SAND2013-3293C

Proceedings of the ASME 2013 International Design Engineering Technical Conrerences «
Computers and Information in Engineering Conference

IDETCI/CIE 2013
August 4-7, 2013, Portland, Oregon, USA

13257

APPLICATION OF VISCOUS AND IWAN MODAL DAMPING MODELS TO
EXPERIMENTAL MEASUREMENTS FROM BOLTED STRUCTURES

Brandon J. Deaner
Graduate Research Assistant
Department of Engineering Physics
University of Wisconsin-Madison
534 Engineering Research Building
1500 Engineering Drive
Madison, Wisconsin 53706
bdeaner@wisc.edu

Michael J. Starr
Component Science and Mechanics
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM, 87185
mjstarr@sandia.gov

ABSTRACT

Measurements are presented from a two-beam structure
with several bolted interfaces to characterize the nonlinear
damping introduced by the joints. The measurements (at force
levels below macro-slip) reveal that each underlying mode of
the structure is well approximated by a single degree-of-
freedom system with a nonlinear mechanical joint. At low
enough force levels the measurements show dissipation that
scales as the second power of the applied force, agreeing with
theory for a linear viscously damped system. This is attributed
to linear viscous behavior of the material and/or damping
provided by the support structure, which simulates free-free
boundary conditions. At larger force levels the damping is
observed to behave nonlinearly, suggesting that damping from
the mechanical joints is dominant. A model is presented that
captures these effects, consisting of a spring and viscous
damping element in parallel with a 4-Parameter Iwan model.
The parameters of this model are identified for each mode of
the structure and comparisons suggest that the model captures
the linear and nonlinear damping accurately over a range of
forcing levels.
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INTRODUCTION

Mechanical joints are known to be a major source of
damping in jointed structures. = However, the amplitude
dependence of damping in mechanical joints has proven to be
quite difficult to predict. For many systems, linear damping
models seem to capture the response of a structure near the
calibrated force level. However, that approach can be over-
conservative or even erroneous since a linear model does not
capture the amplitude dependence of the damping. It would be
far better to understand how mechanical joints behave over a
range of forces so that the response of a jointed structure can be
modeled accurately.

From ring-down data of free-free structures, some trends
have emerged that provide insight into modeling the damping
of mechanical joints. For instance, when testing a bolted
structure at very low force levels, the damping of mechanical
joints can be so light that it is difficult to detect experimentally.
Thus, the overall measured damping is likely to be linear and is
due to material damping and from the suspension support
conditions of the experimental set-up. Yet, at larger force
levels, the damping is often observed to be nonlinear, meaning
the damping from the mechanical joints is significant.
Consequently, this work seeks to develop a model that captures
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the linear damping at low force levels and nonlinear damping at
large force levels.

Mechanical joints are said to be undergoing micro-slip
when the joint as a whole remains intact but small slip
displacements occur at the outskirts of the contact patch
causing frictional energy loss in the system [1]. When this is
the case the overall response of the structure is often well
approximated with a linear modal model and such a model is
used in this work to capture the response.

To capture the nonlinear damping, a 4-Parameter Iwan
model [2] will be used. This constitutive model accounts for
the key characteristics of the joint's response including the
power law energy dissipation seen in the micro-slip region. In
the past decade, the 4-Parameter Iwan model has been
implemented to predict the vibration of structures with a few
discrete joints [3, 4]. However, when modeling individual
joints, each joint requires a unique set of parameters, which
means that one must deduce hundreds or even thousands of
joint parameters to describe a system of interest. On the other
hand, when a small number of modes are active in a response,
recent measurements have suggested that a simpler model may
be adequate. Segalman et al. recently applied the 4-Parameter
Iwan model in a modal framework to describe both discrete
joint simulations and experimental data from structures with
bolted joints [5, 6].

