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ABSTRACT
The ever increasing amount of data generated by scientific
simulations coupled with system I/O constraints are result-
ing in a growing interest in in-situ analysis techniques. Such
approaches analyze data with minimal overhead while dis-
tilling the quantities of interest, potentially reducing the out-
put size by orders of magnitude. Of particular interest are
techniques that produce reduced data representations while
maintaining the ability to re-define, extract, and study fea-
tures in a post-process to obtain novel scientific insights. In
this work, we present a fast and scalable in-situ topologi-
cal analysis technique that describes the evolution of level
sets of a function. Our approach computes both merge trees
and a compact representation of the geometry of the asso-
ciated features which can be permanently stored with low
overhead. We deploy our in-situ analysis technique with
S3D, a massively parallel turbulent combustion simulation,
and measure run-time performance on leadership class su-
percomputers. Finally, we demonstrate that our in-situ ap-
proach allows much higher analysis frequency than previous
post-process approaches with negligible impact on the sim-
ulation.

1. INTRODUCTION
With the continued increase in available computing power,
scientists are simulating ever more complex phenomena at
higher spatial and temporal resolutions. Unfortunately, file
I/O rates are increasing at a significantly slower pace, and
therefore the gap between the amount of data created and
the amount that can be permanently stored continues to
grow. In practice, this means that relatively fewer time steps
of a simulation are saved. However, currently the majority of
data analysis is performed in post-process, using only these
saved snapshots, and reducing their number quickly com-
promises our ability to reliably analyze the data. State of
the art simulations are already reaching the point at which
snapshots are stored too infrequently to accurately track fast
moving events, increasing the likelihood that rare but poten-
tially important phenomena are lost between snapshots.

Figure 1: The segmentation of the Lifted Flame data
set as extracted by our algorithm at a threshold
value of 100

To address this challenge the data analysis paradigm must
shift from an off-line, post-processing model to an on-the-
fly, in-situ approach. Since the results of an analysis are
typically several orders of magnitude smaller than the raw
data, in-situ analysis can circumvent the file I/O issue with-
out compromising scientific impact. However, this shift in
paradigm introduces challenges and constraints on the data
analysis algorithms that must be addressed prior to their
successful deployment in-situ. First, since data movement
is anticipated to be a primary bottleneck, particularly as
we move to exascale computing environments, analysis al-
gorithms must operate on the same or a very similar data
decomposition as the simulation. However, simulation and
data analysis algorithms tend to have very different char-
acteristics (e.g. floating point operations, memory access
patterns, and communication patterns), and so a data de-
composition that is optimal for the simulation is typically
too fine and the core count too large for analysis algorithms
to perform efficiently. Second, processing times must be
small enough to not impact the overall execution time un-
duly, even when multiple different analyses are performed.
Third, many analysis algorithms require input parameters,
whose values may dramatically impact the overall quality
of the resulting analysis. However, in an in-situ setting,
these parameters are typically not yet known, and therefore
a reasonable range of possibilities must either be sampled
or otherwise stored. Fourth and finally, the analysis results
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must be small enough to allow for high frequency storage to
disk.

While there exist a number of efforts to develop in-situ anal-
ysis capabilities [34, 29, 31, 14, 4], there are few complex
analysis algorithms beyond computing global or local de-
scriptive statistics or subsetting the data fulfilling all the
requirements listed above. In particular, sampling one or
multiple parameter ranges is too expensive in both time
and space to be viable, yet few algorithms are capable of
the kind of meta-analysis required to simultaneously pro-
cess and efficiently encode results for ranges of parameter
values. Here, we present a new parallel, in-situ framework
to compute segmented merge trees of scientific data. Seg-
mented merge trees efficiently encode threshold-based fea-
tures such as extinction regions [22], eddies [32], or burning
cells [7] for a large range of parameters and have proven
highly effective for large scale analysis and visualization [3].
Previous approaches have been restricted to off-line serial
computation [7] or to smaller scale parallel efforts [25, 24]
that ignore the segmentation. Instead, we present an ap-
proach that is faster than previous techniques, applicable
to orders of magnitude more cores, and flexible enough to
adapt to various hardware environments and simulations.
Using a combination of divide-and-conquer and streaming
techniques, the algorithm shows good scaling behavior for
sufficiently large data and remains fast enough at extreme
scales to be viable in an in-situ scenario. Using two exam-
ples from the S3D [11] combustion simulation, we show that
at current scales our algorithm can analyze and store the
corresponding results at ten times the temporal frequency
of the original simulation using only fractions of a percent
of the overall simulation time. Furthermore, using only one
of the cores on each compute node, we demonstrate that,
even at significantly larger core counts, this fraction is not
expected to increase. Finally, the algorithm is simple to im-
plement and highly flexible making it an ideal choice for run
time optimizations as well as alternate computing scenarios
such as staging areas [31, 12, 23]. In summary, this paper
presents a uniquely sophisticated in-situ data analysis algo-
rithm and demonstrates its viability using a state of the art
simulation code.

