utilizing only a single mesh. One of the primary
difficulties in applying these methods is the computation of a reliable error source model.
This work presents a method for approximating these error sources with the intent of cre-
ating a general model which is applicable to all flux types within a general gas dynamics
framework. Adaptivity results as well as comparison with a popular error source model
are presented.

Nomenclature

Q Conservative variable vector
QHO

H MUSCL extrapolated conservative variable vector
QLO

H Piecewise continuous conservative variable vector
A Flux Jacobian

|Ã| Flux Jacobian evaluated at Roe averaged state
R Error source
q Primitive variable vector [u, v, w, T ]T

F Flux vector

~̂n Normalized face area vector
V Volume
ε Computed error
θ Covariant velocity [n̂xu+ n̂yv + n̂zw]

I. Introduction

In recent years, computational fluid dynamics (CFD) has become an increasingly important tool in
engineering portfolios. The ability to simulate fluid physics on complex configurations with a relatively
short time table is invaluable in engineering practice. However, one of the primary shortcomings of CFD
is the inability to reliably and robustly predict error in simulation results. In particular, the error related
to spatial discretization is notoriously hard to estimate a posteriori. Richardson’s extrapolation1 has been
utilized to great effect but is either impractical or insufficient in many cases. The cost associated with these
uniform grid refinement studies is often too high and non-monotone behavior renders the method unusable.
Richardson’s extrapolation is also not practical for error estimation in time-accurate studies with evolving
flow features.
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Discrete error transport equations compute error estimation based on the concept that error is generated
due to local defects in mesh resolution and propagated along relevant physical characteristics. It has been
shown in other work that error can be predicted very accurately given the correct estimation of these error
sources. While Richardson’s extrapolation has been used to compute these sources exactly,2 this method is
impractical for the same reasons discussed above .

Much research has been performed to develop models for this source term and several useful techniques
have been developed as a result. Zhang et al3 developed a model based on a finite difference modified
equation analysis which was adapted by Cavallo4 for use in general element unstructured finite volume
schemes. This model in particular has shown great utility for practical problems. However, this model is
developed specifically for the numerical scheme given, namely Roe’s flux.5 Williams also investigated an
error source model based on uniform grid refinement and a model based on higher order polynomial solution
fits.2 These ideas are also common in adjoint based error estimation for determining defects in residual
calculations.6,7

In addition, it has been shown in literature that feature based adaptation methods are lacking in some
critical aspects. In particular, feature based adaptation often cannot capture flow features which were not
present in the coarse mesh solution. Other work has shown excellent performance of adjoint based error
indicators.7–9 The added expense of adjoint computation, however, makes these methods less desirable for
adaptation.

In this work simulations performed within the Sandia National Labs’ code SIERRA Gas Dynamics
module Conchas are shown. We present an error source model with the intent of developing a useful error
indicator for in situ mesh adaptation. Providing rigorous error bounds on the computed solution was not an
objective here but the method compares favorably with previously reported models. Both one-dimensional
and two-dimensional validation cases are shown as well as a results for a thoroughly studied three-dimensional
validation case.

II. Governing Equations

The governing equations considered here are the three-dimensional Euler equations. The Euler equations
can be written in continuous integral (conservation) form as

∂

∂t

∫
Ω

Q dV +

∫
∂Ω

F (Q) · ~̂n dA = 0 (1)

where the solution vector, Q, and the flux vector, F are

Q =


ρ

ρu

ρv

ρw

ρet

 (2)

F (Q) · ~̂n =


ρθ

ρuθ + Pn̂x

ρvθ + Pn̂y

ρwθ + Pn̂z

ρhtθ

 (3)

and θ is defined as
θ = n̂xu+ n̂yv + n̂zw (4)

III. Error Transport Equation

The Euler equations can also be written for a discrete PDE where QH denotes a discrete solution on
some finite space.

∂

∂t

∫
Ω

QH dV +

∫
∂Ω

F (QH) · ~̂n dA =

∫
Ω

R(QH) dV (5)
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R(QH) is the residual deviation of the discrete solution from that of the continuous PDE. Subtracting
Equation 5 from Equation 1 results in the following expression

∂

∂t

∫
Ω

(Q−QH) dV +

∫
∂Ω

F (Q)− F (QH) · ~̂n dA = −
∫

Ω

R(QH) dV (6)

Taking advantage of the homogeneous property of the flux function we can rewrite F (Q) − F (QH) as
A(Q,QH)(Q − QH). Since the exact solution is not known a priori we can reasonably replace A(Q,QH)
with the Jacobian computed for each face on the discrete mesh, A(QH). This is also convenient because in
our implicit flow solver these values are required for solution and are thus available cheaply. We define the
solution error to be ε = Q−QH . Rewriting Equation 6 using these given definitions gives

∂

∂t

∫
Ω

ε dV +

∫
∂Ω

A(QH)ε · ~̂n dA = −
∫

Ω

R(QH) dV (7)

which is the discrete error transport equation.