This work extends the modal Iwan framework adding some
features that are necessary to approximate real experimental
data. The 4-Parameter Iwan model only accounts for the
energy dissipation associated with the mechanical joints of the
system, which dominate at large force levels. However, at low
force levels, the damping of the system is dominated by
material damping of the structure and damping from the
suspension support conditions of the experimental set-up.
These linear sources of damping must be accounted for, when
fitting experimental data. In this work, the linear modal
damping will be accounted for using a viscous damper in
parallel with the 4-Parameter Iwan modal model. Experimental
measurements are presented and are found to be well
represented by this model.

NOMENCLATURE

qo Modal amplitude of displacement

Fyp Force in the viscous damper

C Modal viscous damping coefficient

Fie Force in the linear elastic spring

K, Linear elastic stiffness of the system

Froan Force in the Iwan joint

R,y Coefficient and exponent in the Iwan
distribution function

Fy Force necessary to cause macro-slip of joint

Ky Stiffness of the Iwan joint

p Iwan parameter related to level of energy
dissipation and shape of energy dissipation
curve

Divsoder Energy dissipated by the model

Kyroder Stiffness of the model

) Analytic signal

KE Kinetic Energy

Dgy, Energy dissipated by experimental data
Ky Stiffness of the experimental data

f Total optimization objective function
/o Energy dissipation objective function
Jx Stiffness objective function

MODAL MODEL

Segalman proposed that nonlinear energy dissipation due
to bolted joints could be applied on a mode-by-mode basis,
using the 4-parameter Iwan constitutive model [5]. In general,
the nonlinearity that joints introduce can couple the modes of a
system so that modes in the traditional linear sense can not be
defined. However, damping is often relatively weak effect and
experiments have often shown that the modes of structures with
joints are typically quite linear, suggesting that one might be
able to model the structure as a collection of uncoupled linear
modes, each with nonlinear damping characteristics [6].

Under these assumptions, each modal degree-of-freedom is
modeled by a single degree-of-freedom oscillator, as shown in
Fig. 1, with a 4-parameter Iwan model in parallel with a viscous
damper and an elastic spring. Note that the displacement of the
mass is not a physical displacement but the modal displacement
or modal amplitude, ¢, of the mode of interest. The mode
vectors are assumed mass normalized so the mass is taken to be
unity.

q

Fig. 1 Schematic of the model for each modal degree of
freedom. Each mode has a unique set of Iwan parameters
that characterize its nonlinear damping and a viscous
damper that characterizes the linear damping.

The 4-parameter Iwan model has parameters {Fs, K, y, 5}
where F is the joint force necessary to initiate macro-slip, Kr is
the stiffness of the joint, y is directly related to the slope of the
energy dissipation in the micro-slip regime, and f relates to the
level of energy dissipation and the shape of the energy
dissipation curve as the macro-slip force is approached.
Finally, the viscous damper has a coefficient, C, and the linear
elastic spring stiffness is K. Note that all of the parameters are
defined in modal and not physical space.
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ENERGY DISSIPATION AND STIFFNESS

Model

The energy dissipation for the modal model seen in Fig. 1
can be solved for and used to fit experimental data. Assuming a
harmonic load is applied to the mass and the system is at
steady-state, the mass will oscillate as

q = q, sin(wr) (1)

where g, is the modal displacement amplitude and w is the
response frequency. The force in the viscous damper can be
written as

F,=Cq 2

where C is the viscous damping coefficient. The force in the
linear elastic spring takes the form

F,=K,q 3)

where K, is the spring stiffness. The force in the Iwan joint is
given in [2]. Assuming that the amplitude of motion is small,
4o <@, Or in other words the Iwan joint is undergoing

micro-slip, the force in the Iwan model can be approximated as
Rq X +2
Iwan ~— X )

(4)

where R is a coefficient that describes the population
distribution of the parallel-series Iwan system [2]. These forces

can be added, F;, ,=F,, +F, . +F,

Total Iwan >

modal velocity and integrated over one period as follows,

multiplied by the

2x
Dot = .[0; Frpuq dt ®)
to obtain the energy dissipation per cycle, Dyoder-
N 4Rqf +3
Model ™~ (% +3)(% N 2)

Notice that the energy dissipation depends on the maximum
modal amplitude g, and that the linear elastic spring does not
contribute to the energy dissipated as one would expect.