2. RELATED WORK
As the performance gap between compute and I/O capabil-
ities increases, the need for concurrent workflows for data-
intensive analysis is growing. Recently, several algorithms
have been presented that bypass the I/O barrier by oper-
ating directly on in-memory simulation data in-situ, or use
asynchronous data movement to compute in separate ded-
icated resources in-transit. While successfully deployed in-
situ algorithms have largely focused on visualization tech-
niques [30, 33, 34], recent efforts are exposing additional
analysis capabilities, [4, 14, 19]. Initial in-transit frame-
works focused largely on mitigating I/O costs [35, 2, 12, 1],
however more recent efforts have begun to integrate analysis
prior to dumping data to disk [31].

Topology-based representations of scalar functions provide
a discrete structure upon which to formulate queries for ro-
bust feature extraction. Reeb graphs [28] and their variants,
contour trees [8] and merge trees, encapsulate level set be-
havior, and Morse- and Morse-Smale complexes [13] capture

gradient flow based features. In each case, a continuous func-
tion is converted to a representation that is efficiently stored
using an annotated graph data structures. This discrete
representation can be orders of magnitude smaller than the
original data, yet maintains enough information, for exam-
ple, to enable the exploration of features at multiple thresh-
old values. Furthermore, topological simplification is used
to represent features hierarchically, classifying their impor-
tance based on a user selected metric, possibly persistence,
volume, hypervolume, or relevance [13, 10, 22]. Topology-
based techniques have proven useful for sophisticated anal-
ysis in computational sciences, for example, identifying ex-
tinction regions in non-premixed turbulent combustions [22],
analyzing lean pre-mixed hydrogen flames [7], detecting of
bubbles in turbulent mixing [20], and extracting of the core
structure of a porous solid [16].

While many algorithms have been proposed to compute topo-
logical representations, the lack of inherent spatial locality
of features has led to few successful distributed implemen-
tations. Most algorithms fall under the categories of fully
in-memory [8, 13, 5, 17], streaming out-of-core [26, 7], or
small-scale parallel [25, 15]. Fundamentally, the bottleneck
to scalability of topology-based algorithms for distributed
algorithms is the discrepancy between the local view of the
data, and the global span of features. Recently, an algorithm
for computing Morse-Smale complexes was shown to scale to
large process counts, but only by prematurely terminating
the analysis, with global features resolved only in a post-
process [18]. This kind of approach does not suffice when
the full representation is needed at run-time, for example
when the analysis is performed in-situ. Morozov and We-
ber [24] presented an approach for computing a local-global
representation of merge trees in a distributed setting that
uses communication to position the merge tree of a local
process within a sparsified tree of the global domain. Their
algorithm is designed as a query system to allow on the fly
analysis while the tree is kept in (distributed) memory. In-
stead, our approach aims at in-situ computation where the
specific query is not known and any result must be computed
and stored as quickly as possible. As a result our represen-
tation must support changing the thresholds and queries in
a post-process, ideally on a commodity desktop machines.
Our algorithm, in addition to being significantly faster, also
computes and stores a segmentation of the domain corre-
sponding to the global merge tree to enable later interactive
exploration, shape analysis, feature tracking, and visualiza-
tion.

