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A
%isposal of High Level Radioactive Waste

in a Geologic Repository in Salt

* The low permeability, low porosity, and creep
mechanical behavior of intact and crushed salt backfill
are important isolation attributes

* Relatively high thermal conductivity of intact and
consolidated salt enhances heat transport away from
the waste, resulting in reduced peak temperatures

* Geochemically reducing conditions limit solubility and
enhance the sorption of radionuclides
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} Numerical Simulation of Thermal-

Hydrologic-Mechanical Processes

« Decay heat from SNF and HLW would affect the
thermal, hydrologic and mechanical behavior of the
repository and host rock

* Generic repository in bedded salt considered
 Repository nominal depth - 650m
« Decaying heat from high level radioactive waste

* For THM simulations SNL’s Sierra suite of codes:
Adagio, Aria and Arpeggio were used
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Disposal Concept

* Disposal concept considered
includes a series of panels
with individual rooms each
containing alcoves.

- Each alcove designed for
one canister/waste package

* Access drifts included
between panels

* Alcoves to be covered with
crushed salt backfill

Disposal panel layout (Clayton, 2010)
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Model Set-up

* 3-D grid extending 30 m
Intact salt above and below repository
 Model includes intact salt
host rock, disturbed rock
DRZ _ zone (DRZ) and crushed salt
Ajf:qge B AD backfill
- Alcove with one canister/
waste package with a
diameter of 0.61 m and 2.7 m
long

 Mesh with 175,520 cells
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Input Parameters

e The TM simulations used a salt constitutive
model developed by Callahan (1999)

* Thermal conductivity of crushed salt backfill as a
function of temperature and porosity

* For permeability-porosity relations experimental
data were used

* Crushed salt backfill permeability was calculated
using porosity data obtained from TM simulations

* Decaying heat with 8.4 kW initial heat load
(Clayton and Gable, 2009)
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Base Case Material Properties and Input

Property Crushed
Salt Backfill

Porosity 0.01 0.014
Permeability(m?) Ix 10! 1x 107
Thermal conductivity Function of  Same as
(W/m-K) temperature intact salt
Specific heat (J/kg-K) 231 931
Grain density (kg/m3) 2190 2190
Initial liquid saturation 1.0 0.5
Residual liquid 0.05 0.05
saturation

varying

function of
porosity

Function of
temperature
and porosity
931

2190
0.05
0.01

840
2200
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1. Thermal-Hydrologic Simulations

* [dentify parameters that most influence thermal response
of system in the presence of two-phase flow

* Initial conditions:
— intact salt and DRZ: 25 °C and 12 MPa
— crushed salt backfill: 25 °C and 1 atm.
 Boundary conditions:
— Constant temperature at top and bottom
— Constant pressure and no-flow at bottom

* Exercise: Compare TH processes in an uncompacted
(base case) and a compacted crushed salt backfill

 An initial heat source of 2.4 kW was applied,
corresponding to about 50 years surface storage
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%hermal-Hydrology Simulation Results:

Distribution of Temperature (5 years)

Uncompacted Case Compacted Case

« Compaction of the crushed salt backfill has a significant effect
on peak temperature response and spread of thermal front
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}Thermal-Hydrology Simulation Results:

Distribution of Saturation (5 years)
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Uncompacted Case Compacted Case
 Movement of fluid is dependent on thermal processes and hydraulic

conditions
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ermal-Hydrology Simulation Results:
Distribution of Mass Fraction of Vapor (5 years)
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 The reduced peak temperature has also affected
water vapor generation
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2. Thermal-Hydrologic-Mechanical Simulations

* One-way THM coupling: Outputs of TM
simulations were used in separate TH simulations

 TM simulations carried out to provide average
porosity as a function of time for the crushed salt
backfill

* crushed salt backfill permeability and thermal
conductivity obtained based on porosity data
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%hermal-Mechanical Simulation Results:

Average Crushed Salt Backfill Porosity

* 1% moisture in crushed salt backfill assumed

0.35 —50 years storage

0.30 - —75 years storage
80 years storage

0.25 \\ —90 years storage
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aI-HydroIogic-MechanicaI Simulation Results:
Peak Temperature
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hrmal-Hydrologic-Mechanical Modeling:

Locations of Selected Nodes

z

Intact Salt lj— x

37694 71452

DRZ

15975 14101
Backfilled Alcove
747
18369 ={7a%< LTS

wnss\
Heat Source

?8%49  THO62

Intact Salt

Sandia
15 National
Laboratories



Temperature, Saturation and Mass Fraction
of Vapor at Different Locations
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Temperature at Surface of Heat Source
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Conclusions

* TH and THM modeling provided preliminary output of thermal,
mechanical and hydrologic processes in a salt repository

* Peak temperature at surface of heat source is mainly a function of
waste type, surface aging, and consolidation of backfill

 Thermal propagation reaches well into the intact salt, mainly as a
result of conduction

* Propagation of water vapor is limited by the nearly-impermeable
intact salt, consolidation of the crushed salt, and the thermal decay
of the heat source

* Recommendations for future work:

— Two-way THM modeling

— Include salinity of fluids

— Use of different heat sources
— Sensitivity analysis
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