From [2], the secant stiffness of the Iwan joint at large
amplitudes of oscillation can be approximated as:

e j+Kw 7

+rnoCq,  (6)

(x +2)(B+1D

where

x+1
K +
9 T(ﬁ %+2j

TR ) ®

Note that both Dypue and Kypge as presented above are
approximations to the actual dissipation and stiffness, and are
valid in the micro-slip regime only. In order to obtain the actual
dissipation and stiffness, the Iwan model can be integrated in
time and then the actual dissipation and stiffness can be
deduced. However, as discussed in later sections, Djsq; and
Kioaer are used to decrease computational time when solving an
optimization problem to find the modal Iwan parameters that
best fit the data.

Processing Experimental Measurements

The energy dissipation for each mode of a system can be
computed from measurements of its free response. The
procedure for processing measurements was presented in [6]
and will be reviewed briefly below.

First, a filter is used to isolate an individual modal
response. The authors have used both modal filters [7] and
standard, infinite impulse response band-pass filters [8] for this
purpose and other possibilities certainly exist. The Hilbert
Transform [9] is then used to compute the instantaneous
damping and frequency of the system. This process requires
some care since the basic Hilbert transform performs very
poorly in the presence of noise. This work uses a variant where
curve fitting is used [10] to smooth the instantaneous amplitude
and phase found by a standard Hilbert transform and then the
curve fit model can be differentiated to estimate the
instantaneous frequency, as explained below.

One obtains an analytic representation of the modal

response, denoted V() , by adding the Hilbert transform of the

modal velocity, V(¢), to the measured modal velocity of the

mode of interest, V(¢) = g, (¢) as follows
V(t)=v(t)+iv(t) )

The magnitude of the analytic signal is the decay envelope of
the response and is approximated by

V)=V, (10)

where V) is the initial amplitude. To maintain similarity with a
linear system, the product of the natural frequency, w,(f), and
the coefficient of critical damping, {(¥), is defined to be the time
derivative of P(¢).

%:a(rm (D), (1) an

The instantaneous phase is the complex angle of the analytic
signal, which can be obtained using the following (provided
that a four-quadrant arctangent formula is used).

o(t) = tan™' [%j (12)

The measured phase and the natural logarithm of the decay
envelope are then smoothed by fitting a polynomial to the data.
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In addition, before the data is fit, the beginning and end of the
data are deleted since they tend to be contaminated by end
effects in the Hilbert Transform. The time-derivative of the
phase then gives the instantaneous damped natural frequency.

do(?)

dt
The time varying natural frequency is then found using the
following equation:

0,(H) =(0,()) +(~a(t))’ (14)

Now the energy dissipation per cycle can be calculated
from the change in kinetic energy over one cycle. The
amplitude of the kinetic energy can be written as,

wd(t): (13)

KE =%M|V(t)|2 (15)

and the change in the kinetic energy is found by taking the
derivative of this expression. Since the kinetic energy and its
derivative are quite smooth, the energy dissipated per cycle,
Deg,p, can be approximated by simply multiplying dKE/dt by the
period (21/w,(f)) (e.g. using a trapezoid rule to integrate the
power dissipated as a function of time).
2n dKE 27 dP(t)
D, ~———=——"

vl a6
Y ow, d o, dt rer - as

Finally, the experimental modal stiffness is solved for by
squaring the time varying natural frequency.

K, =0,0)’ (17)

EXPERIMENTS ON TWO-BEAM STRUCTURE

The proposed damping model was assessed using
experimental measurements on a structure comprise of two
beams bolted together. The structure is tested in free-free
conditions, and care was taken to design the experimental setup
to minimize the effect of damping associated with the boundary
conditions. Free boundary conditions were used because any
other choice, e.g. clamped, would add even more damping to
the system.