3. BACKGROUND
Let f be a real-valued map f : M → R defined on a compact
manifold. The region of the domain with value in f greater
than c ∈ R is called the super-level set of c. The merge
tree encodes the evolution of connected components of the
super-level set as the value c is swept from ∞ to −∞. Lo-
cal maxima in f create new components, while saddles can
merge existing components. The merge tree is composed of
nodes and arcs. The nodes represent the critical points that
create, merge, or destroy super-level set components. An
arc exists between two nodes if the super-level set compo-
nent created by the upper node is merged or destroyed by
the lower node. Figure 2 shows the merge tree for a simple
two-dimensional example.



Figure 2: A merge tree tracks the evolution of super-level sets. In a sweep from ∞ to −∞ each maximum
(red sphere) creates a new component, that is merged by saddles (green sphere). The merge tree ends at the
global minimum (blue sphere).

Merge trees describe the topological changes in the super-
level sets of a function. Additionally, the geometric descrip-
tions of the super-level sets are often needed for analysis,
for example, to determine volumes, shapes, track features,
or for visualization. The segmentation of the domain ac-
cording to a merge tree is a partitioning where two points
belong to the same region if and only if the contours pass-
ing through them appear on the same arc of the merge tree.
Storing the segmentation along with a merge tree enables
the geometric reconstruction of super-level sets during a
post-process. Furthermore, access to the segmentation at
run-time allows the precomputation of various conditional
feature based statistics such as, for instance, average tem-
peratures per feature [3]. Therefore, while the merge tree it-
self contains only information about the number of features
at a given threshold, combining it with the corresponding
segmentation creates a powerful and highly flexible analysis
framework.

4. TECHNIQUE
The core of the algorithm is inspired by the serial streaming
approach of Bremer et al. [6], re-formulated and extended
for large-scale parallel computation. The original algorithm
takes as input a set of input mesh vertices and edges and
produces a merge tree as a set of nodes and arcs. The fun-
damental idea is to stream through all edges and vertices
of the input mesh while maintaining the correct merge tree
of all elements seen so far. The only restriction is that the
vertices of an edge must be processed before the edge itself.
Ignoring some optimizations, the algorithm is very simple
and as shown in Figure 3 consists of only three different op-
erations. One can add a vertex 3(a), add an edge 3(b),
and glue arcs 3(c). Each time a vertex is added it creates a
new component. Each edge either connects two components
(Figure 3(b)) or connects vertices within the same compo-
nent. In the latter case the edge can either connect two
vertices that are part of the same sub-tree (i.e. the higher
vertex is in the subtree rooted at the lower vertex) or ver-
tices in different subtrees which creates a loop in the tree
(Figure 3(c)). The loop is a (temporary) invalid configura-
tion and is corrected by gluing the paths to their earliest
common root. The gluing is achieved by merge-sorting ver-
tices on each path according to their function values. Once
all vertices and edges are processed we have constructed an
augmented merge trees (AMT) containing all vertices of the
original mesh. In this AMT all non-valence two vertices cor-
respond to critical points which form the nodes of the final
merge tree. The arcs of the final tree represent the corre-
sponding chain of valence two vertices.

However, as described, the algorithm is slow; Bremer et
al. [6] discusses several improvements most notably the re-
moval of valence two vertices from the intermediate tree and

9(a) 9(b) 9(c)

Figure 3: The core of the merge tree algorithm com-
prises three operations: adding a vertex, adding and
edge, and gluing arcs. In (a), the addition of a ver-
tex adds a component. In (b), the addition of an
edge connects two components. In (c), the addition
of an edge connects vertices in different subtrees,
and the associated arcs are glued together.

an index structure to accelerate the local searches involved
in the adding of an edge and the gluing of arcs. The de-
tails are beyond the scope of this paper and we refer the
reader to the original work for a more complete description.
However, even with the improvements, the serial stream-
ing algorithm has problems once the data kept in memory
becomes too large, as the local searches become expensive.
To address these issues, we divide the algorithm into sev-
eral pieces, each exploiting or correcting a particular char-
acteristic of the original algorithm. The primary insight is
that the algorithm trivially supports a divide-and-conquer
strategy. Given two merge trees from two pieces of a do-
main that share boundary vertices, we can process the list
of their nodes and arcs in a manner that is analogous to
the processing of the original vertices and edges to produce
a joined merge tree. The only caveat is that sufficient in-
formation must be preserved along the shared boundary to
allow a correct merge.

