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ABSTRACT
Measurements are presented from a two-beam structure 

with several bolted interfaces to characterize the nonlinear 
damping introduced by the joints. The measurements (at force 
levels below macro-slip) reveal that each underlying mode of 
the structure is well approximated by a single degree-of-
freedom system with a nonlinear mechanical joint. At low 
enough force levels the measurements show dissipation that 
scales as the second power of the applied force, agreeing with 
theory for a linear viscously damped system. This is attributed 
to linear viscous behavior of the material and/or damping 
provided by the support structure, which simulates free-free 
boundary conditions. At larger force levels the damping is 
observed to behave nonlinearly, suggesting that damping from 
the mechanical joints is dominant. A model is presented that 
captures these effects, consisting of a spring and viscous 
damping element in parallel with a 4-Parameter Iwan model.
The parameters of this model are identified for each mode of 
the structure and comparisons suggest that the model captures 
the linear and nonlinear damping accurately over a range of 
forcing levels.

INTRODUCTION
Mechanical joints are known to be a major source of 

damping in jointed structures.  However, the amplitude 
dependence of damping in mechanical joints has proven to be 
quite difficult to predict.  For many systems, linear damping 
models seem to capture the response of a structure near the 
calibrated force level.  However, that approach can be over-
conservative or even erroneous since a linear model does not 
capture the amplitude dependence of the damping.  It would be 
far better to understand how mechanical joints behave over a 
range of forces so that the response of a jointed structure can be 
modeled accurately.

From ring-down data of free-free structures, some trends 
have emerged that provide insight into modeling the damping 
of mechanical joints.  For instance, when testing a bolted 
structure at very low force levels, the damping of mechanical 
joints can be so light that it is difficult to detect experimentally.  
Thus, the overall measured damping is likely to be linear and is 
due to material damping and from the suspension support 
conditions of the experimental set-up. Yet, at larger force 
levels, the damping is often observed to be nonlinear, meaning 
the damping from the mechanical joints is significant.  
Consequently, this work seeks to develop a model that captures 
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the linear damping at low force levels and nonlinear damping at 
large force levels.

Mechanical joints are said to be undergoing micro-slip 
when the joint as a whole remains intact but small slip 
displacements occur at the outskirts of the contact patch 
causing frictional energy loss in the system [1].  When this is 
the case the overall response of the structure is often well 
approximated with a linear modal model and such a model is 
used in this work to capture the response.

To capture the nonlinear damping, a 4-Parameter Iwan 
model [2] will be used.  This constitutive model accounts for 
the key characteristics of the joint's response including the 
power law energy dissipation seen in the micro-slip region.  In 
the past decade, the 4-Parameter Iwan model has been 
implemented to predict the vibration of structures with a few 
discrete joints [3, 4]. However, when modeling individual 
joints, each joint requires a unique set of parameters, which 
means that one must deduce hundreds or even thousands of 
joint parameters to describe a system of interest.  On the other 
hand, when a small number of modes are active in a response, 
recent measurements have suggested that a simpler model may 
be adequate.  Segalman et al. recently applied the 4-Parameter 
Iwan model in a modal framework to describe both discrete 
joint simulations and experimental data from structures with 
bolted joints [5, 6].

This work extends the modal Iwan framework adding some 
features that are necessary to approximate real experimental 
data.  The 4-Parameter Iwan model only accounts for the 
energy dissipation associated with the mechanical joints of the 
system, which dominate at large force levels.  However, at low 
force levels, the damping of the system is dominated by 
material damping of the structure and damping from the 
suspension support conditions of the experimental set-up.  
These linear sources of damping must be accounted for, when 
fitting experimental data.  In this work, the linear modal 
damping will be accounted for using a viscous damper in 
parallel with the 4-Parameter Iwan modal model.  Experimental 
measurements are presented and are found to be well 
represented by this model.