Test Structure

In this work, the structure consisted of two beams bolted
together with four bolts as shown in Fig. 2. The two beams,
each with dimensions 0.508m x 0.05Im x 0.006m (20" x 2" x
0.25") were fastened together with 1/4"-28 fine-threaded bolts
and all components were made of AISI 304 stainless steel. The
bolts were tightened to three different torque levels in these
tests: 1.13, 3.39, 5.65 N-m (10, 30, and 50 in-lbs). For
reference, the Society of Automotive Engineers (SAE) provides
the general torque specification for this type of bolt to be
approximately 8.5 N-m (75.0 in-lbs) [11] which results in bolt

preload force of approximately 6700 N (1500 Ibf). The largest
torque used here was somewhat lower than this specification,
but, as will be shown, this structure became quite linear for the
range of excitation forces that were practical with this setup, so
the bolts were kept somewhat loose to accentuate the
nonlinearity. Future works will explore methods of exciting the
structure with higher force levels (closer to what might be seen
in the applications of interest) so that more realistic torques can
be used.

Fig. 2 Photograph of the two beam test
structure.

Experimental Setup

The dynamic response of the two beam structure was
measured using a Polytec scanning laser Doppler vibrometer
(PSV-400) to measure the response at 70 points on the
structure. A Polytec single point laser Doppler vibrometer
(OFV-534) was used to measure at a reference point to verify
that the hammer hits were consistent. The reference laser was
positioned close to the impact force location as seen in Fig. 2.
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Fig. 3 Photograph of the suspension
setup for the two beam test structure.

The structure is suspended by 2 strings that support the
weight of the structure and the 8 bungee cords prevent
excessive rigid-body motion. The bungees and strings were
connected to the beam at locations where the odd bending
modes have little motion in order to minimize damping in those
modes.

An Alta Solutions automated impact hammer with a nylon
hammer tip was used to supply the impact force, which is
measured by a force gauge attached between the hammer and
the hammer tip. Additional measurements were taken at higher
force levels using a modal hammer; however, the supplied
impact force was not as consistent. The mean and standard
deviation of the maximum impact force for all of the torque
levels and force levels that were used in this study are shown in
Table 1.

Table 1: Mean and standard deviation of the
maximum impact force for all 70 measurements.

Torque Hammer Mean Standard
(N-m) Level Impact Deviation of
Force (N) Impact Force (N)
1.13 1 (lowest) 20.24 0.80
1.13 2 32.77 0.27
1.13 3 86.44 0.68
1.13 4 (highest) 288.57 6.10
3.39 1 (lowest) 24.1 0.38
3.39 2 30.9 0.51
3.39 3 52.8 3.84
3.39 4 (highest) 180.1 58.24
3.39 Modal
Hammer 1444.5 139.34
5.65 1 (lowest) 20.8 0.44
5.65 2 36.5 0.28
5.65 3 60.3 0.61
5.65 4 (highest) 238.6 15.30
5.65 Modal
Hammer 1392.1 172.48

The automatic hammer provides a range of force levels

between approximately 20 and 300 N. However, the force level
is dependent upon the distance between the hammer tip and the
beam and the voltage supplied to the automatic hammer. For
these reasons, the lowest and highest force varies for each
measurement.  For the automatic hammer, the standard
deviation tends to increase as the force level is increased. At
the highest force level, the automatic hammer has a large
spread for all the torque levels especially the 3.39 N-m torque.
The modal hammer is able to reach much higher force levels
(approximately 1400 N); however, the standard deviations are
much larger when compared to the automatic hammer.

Lab Setup Challenges

The damping ratios of a freely supported structure are
sensitive to the support conditions, as was explored in detail by
Carne, Griffith, and Casias in [12]. Therefore, special attention
must be given to the support conditions to assure that the
damping that they add does not contaminate the results.
Initially, the two beam structures were suspended by two
strings that act as pendulum supports as was done in [12].
These support conditions contributed very little damping to the
system; however, several obstacles lead to the addition of § soft
bungee cords in addition to the two strings.