This is trivial in case of an AMT since all boundary vertices
are part of both trees ensuring the correct connections. The
merge trees, however, have removed all valence two nodes.
In particular, there exist cases where a critical node u in
tree T1 appears as regular vertex (valence two) in tree T2
and thus might be removed (see Figure 4). When trying
to combine both trees we cannot directly find u in T2 and
thus may construct an incorrect joined tree. Notice, how-
ever, that we do not need to know u’s actual position in T2
as long as we know the subtree of which u would be the
root. Starting from any node in this subtree we can walk
downward until we find a node with a smaller function value
than u which must be its direct lower neighbor. Therefore,
for all boundary components we must preserve any vertex
that is a local maximum with respect to this boundary com-
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Figure 4: An example of a parallel merge tree computation using four processes in a binary hierarchy. For
illustration purposes the entire tree is shown at each state with elements of the boundary tree shown in black
and interior elements in grey. Note that in practice only the black portions would be communicated and
processed. (a) The contour plot of a 2D function color coded by function value with the critical points and
restricted boundary maxima highlighted. Note that the global boundary does not induce restricted maxima.
(b) The local merge trees of the four pieces with the first merges indicated by the arrows. (c) The AMT
after the merge (left) and the cleaned up tree (right). (d) The final AMT (left) and the (empty) cleaned up
tree (right).

ponent. Any such vertex may be a critical point in one of
the subdomains that share this boundary and in fact may
be the overall highest shared vertex. Explicitly, entering
all such restricted boundary maxima to the corresponding
trees ensures that we can always find all potentially shared
critical points between neighboring trees. In practice, for
a regular grid divided into blocks this results in adding all
eight corners of a subdomain as well as all vertices locally
maximal with respect to the twelve edges and six faces. In-
terestingly, assuming all such restricted maxima are part
of all local trees, the algorithm discussed above will create
the correct joined tree without any modifications. Finally,
it is easy to see that when merging two trees only nodes
relevant to restricted boundary maxima can possibly be af-
fected by a merge. Therefore, it is sufficient to only process
the corresponding boundary trees defined as all nodes and
arcs containing at least one restricted boundary maximum
in their subtree as well as nodes directly above restricted
maxima.

Given the discussion above we can now describe a simple yet
highly efficient split of the serial, streaming algorithm into
two massively parallel portions and a hierarchical merge.
The algorithm is split into three phases: (1) A local compute
phase which computes the merge tree of each subdomain in
parallel; (2) A hierarchical merge phase in which boundary
trees are combined through successive k-way merges; and
(3) A local correction phase which successively integrates
changes introduced by the merging of trees back into the
local trees, see Figure 5.

Local Compute Phase. Given a subdomain we compute
the merge tree of the given function using a variant of Carr
et al.’s contour tree algorithm [9]. It relies on pre-sorting all
vertices followed by a union-find like traversal to construct
the tree. For the remainder of the paper we will refer to
the trees attached to specific subdomains as local trees (see
Figure 4(b)). In practice, a merge tree based analysis typi-
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Merge Stage II	
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Figure 5: The various stages of the algorithm and
the communication involved.

cally indicates that one is interested in high function values
and thus the structure below some threshold is often of no
interest. Since the lower portion of a merge tree is actually
more expensive to compute and store (more vertices in fewer
branches) without being useful, we allow the user to specify
a cut-off below which vertices are ignored. This can dramati-
cally reduce the file sizes that must be stored and also speeds
up the computation in general. To ensure properly shared
boundary, we use a ghost zone half a layer wide, essentially
only extending the boundaries in positive x, y, and z di-
rection by one vertex. Typically, this information is readily
available from the simulation. Furthermore, we detect all
restricted boundary maxima and, if they are not already
part of the tree. add them as valence two nodes. This phase
is embarrassingly parallel and correspondingly scales well.
Subsequently, we extract the corresponding boundary trees
by walking downwards from all restricted boundary maxima
and send them to their appropriate merge location using a
point-to-point MPI send.