III.A. Error Source Models

The right hand side of Equation 7 is referred to here as the error source. Given appropriate monotone
solution behavior and several uniformly refined grids, this term can be computed to arbitrary accuracy as
was done by Williams.2 However, for real geometries of engineering interest, it is often quite expensive
to perform even one level of uniform refinement for grid convergence studies. Performing multiple levels
of uniform refinement in three-dimensional, complex geometries is certainly not possible when the original
problem already stretches the limits of computing capacity. In addition, if the solution can be obtained to
arbitrary accuracy in this manner, there is simply no need for the solution of the error transport equations.
Thus, we require a method of evaluating the error source which is efficient as well as providing reasonable
estimates for error generation based on grid defects.

III.B. Roe’s Flux Based Dissipation Model

Zhang et al3 developed a model for the error source based on a modified equation developed for a one-
dimensional explicit finite-volume discretization. This discretization can be written pointwise as

Qn+1
i = Qn

i −
∆t

∆x
(Fn

i+1/2 − F
n
i−1/2) (8)

where i and n represent the control volume and time level respectively. The values Fn
i±1/2 represent the flux

values at the two faces of the one-dimensional control volumes. Roe’s flux at each face can be written as a
combination of a central and upwinded part. For example, at the right and left faces we have

Fn
i+1/2 =

1

2
(Fn

i+1 + Fn
i )− 1

2
|Ãn

i+1/2|∆Qi+1/2 (9)

Fn
i−1/2 =

1

2
(Fn

i + Fn
i−1)− 1

2
|Ãn

i−1/2|∆Qi−1/2 (10)

where ∆Qi+1/2 = Qi+1 −Qi and ∆Qi−1/2 = Qi −Qi−1. The Ã denotes the flux Jacobian evaluated at the
Roe averaged state of a control volume face.

The derivation of the modified equation for this explicit scheme is straight forward with the result being

∂Q

∂t
+
∂F

∂x
= − 1

2∆x
( |Ãi+1/2|(Qi+1 −Qi)− |Ãi−1/2|(Qi −Qi−1) )

−∆t

2

∂2Q

∂t2
− ∆x2

6

∂3F

∂x3
− ∆t2

6

∂3Q

∂t3
+O(∆x3,∆t3)

(11)

Zhang et al suggest utilizing the leading terms of this truncation error analysis as the basis for computing
the error source. Cavallo extended this to general unstructured grids by defining the error source as the sum
of the upwinded flux contributions across all adjacent control volume faces. That is

Ri(QH) = − 1

2Vi

Nfaces∑
j=1

(|Ãj |∆Qj) · ~n (12)
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where ∆Qj = QL,j −QR,j . The values of the conserved variables at the left and right of a given face j are
QL,j and QR,j respectively. Note here that ~n is the un-normalized directed face area vector.

III.C. MUSCL Extrapolated Flux Model

The MUSCL extrapolated flux model was developed based on the conceptual premise that regions of high
gradient are likely sources of error. Feature based adaptation methods would refine strictly based on these
local gradient values. However, this practice does not incorporate the nonlinearities present within the local
flux evaluation. By instead looking at the difference between a MUSCL extrapolated flux10 and a flux
evaluated as piecewise continuous within a control volume, the high gradient regions which drive grid defect
based errors become much easier to identify.

Flow variables are extrapolated to each control volume face via the use of a field gradient. The variables
at these faces are computed by

QHO = Q+∇Q · ~r (13)

where ~r is the position vector constructed from the control volume centroid to the face centroid. Here, the
higher order face values are denoted QHO and likewise, the piecewise constant variables are QLO. In the
SIERRA code, the non-conserved primitives are extrapolated to the face of each control volume and the
conservative fluxes are reconstructed from these.