Specifically, the velocity of the beam was measured with a
scanning laser Doppler vibrometer in order to eliminate any
damping associated with the cables that must be added if
accelerometers were used. Hence, if the beam swings
significantly in its pendulum mode, the point which the laser is
measuring may change significantly during the measurement.
Also, an automated hammer was used to excite the beam, but
the hammer only retracts about 2.5 centimeters (1 inch) after
impact. As a result, the pendulum motion of the beam caused
almost unavoidable double hits when the bungee cords were not
present. Finally, in the processing described subsequently, it is
important for the automatic hammer to apply a highly
consistent impact force. Any ambient swinging of the beam
caused the impact forces to vary from test to test. When the
bungee cords were not present, it was extremely difficult and
time consuming to try to manually eliminate the ambient
swinging. For these reasons, soft bungee cords were added to
the setup to suppress the rigid body motion of the beam while
attempting to add as little stiffness and damping as possible to
the system. The final set up was similar to that used in [13] and
is shown in Error! Reference source not found.Fig. 3. This
setup was used for all of the measurements shown in this paper.

A comparison was done to ensure that the addition of
bungee cords did not add significant damping to the system. A
monolithic structure, without interfaces and bolts, was chosen
to ensure that the measured damping was only due to the
structure itself and the support conditions. A single beam was
suspended with two strings with and without the bungees cords
and the damping ratios for the first three modes were found
using the Algorithm of Mode Isolation (AMI) [14, 15] and are
presented in Table 2.

Table 2: Modal Damping Ratios for a single beam
with and without bungees.

Elastic ¢ without bungees ¢ with bungees (%)
Mode # (%)

1 0.010 0.016

2 0.025 0.057

3 0.020 0.044

The damping of all of the modes is very light, as one
would expect for a monolithic structure. When the bungees
were added to the setup, the damping ratios for all modes
increased by about a factor of two. The bungees and strings
were connected to the beam at locations where the motion of
the symmetric or odd bending modes is minimum, to minimize
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the damping that is added to those modes, but these locations
are expected to add some damping to the second mode.
However, the results show that the supports added some
damping to the first and third modes as well. These damping
ratios are an average of the damping ratios found at a range of
force levels; the structure is linear so the force level did not
have a significant impact on the damping

Table 3: Averaged Modal Damping Ratios for the two
beam test structure.

to estimate a single modal velocity for each mode. Some
measurement points were excluded from averaging process if
the mode was excited to heavily or not sufficiently. A trimmed
mean was used to determine which measurements to keep. The
trimmed mean procedure excluded 8 high and low outliers from
the set of 70 measurements points. All measurement points
whose maximum velocity was within 50 percent of the trimmed
mean were kept. Resulting statistics on the filtered impact
hammer data is presented in Table 4.
Table 4: Mean and standard deviation of the

Elastic 1.13 N-m 3.39 N-m 5.65 N-m maximum impact force for all filtered measurements.
Mode # Torque, Torque, (%) Torque, Torque | Hammer Level Mean Standard
(%) (%) (N-m) Impact Deviation of
1 1.2 0.29 0.16 Force (N) Impact Force
2 0.57 0.48 0.26 N)
3 0.31 0.16 0.11 1.13 1 (lowest) 20.0 0.088
1.13 2 32.8 0.025
For comparison, the approximate linear modal damping 1.13 3 86.5 0.041
ratios for the two beam structure at each of the three torque 1.13 4 (highest) 2893 0213
levels are presented in Table 3. Due to the nonlinearity 339 1 (lowest) 240 0.013
introduced by the joints in the two beam structure, the damping 339 B 30.8 0.019
ratios would seem to change with the amount of excitation 339 3 507 0125
applied. The damping ratios presented in Table 3 are averaged 339 4 (highest
o . . . ghest) 191.3 1.585
over the range of force excitations used in these experiments,
. S 3.39 Modal Hammer 1475.7 3.081
and hence they represent a linear fit to a structure which is
known to be nonlinear and this probably does introduce some 5.65 I (lowest) 20.9 0.009
distortion. For each mode, the damping is observed to decrease 5.65 2 36.5 0.005
as the bolt torque increases. This was expected since increasing 5.65 3 60.3 0.011
the bolt torque inhibits micro-slip and hence should decrease 5.65 4 (highest) 237.2 0.310
the measured damping. However, even at the tightest bolt 5.65 Modal Hammer 1400.4 3.225

torque (5.65 N-m) the modal damping ratios have increased by
a factors of 10, 4.5, and 2.5 for the first three modes
respectively. Therefore, it seems that a significant portion of
the measured damping is due to the joints in the structure in
addition to the material damping and the damping provided by
the support conditions.