Merge Phase. At start-up we determine a merge hierarchy
consisting of a tree whose leaves correspond to subdomains
and/or their local trees and whose other nodes represent



merges of boundary trees, see Figure 5. Constructing the
hierarchy is extremely flexible and supports arbitrary k-way
merges in any order the user chooses. In its current form,
the algorithm merges based on the row major order of the
subdomains in the obvious manner. We merge k trees using
the variant of the streaming-serial algorithm discussed above
except that we initially maintain the AMT rather than re-
moving valence two nodes. We then send the AMT back
up the hierarchy to all leaves where it will be used to inte-
grate global information into the respective local tree. Sub-
sequently, we reduce the AMT by removing all valence two
nodes that are not part of the boundary of the union of all
corresponding subdomains. Finally, we compute the bound-
ary tree of the result and send it to the next stage of the
merge hierarchy. Figure 4 shows a 2D example using four
processors in a binary hierarchy. In this manner each merge
processes information from increasingly larger subdomains
but as only the remaining boundary information is actually
used the intermediate trees remain small. By construction,
the output of the root of the merge hierarchy will be an
empty tree as no more shared boundaries exist and thus the
boundary tree must be empty.

(a) (b)

Figure 6: Local merge trees from Figure 4 after the
first (a) and second (b) round of corrections.

Correction Phase. The initial local trees may be incorrect
in the sense that they may contain nodes and arcs not part of
the global merge tree (see Figure 4(b)). In particular, there
can exist local maxima and saddles which are regular ver-
tices with respect to the global tree and the local minimum is
likely not the global one. Each merge phase integrates the in-
formation of multiple trees into a more complete joined tree
and we use this joined AMT to correct the local trees (see
Figure 6). More specifically, for each node in the local tree
beneath a restricted boundary maximum we search whether
a corresponding node appears in the joined AMT. If so, we
combine both copies and, if a split is created, glue both trees
as described above. When this process creates valence two
nodes no longer part of a shared boundary, these are re-
moved. In the process we copy all necessary nodes from the
AMT to the local tree and delete the AMT at the end. To
avoid accumulating unnecessary information, we only keep
nodes with function values close to the local range of the
corresponding subdomain. More specifically, we maintain
the lowest critical points above the local maximum and the
highest critical point below the local minimum. Once the
AMTs of all merges have been processed, each subdomain
maintains a small portion of the global tree with some un-
avoidable duplications between nodes (see Figure 6(b)).

Segmentation. In practice the merge tree itself is of limited
use without the segmentation describing the shape and loca-
tion of the corresponding features. We compute the segmen-
tation in two parts. First, during the local compute phase
we also compute the corresponding segmentation by identi-
fying each vertex with the next highest critical point in the
local tree. During the correction phase we then keep track of
the changes that occur, in particular of the nodes that are
removed and their immediate higher neighbor at the time
of the removal. Using the algorithm discussed in [6] this
is sufficient to update the segmentation information of all
local vertices in a union-find type sweep through all local
vertices. Finally, we dump all vertices, their segmentation
id, as well as all nodes and arcs of the local trees to disk
as individual files per subdomain. These files are then in-
tegrated in a simple post-process into the global merge tree
and the corresponding segmentation.

AMT0

AMT 2

LT0 LT1

AMT 1

LT2 LT3

AMT 2

AMT0

AMT 2

LT0 LT1

AMT 1

LT2 LT3

P0 
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P1 P2 P7 P6 P5 P4 P3 

P2 P4 

P4 

P6 

Pi = Process Id 

Figure 7: The process layout for an 8 process run.
A snapshot of the upstream communication during
the final correction phase is shown. Notice the way
in which messages are relayed to reach the leaves
instead of the root doing a broadcast to the leaves.