Our error source construction looks like

Ri(QH) =
1

Vi

∫
∂Ω

(F (QH)HO − F (QH)LO) · ~̂n dA (14)

Notice that this expression can also be expanded by the homogeneous property of the flux like

F (QHO
H )− F (QLO

H ) = A(QHO
H , QLO

H ) (QHO
H −QLO

H ) (15)

Since most flow solvers do not require nor compute the Jacobian matrix with MUSCL extrapolated flow
variables, it is convenient to approximate this as

A(QHO
H , QLO

H ) (QHO
H −QLO

H ) ≈ A(QLO
H ) (QHO

H −QLO
H ) (16)

Thus, our error source term can be re-expressed as

Ri(QH) =
1

Vi

∫
∂Ω

A(QLO
H ) (QHO

H −QLO
H ) · ~̂n dA (17)

This evaluation requires ∼ O(n2) operations per edge which, when compared to the literal implementation
of Roe’s flux involving two matrix vector multiplications, is roughly half as expensive. If a one-sided Roe’s
flux or other less expensive flux implementation were utilized this cost savings will not likely be as substantial.
This approximation was not used here as the desire to generalize the error source model to other flux types
as they become available was deemed more beneficial.

Contrary to the method of computing the error source of Zhang et al this method is fully applicable
to many different flux formulations without need for modification. Also, worth note is that this model is
applicable to error sources which may arise from the discretization of viscous contributions. For computation
of viscous contributions, the gradients of velocity and temperature are required. We refer to these primitive
variables as q here.

q =


u

v

w

T

 (18)

If a directional method is utilized to extrapolate a “higher-order” gradient to the face centroid locations
as was done by Hyams,11 neglecting the directional correction will also result in a change in approximate
gradient. These higher and lower order gradient evaluations at a control volume face are

(∇q)HO =
1

2
(∇qL +∇qR) + [qR − qL −

1

2
(∇qL +∇qR) · ~∆s]

~∆s

| ~∆s|2
(19)
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(∇q)LO =
1

2
(∇qL +∇qR) (20)

Integrating the difference between the viscous fluxes based on these reconstructed gradients will result in a
residual defect based on the mesh discretization. This has not yet been implemented and future tests will
evaluate the performance of this method for viscous error sources.

III.D. Boundary Conditions

Several different approaches have been taken to boundary conditions in literature. Williams2 derives bound-
ary conditions for the error transport equations based on the boundary condition applied at each surface.
This approach seems to be the most thorough treatment of boundary conditions undertaken. Cavallo4 uti-
lizes zero boundary conditions on inflow boundaries, where presumably error has not been generated, and
extrapolation conditions elsewhere. Ilinca et al12 advocate the formation of boundary conditions based
on the characteristics of both the inviscid and viscous flux function linearizations. However, this method
requires the eigen-decomposition of these fluxes depending on the flux implementation.

The code presented here utilizes zero boundary conditions on inflow boundaries, reflected velocity bound-
ary conditions on inviscid surfaces, and extrapolation boundary conditions elsewhere. It was found that for
the ramp case, the symmetry boundary conditions were necessary to predict the propagation of error along
the ramp. Though these boundary conditions are non-consistent with the flowfield boundary conditions, no
undesired effects on stability were observed. It is expected that the extrapolated boundary condition will be
reflective should boundaries be placed too close to immersed bodies. It is unknown what effect this might
have on computed error bounds. However, it is common to place farfield boundaries at many body lengths
away as standard practice. This mostly mitigates concern about reflectivity.

IV. Results

IV.A. 2D Supersonic Ramp

A standard compressible fluid dynamics test case was utilized for comparison and validation of the two error
source models presented here. A two-dimensional ramp with a half-angle of 15 degrees was simulated with a
freestream pressure 287.14 Pa and temperature of 250.35 K. A freestream flow of Mach 1.9 impinges on the
ramp and a crisp, oblique shock forms at an angle of 51.3 degrees.

The solution to this problem is demonstrated on two meshes. The first mesh is quite coarse with 40
control volumes in each of the coordinate directions.This mesh was used for computing the solution to the
error transport equations. The second mesh is used as the validation solution and has 250 control volumes
in each direction. Figure 1 shows the comparison of density for these two meshes. Both solutions are shown
with a second order MUSCL extrapolation and a Venkatakrishnan limiter.13

(a) Density solution on 40x40 mesh (b) Density solution on 250x250 mesh

Figure 1. Comparison of density on both the coarse and fine “exact” meshes

Both the dissipation and MUSCL extrapolation error source models were used to compute the error via
the error transport equations. Both the error sources and the solution to the error transport equations
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were computed using first order spatial discretization. This practice leads to more dissipative computed
error and thus more conservative predicted errors. Tong and Luke14 report that for the same test case, the
computed error does not contain the magnitude of the actual error. Here, this is not the case. Using the first
order spatial discretization shows that both methods span the actual error. However, the computed error
in the dissipation based model case is nearly twice the actual error. The maximum magnitude of computed
error in this case is 2.4E-3. Figure 2 is shown with the magnitude clipped for comparison purposes. The
extrapolation method does not overpredict the error nearly as much and shows a maximum magnitude in
error of 1.1E-3. The actual error maximum is 9.4E-4. In this case it seems that the extrapolation error
source approximation predicts the error more closely than the dissipation model. Figure 2 shows only error
in density. Error in other variables is qualitatively similar for other variables.