Lab Data Processing

A couple of approaches were explored to extract modal
velocity ring-downs from the laboratory data. Mass normalized
mode shapes were found by fitting a linear modal model with
the Algorithm of Mode Isolation (AMI) [14, 15]. Then the
mode shapes were used in a modal filter.

i=dq (18)

However, when using a modal filter the modal responses
showed clear evidence of frequency content due to other
modes, which would contaminate the Hilbert transform
analysis. Since this system’s modes are well separated, the
modes were isolated by creating a band pass filter to isolate
each mode, as was done in [16], using a fourth order
Butterworth filter. The filtered responses were then divided by
the corresponding mass normalized mode shape at each point, j,

to estimate the modal displacement as follows, g, =x,/® ,

There were 70 measurement points which were then averaged

All of the filtered standard deviations in Table 4 are smaller
than the initial standard deviations shown in Table 1. Again, for
the automatic hammer, the standard deviation tends to increase
as the force level is increased. Yet, at the highest force level, the
automatic hammer has a much more reasonable maximum
standard deviation of 1.6 N or 0.83%. The modal hammer
standard deviations are also improved with a value of
approximately 3 N.

In order to compute the model's energy dissipation, a
displacement ring-down is needed from the experiment. By
first integrating the measured velocity signal with respect to
time using a trapezoidal numerical integration, one can
approximate the measured displacement signal. Using the same
data processing technique as discussed above, the modal
displacement ring-down was also obtained and averaged. The
displacement ring-down is used to compare the dissipation
model (Eq. 6) to the measured experimental data (Eq. 16).

OPTIMIZING MODEL PARAMETERS

The damping parameters {Fs, Kz, K, x, 5, C} of the modal
model, seen in Fig. 1, were fit to experimental data using
several different optimization routines. The objective function
is posed as:

Minf:f0+fk (19)
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where
2

_ D Experiment _D Model o)
fo= (20)
max (D Experiment - D Model )
and
2
_ K Experiment - K Model 21
Jx = @21
max (K Experiment - K Model )

Note that the dissipation and stiffness objective functions, fp
and fx respectively, are weighted so that their values are on the
order of 1.

The nonlinear objective function, Eq. 19, can be optimized
using either local or global optimization. Both techniques were
explored by the authors in this work; however, when multiple
local minima exist, local optimization algorithms tended to be
highly dependent on the starting guess. Therefore, a global
optimization algorithm (the DIRECT algorithm developed by
Jones et al. [17]) was used to provide a more robust approach to
optimizing the parameters. In addition, local optimization
routines were used in MATLAB (fminsearch, fmincon,
Isqnonlin [18]) to fine tune the solution and ensure
convergence. Even with the global optimization algorithm, it
was important to have a reasonable starting guess. For this
work, starting guesses for the {Fs, K5, K., y, f} parameters
were found using the graphical approach described in [6].

The graphical approach that was used to deduce the
starting values will be summarized briefly, assuming the
experimental energy dissipated per cycle, Dy, and stiffness,
K.y, have been obtained from a set of measurements using the
approach described in [16]. The energy dissipation per cycle
and stiffness can be plotted versus the modal force which, with
mass normalized mode shapes, is equal to the modal

acceleration ¢ . The y parameter is found by fitting a line to

the data for the log of energy dissipation versus log of the
modal force at low force levels. Then the y parameter for each
mode r is given by:

x, =Slope, -3 (22)

In order to deduce the modal Iwan stiffness, K7, the natural
frequencies of each mode are plotted versus modal joint force.
A softening of the system, characterized by a drop in frequency,
illustrates the amount of modal stiffness associated with all the
relevant joints of the system. The equation for modal joint
stiffness for each mode becomes

KT,r = KO,r _Kw,r = a)(ir - a)j),r (23)
where w, is the natural frequency corresponding to the case
when all the joints in the structure exhibit no slipping, and @, is
the natural frequency when all of the joints are slipping.
However, macro-slip was not clearly observed at the force

levels tested so w, values were assumed to be slightly lower
than the lowest measured omega value.