Layout and Communication. One significant advantage
of the algorithm described above is its flexibility no only in
terms of deciding the merge hierarchy but also in placing the
corresponding computation. Each merge represents an in-
dependent compute kernel and can be placed arbitrarily on
any compute core. In principle, the same is true for the local
compute and the correction phase but since these are tied
more closely to the input data, one typically places them
with the data to avoid unnecessary data movement. For
simplicity we currently assign each merge to the core with
the lowest MPI rank within its subtree as shown in figure 7.
However, other assignments are possible and may lead to
more optimal load balancing. All communication is handled
as point-to-point MPI messages except those between cores
on the same processor which our communication layer au-
tomatically handles through a direct memory transfer. We
further optimize communication to route messages through
the merge hierarchy instead of sending individual messages
to all leaves during the correction phase. This avoids any
one process having to send an excessive number of messages.
Figure 7 illustrates this behavior by showing the communi-
cation involved in the final correction phase of an 8 process
run.

5. RESULTS
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Figure 8: Time taken by the analysis on Hopper and Titan for (a) the HCCI (560 × 560 × 560) data set and
(b)the Lifted Flame data set with various process counts.

To demonstrate and validate our approach we have applied
it to several test data sets as well as two different large scale
combustion simulations originally generated by S3D, a mas-
sively parallel turbulent combustion code. S3D performs
first principles based direct numerical simulations of tur-
bulent combustion. In these simulations, both turbulence
and chemical kinetics associated with burning gas phase hy-
drocarbon fuels introduce spatial and temporal scales span-
ning typically at least 5 decades. S3D operates on a three-
dimensional regular grid typically using a domain decompo-
sition around 30 × 30 × 30 grid points per processor. For
our in-situ test case described below, we use the identical
core counts, domain decompositions, and data distribution
used in the original simulations. We use the DIY library [27]
for reading the data at these decompositions and obtaining
the same data distribution. Due to the large I/O overheads
data snapshots are normally saved only every 500th time
step which has been shown in the past to be too few for
reliably tracking, for example, regions of locally high scalar
dissipation [21]. Instead, here we show how performing the
same type of analysis demonstrated in [21, 3] in-situ can be
done every 50th time step, thus increasing the effective tem-
poral resolution by an order of magnitude while adding less
than one percent to the overall execution time.

Datasets and Computing Environment We use four
different regular grid datasets for our experiments. The
Vertebra data set is a rotational angiography scan of a head
aneurysm obtained from http://www.volvis.org with dimen-
sions 512× 512× 512. This is the largest publicly available
dataset used in previous work on distributed merge tree com-
putation [24] and is included for comparison. The HCCI
data set is a 560 × 560 × 560 simulation of a homogenous
charge compression ignition process in which a lean, pre-
mixed fuel-air mixture is compressed until it ignites spon-
taneously in many separate locations. The HCCI data was
generated on Jaguar (now Titan) at the Oak Ridge Lead-
ership Computing Facility (OLCF) using 21,952 cores with
20× 20× 20 grid points per processor. We have constructed

a larger version by repeating the periodic HCCI data eight
times to form a 1120× 1120× 1120 cube, to act as a stand-
in for future larger simulations. Finally, the Lifted Flame
dataset is a 2025 × 1600 × 400 volume used to investigate
turbulent lifted flames with the goal of better understanding
direct injection stratified spark ignition engines for commer-
cial boilers, as well as fundamental combustion phenomena.
The lifted flame data was originally generated on Jaguar us-
ing 30,000 cores with 27× 40× 40 grid points per processor.

For our tests, we use both the Hopper system at the National
Energy Research Scientific Computing Center (NERSC) and
Titan at the OLCF. Hopper is a peta-flop Cray XE6 system
consisting of 6,384 nodes each with 2 twelve-core AMD Mag-
nyCours 2.1Ghz processors resulting in a total of 153,216
compute cores. Titan is a peta-flop Cray XK7 system with
18,688 nodes each with a sixteen-core AMD Opteron 2.2 Ghz
processor for a total of 299,008 compute cores.

