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Background |

= Topological changes during grain growth are thought to
control microstructural evolution

= Here we apply a recently developed automated method* to
characterize topology in digital microstructures, to
simulations of 2D static recrystallization

Number per grain
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s Z.Sun, V. Tikare, B. R. Patterson and A. P. Sprague: Comp. Mat. Sci.,
2012, vol. 55 pp. 329-36.
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Background Il

= We are interested in recrystallization for 2 primary reasons

= Common occurrence in engineered metals undergoing large-scale
deformation (e.g. rolling)

= Proposed as the evolutionary process responsible for the ‘rim effect’ in
nuclear fuels

Nuclear Fuel Pellet
WWW.Nrc.gov

RESULT

Tremendous Variation
In Microstructure

1. Grain sib
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3. Percolation
3. Composition
4. Hardness 4

Irradiated Fuel Cross-Section
Noirot, et. al NE&T, vol. 41 2009
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Simulation Framework
SPPARKS

Kinetic Monte Carlo via Stochastic Parallel PARticle Kinetic Simulator

* Development a new user application for
SNL’s SPPARKS open-source environment

* Treat grain growth + dynamic
recrystallization events simultaneously

* Incorporate probabilistic cellular-
automaton approach to more accurately Tikare & Garcia-Cardona
capture realistic kinetics (KIMA rates)

* Toward prediction of microstructural
evolution in irradiated materials beyond
currently established NRC regulations
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http://www.cs.sandia.gov/~sjplimp/spparks.html
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Algorithm Components

KINETIC MONTE CARLO
+

CELLULAR AUTOMATA
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Stochastic, probability driven evolution
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Nuclei Instantiation
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Nuclei are “seeded” into the simulation domain in one of three ways;
1) random, 2) ordered, or 3) clustered




kMC for Grain Growth
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C.A. for Recrystallization

Binary Energy Case[e =1 o0r 0]
2Dimensional, Site Saturated

$e999

spins

stored energy
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Q = Q,

l:f Qi < Qlji"lltlal J. .
spin; = spin,

Although the CA approach is entirely stored energy
dependent, changes of spin accompany all
recrystallization events. Should a neighboring grain
possess a higher energy, under recrystallization,
that grain will inherit both the lower stored energy
and spin of the adjacent grain

0 if AE >0
_ final ryinitial P =1 |AE. (
AE e = Q —‘ Qij&‘ if AE <0




C.A. for Recrystallization

Binary Energy Case[e =1 o0r 0]
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Grain Size
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Volume Fraction
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Interfacial Surface Area |

0.9
0.8

0.7
06 - =0=Random

0.5 - ==Qrdered——

0.4 “w=Clustered

i R

Laboratories

Sv* ab

0.14

0.3
0.2

0.12

0.1

0

1 12 2 o008

e=0=Random

={I=Qrdered

“w=Clustered

={=0rdered

“==Clustered

13




Sandia
d'l National
Laboratories

Interfacial Surface Area Il
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KIMA Exponent -
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Contiguity

R. Vandermeer: Acta Mat., 2005, 12
vol. 53 pp. 1449-1457. 1
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Cumulative Frequency Distributions

100%

1.2
- 1
o
"1 0.8 -
g
® 0.6 e=p==Random
=
§ 0.4 = Ordered
(& ]
02 wwiw=Clustered

0

o
-
N
w
IS

18



Future Work

*  Future work will focus on extending the simulation
framework into three-dimensions

e Initial work shows enhanced surface roughness when
employing three dimensions. This artifact has been denoted
as “the model-lattice effect” by other investigators.

&

(c)

O. M. Ivasishin, et al., Mater. Sci. Eng. A,

2006, vol. 433 pp. 216-282.




Summa ry i) st

* The kMC-C.A. hybrid model reliably mimics static
recrystallization behavior in a 2D model

= A readily deployable methodology for tracking
microstructural evolution has been advanced to include inter-
and intra-phase interfacial surface areas, KIMA exponents,
contiguity and size distributions in discretized lattice
microstructures

" Tracked features show agreement with trends previously
identified by Marx et al., Vandermeer and Rios et al.
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High Burn-Up Structure |

. Rim structure is a function of
burn-up

. Low burn-up, original grain
structure

. With 239Pu formation,
recrystallization occurs where
enrichment is most pronounced

Une, et. al, JNM vol. 288, 2001

Since burn-up correlates with radial position recrystallization is largely absent as r/r, decreases

Manzel & Walker, JNM vol. 301, 2002
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High Burn-Up Structure |
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