(a) Actual error in density (b) Computed error using dissipation
error source

(c) Computed error using MUSCL ex-
trapolation error source

Figure 2. Comparison of extrapolated error with that computed via the two error source methods

IV.B. Transonic Onera M6 Wing

A simulation of a three-dimensional transonic Onera M6 wing was performed at a Mach number of 0.8395
and an angle of attack of 3.06 degrees. Experimental data is available for these conditions,15 though no
direct comparisons are made here. Figure 3 shows the density solution for the top side of the airfoil. The
“lambda” shock structure is clearly visible. Balasubramanian and Newman show in their work7 that this
shock structure is not visible on poorly resolved meshes.

Figure 3. Density solution for Onera M6 wing

Of particular interest for this test case are differences predicted error between both the dissipation and
extrapolation error source models. Figure 4 shows predicted error in density at steady-state on the top
surface of the wing for both error source models.

Again, it is clear that the dissipation error source predicts a greater magnitude of error near the shock
location. The maximum magnitude of error predicted by the dissipation error source model is near the
wingtip trailing edge. It is an order of magnitude greater than any error predicted by the extrapolation
error source. This computed error is also three times the maximum value of density computed on the airfoil
surface. It is suspected that this is unphysical and the result of an overshoot caused by difficulty in the
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(a) Density error computed with dissipative error
source

(b) Density error computed with MUSCL extrapola-
tion error source

Figure 4. Comparison of computed density error for two error source models

evaluation of derivatives near the relatively coarse wingtip. The error source in the ρw term is also quite
high in this location for the dissipation based model. Celik et al16 also noted difficulty with the error source
for error transport equations in the vicinity of sharp gradients. They advocate the addition of diffusion terms
to the error transport equations. They also report an increase in accuracy in the computed error as a side
effect of the addition of these terms. This might be expected considering the error transport equations do
not contain diffusive terms in the present formulation. Cavallo shows in his work4 that for viscous simulation
of shear dominated flows the predicted error bars do not contain the true solution. This again would suggest
that diffusion terms should be included in the computation of the error solution.

V. Error Transport Equations for Adaptation

With the goal of developing a mesh adaptation indicator for fully turbulent, unsteady flows, there are
several criterion which must be met. Foremost, the indicator must be computed at relatively low expense.
For simulations where uniform refinement studies are not currently possible due to problem size, this would
be a disruptive technology. In this respect, computing solution to the error transport equations certainly
are within reason. In three-dimensions, the number of grid points and thus cost is expected to increase for
uniform refinement studies as a factor of eight. For example, a 500x500x500 mesh (125 million volumes)
which is uniformly refined will result in a mesh of 1 billion volumes. In this case, the problem size is
certainly beyond the capabilities of all but the most capable machines today. If a reasonable bound on local
error can be obtained in less than the factor of eight increase, confidence on large problems can be greatly
increased. The error transport equation implementation shown here results in approximately 60% increase
in total computation cost when computed at every timestep. This suggests the cost if used for unsteady
simulations. If computed for a steady-state solution the additional cost is nearly the same as one additional
solver iteration. This is certainly very reasonable.

Secondly, the indicator must be at least as robust as the core solver. This issue deserves a more thorough
investigation. From the numerical results presented here, it appears that the dissipation based error source
model suffers from possible stability issues with regards to overshoots and undershoots near discontinuities.
For the an error source model to be applied to transonic and hypersonic problems, stability near shocks is a
requirement.

Finally, the indicator must be capable of refining in regions which are non-obvious to the CFD practitioner.
The work of Zhang et al3 suggests that refining at the error location itself is of little value. Since error
propagates along characteristic directions in hyperbolic problems, the error solution itself has little value
in terms of the identification of local grid defects. Zhang showed that refining in the locations of greatest
error source shows large reduction in overall solution error. In their work, refining based on greatest local
error showed little improvement in solution quality. However, Zhang presented only one-dimensional test
problems. It is unclear whether this conclusion also extends to two and three dimensions. If this assumption
does hold, there is the issue of how to associate error source locations with output functionals of engineering
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interest. This is one of the primary shortcomings of the solution of error transport equations when compared
to adjoint based error estimation methods. Cavallo4 suggested a method for the estimation of error in
functional outputs. However, it is unclear whether this methodology can be extended to relate error in
a particular output to the source of this error in the field. Clearly more investigation into this issue is
warranted.