The modal joint slip force, Fs, can be estimated from the
modal force level at which the stiffness or frequency begins to
drop. To find the last parameter, f, all of the previous
parameters found are needed along with the y-intercept, 4, of
the line that was fit in order to find the y parameter. Then, the
following equation was formed from [2] that can be used to
solve for 5, numerically.

741 e S P
4( g, +1)KE?| B+
(%r ) T,r (ﬂr %r+2j

F, = . (24
T K (e )Gy e gy | Y

Finally, a reasonable starting guess for the modal viscous
damping parameter, C, can be obtained from the modal
damping ratios presented in Table 3 with C = 2m{w,.

RESULTS

The measurements from the beam were band-pass filtered
and averaged as described previously to isolate the first bending
mode of the beam, with the bolts tightened to 3.39 N-m. The
optimization procedure was then used to find the modal
parameters that best fit the data both with and without the
additional viscous damping term. The model without the
viscous damper relies entirely on the Iwan joint to dissipate
energy. The parameters of the optimized models are shown in
Table 5.

Table 5: Optimized parameters of the first bending mode of
vibration at a bolt torque of 3.39 N-m, for the modal models
with and without the viscous damper.

Parameter Iwan Model Iwan & Viscous
Damper Model
Fg 6.23 2.33
Kr 2.61-10° 1.37-10°
K., 3.19-10° 4.41-10°
X -0.272 -0.178
p 0.836 0.0316
C N/A 3.96
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Fig. 4 Frequency comparison of two
optimized modal models to experimental
data.

Fig. 4 shows the natural frequency of the modal Iwan
model versus the total modal force for the two modal models,
reconstructed using Eq. (7). The measurements show that the
natural frequency of this mode changes approximately 20 Hz
over the range of forces that were applied. Both models seem
to be capable of capturing the change in natural frequency over
this range. Unfortunately, the natural frequency is not observed
to level off at w,, so it appears that the system never completely
reaches macro slip .
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Fig. 5 Energy dissipation comparison
of two optimized modal models to
experimental data over a range of forces.

Fig. 5 shows the modal energy dissipation versus total
modal force for the two modal models and the experimental
data at five different excitation levels. The Iwan model without
a viscous damper in parallel fails to fit the measurements at low
amplitude, while the model with only a viscous damper does
not capture the increase in damping at high forces. (Because of
the logarithmic scale, the difference at high force levels may
appear to be small yet the linear model is significantly in error
at high force levels.) In contrast, the modal Iwan model with a
viscous damper in parallel provides an excellent approximation
to the measured energy dissipation. It should also be noted that
the disagreement seen when the Iwan model was used alone
does not appear to be due to the choice of parameters.
Considerable effort was spent to optimize that model's
parameters to better match the measurements, yet the fit could
not be improved without decreasing the agreement of the
natural frequency versus force plot in Fig. 4. This difficulty
disappeared when a viscous damper was added to the model.

The differences between these models is more easily
visualized by comparing the slope of the energy dissipation
versus force curve. As mentioned previously, a single Iwan
joint exhibits a slope of 3+y on a log dissipation versus log
force plot. Fig. 6 compares the slope of the two optimized
modal models with the experimentally measured slope. A fifth
order polynomial was fit to the to the laboratory data in order to
compute its slope. Also, it should be noted that the the ITwan
models with and without the viscous damper are optimized to
this polynomial fitted line. Without an additional viscous
damper, the modal Iwan model has a much larger slope than the
laboratory data at low force levels. On the other hand, when a
viscous damper is added in parallel with the Iwan joint, the
slope follows the laboratory data more closely over the entire
range of force levels.