5.1 Performance of the Analysis Technique
Figure 9 shows the times taken by the analysis for various
data sets and process counts on Hopper. For the combus-
tion data sets, our approach achieves reasonable strong scal-
ing until approximately 4K to 8K processes. For data sets
on higher processor counts, the workload per-process be-
comes too small for additional cores to be beneficial and the
run-times are dominated by the communication necessary
to resolve the global structures in the data. Nevertheless, as
discussed in more detail below, the absolute times are small
enough that they have only a marginal impact on the over-
all execution time of the simulation. Furthermore, past 4K
processes the absolute time taken for the analysis is actually
smaller than the variational difference between runs due to
different node allocations and general system noise. Figure
8 shows a comparison of the time taken by the analysis for
HCCI and Lifted Flame data sets on Hopper and Titan. We
can see that the trend is similar on both the machines. The
analysis takes less time on Hopper than Titan, however the
absolute times are too low to make a fair assessment.
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Figure 10: Time spent by the in-situ analysis as compared to the time taken by S3D simulation to compute
50 time steps. The absolute times and the percentage overhead added by the analysis along with storing of
the results for the HCCI(1120× 1120× 1120) data set((a) & (b)) , for the Lifted Flame data set((c) & (d)) and
the HCCI(560× 560× 560) data set((e) & (f)). Notice that the time taken by the analysis along with writing
the results is below 1 percent of the total simulation time and also note the projected performance of the
analysis for 175,616 cores in rightmost columns of (e) & (f).



Data set Original Size Threshold
Value

Reduced Size Data Reduction

HCCI (560× 560× 560)

670 MB 0.01 220 MB 67%
670 MB 0.02 182 MB 73%
670 MB 0.1 106 MB 84%
670 MB 0.2 68 MB 90%

Lifted Flame (2025× 1600× 400)

4.9 GB 10.0 970 MB 80%
4.9 GB 20.0 641 MB 88%
4.9 GB 50.0 336 MB 93%
4.9 GB 70.0 252 MB 95%

Table 1: Data Size Reduction After Segmentation
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Figure 9: Time taken by the analysis for various
data sets and process counts on Hopper.

As discussed above, one important degree of freedom is the
choice of fan-in for the hierarchical merge phase. Larger fan-
ins produce a more shallow merge hierarchy with fewer de-
pendencies and shorter chains of messages. However, larger
fan-ins also reduce the number of active cores more quickly
resulting in a more unbalanced load, potentially causing
problems. Our experiments suggest that the optimal per-
formance is typically achieved by keeping the tree roughly
at a constant depth of around 4 to 5 levels. For up to 256
processors we use a binary merge, up to 1024 a 4-way, up
to 8K cores an 8-way, and beyond that a 16-way merge.
However, this trend does not continue much beyond 16 on
current systems. Experiments with a 32-way merge show
a clear slowdown, most likely due to messages begin forced
off node. Hopper, for example, has only 24 cores per node
and assembling consecutive groups of 32 subdomains for a
merge creates a significant increase in the amount of off-node
communication, causing a slow down.

For the Vertebra data set, our algorithm takes 5.34 seconds
at 512 processors which is 12% faster than the algorithm pre-
sented in [24] at 6.04 seconds for the same data set on the
same machine. Furthermore, their algorithm slows down at
1024 processors while our algorithm still improves to 4.04
seconds, only becoming marginally slower at 2048 cores.
This suggests better scaling of our approach even though

we compute the segmentation information in addition to the
merge tree. Morozov and Weber [24] report results only up
to 2048 processor making it difficult to compare the perfor-
mance at core counts relevant for in-situ analysis.

In terms of in-situ analysis, the absolute times of the previ-
ous section are less important than the relative times with
respect to the corresponding simulation. Assuming perfect
scaling, S3D’s running times have been observed to be on
average 4.15e-4 seconds per grid point per time step for the
HCCI data set and 2.68e-4 seconds per grid point per time
step for the Lifted Ethylene Jet data set. For our experi-
ments we assume an analysis is performed every 50th time
step, a ten-fold increase beyond what is currently possible in
post-processing. Using these numbers, we can estimate the
time S3D would require to execute 50 time steps and com-
pare it to the time our analysis would add to the process.
Figure 10(a), 10(c) and 10(e) show the resulting run-time
break downs on a log scale for the three data sets. Even at
the largest scale, the analysis, including the corresponding
file I/O, adds only around 1% to the overall execution time
while increasing the amount of information provided to the
scientists by an order of magnitude.