VI. Adaptation Test case

A test case for adaptive refinement within SIERRA was formulated based on a cylinder in Mach 1.5
crossflow. Conditions for the farfield were set at standard temperature and pressure. This test case results
in the formation of a bow shock. The location of this bow shock is highly dependent on mesh resolution
as well as thermochemistry in the flowfield. For this simulation, ideal gas assumptions were made and no
thermochemistry was present.

Three meshes were examined. The first mesh was used as a baseline solution and is considered unrealisti-
cally fine for engineering purposes. This mesh consists of 81,929 nodes. The second mesh is considered under
resolved. It was used as a baseline mesh for refinement based on the computed error in density from the
error transport equations. The third mesh was refined based on an a statistical measure of computed error
in density. The mesh was refined in regions where the magnitude of error was greater than two standard
deviations above the mean and coarsened where the error was below one standard deviation above the mean.
The resulting mesh should, in theory, result in equidistribution of error in the solution field. The error source
used was the extrapolated MUSCL method.

Figure 5 shows the density solution on the three meshes. The error equations were allowed to evolve
with the flow field solution and adaptivity (both refinement and coarsening) was allowed at every iteration.
Minimum cell size was fixed to prevent excessive localized differences in control volume size near the shock.
The black contour line shown in Figure 5 is fitted to the shock location of the fine mesh for comparison
purposes. Though the shock location is not predicted perfectly it must be noted that even the refined mesh
has approximately 75% fewer nodes, and therefore expense, when compared to the finest mesh.

(a) Density computed on 81,929 node
mesh

(b) Density computed on 5,000 node
mesh - Unrefined

(c) Density computed on 21,932 node
mesh - Adaptively refined

Figure 5. Comparison of meshes utilized for solution

Figure 6 shows the density error computed on the coarse mesh with no refinement. Clearly the shock
location is spanned by the computed error. However, the location is not predicted perfectly. It is suspected
that by computing the error transport equation solution with a first order spatial method the ability to
precisely resolve discontinuities is lost.

The three meshes which were utilized in the adaptivity investigation are shown in Figure 7. Clustering
of mesh points behind the “exact” shock location is believed to be a result of the lower order spatial method
used to compute the solution error. Further work to extend the method to second order spatial accuracy
should provide evidence clarifying this deficiency.

Table 1 shows the L2 norm of the actual error of the solution in density when compared to the solution
on the finest mesh. As might be expected, the error norm is reduced drastically on the refined mesh. The
norm of the error on the refined mesh is approximately 36% of the same norm computed on the coarse mesh.
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Figure 6. Computed density error with MUSCL extrapolated error source on coarse mesh

(a) “Exact” 81,929 node mesh (b) Unrefined 5,000 node mesh (c) Adaptively refined 21,932 node
mesh

Figure 7. Comparison of meshes utilized for solution

Table 1. Comparison of the L2 norm of error pre and post refinement

Number of nodes ‖Actual Error‖2
Fine Mesh 81,929 –

Coarse Mesh 5,000 .07217

Refined Mesh 21,932 .02607

9 of 11

American Institute of Aeronautics and Astronautics



Both solutions were converged until a reduction in residuals was no longer achieved. It is worth noting that
the flux limiter was much more ill-behaved in the adapted case. This hindered the ability to obtain deep
solution convergence. This is suspected to be related to grid quality and work is currently underway to
improve cell quality during the refinement process.

VII. Conclusion

A new error source model for general flux types has been investigated for the discrete error transport
equations. The error source is based on the surface integrated difference between extrapolated higher and
lower order fluxes for generalized unstructured meshes.

The new method compares favorably to a method which has previously gained favor in literature. Several
test problems are examined to highlight qualitative differences in the methods. Also, a full adaptivity study
is performed on a common hypersonic test problem. Bow shock location is predicted reliably with far less
expense than for the benchmark solution. The new error source method combined with solution of the
error transport equations has shown promise in the implementation of in situ mesh adaptivity to the Sandia
National Labs’ SIERRA Gas Dynamics module Conchas.

Future work will include re-investigation of these methods with a second order accurate solution to the
error transport equations. It is expected the higher spatial order of accuracy will provide enhanced prediction
of discontinuity locations within the solver. Also, future studies will include demonstration of in situ mesh
adaptation for unsteady gas dynamics simulations.
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