Note that the optimized models have identified a value for
the slip force, Fj, that is in the range of the measured forces.
Thus, at the highest measured force levels macro-slip has been
initiated in both models. Unfortunately, the exciter that was
used was not capable of even higher forces so macro-slip could
not be fully characterized.
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Fig. 6 Slope of energy dissipation
versus modal force for modal Iwan models
and a polynomial fit to the experimental
measurements.

This same procedure was repeated for the first three elastic
modes at three different bolt torques and the identified modal
Iwan parameters are shown in Table 6. In general, the slip
force parameter, Fs, tends to increases when the bolts are
tightened for all modes considered. As the bolts are tightened,
the preload in the bolts increases so larger forces are required to
initiate macro-slip. As the bolts are tightened, one would
expect that the K, parameter for each mode would stay
relatively constant while the joint stiffness, K7, would increase.
However, the optimized stiffness parameters, Kr and K., seem
not to follow much of a trend for this system. This probably
indicates that the measured data is not adequate to reliably
estimate K., as might be expected since the excitation force
was not sufficient to bring the system well into macro slip. The
joint parameter, y, can be observed to decrease as the bolt
torques or stiffness of the system increased. Thus, the energy
dissipation resembles a linear system at high bolt torques.
Finally, the viscous damping parameter, C, seems to remain in a
similar range for each mode considered. The equivalent low-
amplitude damping ratio was computed for each case and these
are also shown and they seem to be plausible lower bounds for
the damping that noted in Table 3.

Table 6: Optimized parameters for a modal Iwan model
with a viscous damper. First three elastic modes each at
varying bolt torques.

Bolt Torque
Nem (in-Ibf) 1.13 (10) 3.39 (30) 5.65 (50)
1*" Elastic Mode
Fs 2.17 233 2.49
Kr 1.03-10° 1.37-10° 1.01-10°
K. 5.16 10 4.41-10° 4.79-10°

P -0.115 -0.178 -0.437
B 4.34-10" 0.0316 0.214
C 1.71 3.96 1.84
fo (Hz) 125.2 121.0 121.2
& (%) 0.083 0.199 0.092
2" Elastic Mode
Fs 0.739 1.07 1.18
Kr 1.71-10° 1.63-10° 2.41-10°
K. 1.79-10° 1.66:10° 1.5810°
P -0.171 -0.428 -0.938
B 0.698 2.90 7.75
C 6.31 1.06 7.06
fo (Hz) 222.9 214.9 214.8
& (%) 0.172 0.030 0.200
3" Elastic Mode
Fy 0.966 1.39 1.02
Kr 3.15-10° 2.86:10° 1.31-10°
K. 8.28-10° 8.58-10° 9.05-10°
P -0.0550 -0.150 -0.286
B 0.471 0.164 0.00305
C 4.14 7.26 5.65
fo (Hz) 466.6 473.9 482.2
¢ (%) 0.054 0.093 0.071
CONCLUSION

In this work, a viscous damper was added in parallel with a
modal Iwan model and a procedure was discussed to identify
parameters for the model from laboratory data. The 4-
parameter Iwan model was found to fit the measurements very
well for the first three bending modes, suggesting that modal
coupling was weak and that a modal Iwan model may be an
effective way of accounting for the nonlinear damping
associated with the mechanical joints of the system. The
measurements also showed that it was important to also have a
viscous damper in parallel with the Iwan element in order to
account for the linear damping associated with the material and
the boundary conditions. This modal Iwan approach is very
appealing since it allows one to treat a structure as a set of
uncoupled linear modes with slightly nonlinear characteristics
in the micro-slip regime. There are only a few parameters to
identify and the parameters y, 5, C and Ky are all fairly clearly
represented in the modal response. On the other hand, in this
study Fsand K, were somewhat difficult to estimate since we
were not able to apply large enough input forces to drive the
system well into the macro-slip regime.

Work is under way to explore whether systems such as
these system can be well modeled as having uncoupled modes
of vibration as was done here. To date, the results suggest that
this approach can be very successful until the structure reaches
macro-slip and sometimes at surprisingly high force levels [6].
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