Nevertheless, the trend is somewhat troubling: with increas-
ing core counts the analysis may in fact use more time while
the predicted times for the simulation are decreasing. How-
ever, this trend assumes a perfect scaling of S3D which is
unlikely to occur in practice and thus it overstates the prob-
lem. Indeed, predictions for future runs include additional
chemical species, further increasing the per-vertex cost of
the simulation. Furthermore, there exists an obvious miti-
gation strategy to use fewer cores per node for the analysis.
Given that all cores on a node share a common memory sys-
tem, one can easily access all data on a node from any single
core. Apart from effects like non-uniform memory accesses,
we have simulated such a situation by increasing the data
size per-core. In the right most column of Figure 10(e) we
use the larger version of the HCCI data to simulate a corre-
sponding run on 175,616 cores. Using the eight times larger
domain with the same decomposition of 20 × 20 × 20 grid
points per processor and assuming 16 cores per node, we
use 10,976 cores on hopper, each operating on 80× 40× 40
grid points. This is equivalent to a simulation running on
175,616 cores where only one core per node is involved in
the analysis. However, there are some notable differences
between running on 11K nodes rather than 176K nodes. In
the standard data layout, many of the messages, especially
those early in the merge phase, remain on-node while at full



scale, by construction, all messages would be sent over the
network. To compensate for this effect we alter the data
layout to assign data blocks in a round robin fashion which
ensures that the vast majority of messages are in fact off-
node. Note that this in fact overcompensates, as during a
full scale run at 176K cores each analysis core would have
access to the entire network bandwidth of a node while in
our test the network is shared amongst all 24 cores on each
node of Hopper. As shown in Figure 10(e), even assuming a
perfect scaling of S3D, our algorithm would again add less
than 1% overhead.

5.2 Data Reduction
As discussed in Section 4 we compute both the merge tree
as well as the corresponding segmentation to allow as much
flexibility in post-processing as possible. In fact, assuming
a reasonable threshold, the tree combined with the segmen-
tation has the same information in terms of feature based
analysis as the original field. However, depending on the
threshold, the segmentation is significantly smaller than the
original data and the trees are of negligible size on the order
of several MB. For simplicity, we currently store the seg-
mentation as a flat list of vertex - segmentation id pairs for
all vertices above the threshold. Table 1 reports the result-
ing data sizes and corresponding data reduction for different
thresholds. For all timing results we use the lowest reported
thresholds (0.01 for HCCI and 10 for the Lifted Flame) as
the worst case behavior. This results in a data reduction
between 67% and 80%. If necessary the data could easily
be compressed but even in its current form the file I/O has
virtually no impact on the overall run time making this opti-
mization a low priority. Furthermore, in practice one would
likely use more aggressive thresholds. Notice for example,
the differences between the Lifted Flame at a threshold of 10
(Figure 11(d)) compared to a threshold of 50 (Figure 11(f)).
The majority of additional volume is added on the outside
of the flame in single solid “feature” that is of little prac-
tical interest. From a physics perspective, the goal is to
extract the individual regions of high scalar dissipation that
start to appear at higher thresholds. Thus a threshold of 50
appears to be far sufficient to include all phenomena of inter-
est, which improves the data reduction to 93%. In summary,
our approach allows scientists to freely and interactively ex-
plore feature based segmentations at ten times the temporal
resolution of current approaches, and has the potential for
significant scientific impact.

6. CONCLUSION AND FUTURE WORK
If recent hardware trends continue, in-situ analysis will rapidly
become a crucial component of scientific computing. This
paper presents, for the first time, a framework capable of
computing a state of the art topological analysis in-situ with
data sizes and core counts matching the corresponding sim-
ulation yet having negligible impact to the overall execution
time. Furthermore, our framework is highly flexible and as
a result can be easily adapted to various computing envi-
ronments and scenarios. We achieved ten-fold increase in
temporal resolution of the analysis compared to existing ap-
proaches with minima cost, which enables domain scientists
to reliably track features and analyze their evolution over
time. Future research will be to explore other options such
as co-processing or in-transit solutions to further reduce the

impact on the simulation as well as improving the overall
performance to the extent possible.
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