NOMENCLATURE

q0 Modal amplitude of displacement
FVD Force in the viscous damper
C Modal viscous damping coefficient
FLE Force in the linear elastic spring
K∞ Linear elastic stiffness of the system 
FIwan Force in the Iwan joint
R,   Coefficient and exponent in the Iwan 

distribution function
FS Force necessary to cause macro-slip of joint
KT Stiffness of the Iwan joint
β Iwan parameter related to level of energy 

dissipation and shape of energy dissipation 
curve

DModel Energy dissipated by the model

KModel Stiffness of the model
V(t) Analytic signal
KE Kinetic Energy
DExp Energy dissipated by experimental data
KExp Stiffness of the experimental data
f Total optimization objective function
fD Energy dissipation objective function
fK Stiffness objective function

MODAL MODEL
Segalman proposed that nonlinear energy dissipation due 

to bolted joints could be applied on a mode-by-mode basis, 
using the 4-parameter Iwan constitutive model [5]. In general, 
the nonlinearity that joints introduce can couple the modes of a 
system so that modes in the traditional linear sense can not be 
defined. However, damping is often relatively weak effect and 
experiments have often shown that the modes of structures with 
joints are typically quite linear, suggesting that one might be 
able to model the structure as a collection of uncoupled linear 
modes, each with nonlinear damping characteristics [6].

Under these assumptions, each modal degree-of-freedom is 
modeled by a single degree-of-freedom oscillator, as shown in 
Fig. 1, with a 4-parameter Iwan model in parallel with a viscous 
damper and an elastic spring. Note that the displacement of the 
mass is not a physical displacement but the modal displacement 
or modal amplitude, q, of the mode of interest. The mode 
vectors are assumed mass normalized so the mass is taken to be 
unity.

Fig. 1  Schematic of the model for each modal degree of 
freedom.  Each mode has a unique set of Iwan parameters 
that characterize its nonlinear damping and a viscous 
damper that characterizes the linear damping. 

The 4-parameter Iwan model has parameters {FS, KT, χ, β} 
where FS is the joint force necessary to initiate macro-slip, KT is 
the stiffness of the joint, χ is directly related to the slope of the 
energy dissipation in the micro-slip regime, and β relates to the 
level of energy dissipation and the shape of the energy 
dissipation curve as the macro-slip force is approached.
Finally, the viscous damper has a coefficient, C, and the linear 
elastic spring stiffness is K∞.  Note that all of the parameters are 
defined in modal and not physical space.

M = 1ˆˆ ˆ ˆ, , ,S TF K  

C

K∞

q
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ENERGY DISSIPATION AND STIFFNESS

Model
The energy dissipation for the modal model seen in Fig. 1

can be solved for and used to fit experimental data. Assuming a 
harmonic load is applied to the mass and the system is at 
steady-state, the mass will oscillate as

0 sin( )q q t (1)

where q0 is the modal displacement amplitude and ω is the 
response frequency. The force in the viscous damper can be 
written as

VDF Cq  (2)

where C is the viscous damping coefficient. The force in the 
linear elastic spring takes the form

LEF K q (3)

where K∞ is the spring stiffness. The force in the Iwan joint is 
given in [2]. Assuming that the amplitude of motion is small,

0 maxq  or in other words the Iwan joint is undergoing

micro-slip, the force in the Iwan model can be approximated as

2

2
Iwan

Rq
F










(4)

where R is a coefficient that describes the population 
distribution of the parallel-series Iwan system [2]. These forces 

can be added, Total VD LE IwanF F F F   , multiplied by the 

modal velocity and integrated over one period as follows,

2

0
Model TotalD F q dt



        (5)

to obtain the energy dissipation per cycle, DModel.
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Notice that the energy dissipation depends on the maximum 
modal amplitude q0 and that the linear elastic spring does not 
contribute to the energy dissipated as one would expect.

From [2], the secant stiffness of the Iwan joint at large 
amplitudes of oscillation can be approximated as:

1

1
( 2)( 1)

Model T

r
K K K
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Note that both DModel and KModel as presented above are 
approximations to the actual dissipation and stiffness, and are 
valid in the micro-slip regime only. In order to obtain the actual 
dissipation and stiffness, the Iwan model can be integrated in 
time and then the actual dissipation and stiffness can be 
deduced. However, as discussed in later sections, DModel and 
KModel are used to decrease computational time when solving an 
optimization problem to find the modal Iwan parameters that 
best fit the data.

Processing Experimental Measurements
The energy dissipation for each mode of a system can be 

computed from measurements of its free response. The 
procedure for processing measurements was presented in [6]
and will be reviewed briefly below.

First, a filter is used to isolate an individual modal 
response.  The authors have used both modal filters [7] and 
standard, infinite impulse response band-pass filters [8] for this 
purpose and other possibilities certainly exist. The Hilbert 
Transform [9] is then used to compute the instantaneous 
damping and frequency of the system. This process requires 
some care since the basic Hilbert transform performs very 
poorly in the presence of noise. This work uses a variant where 
curve fitting is used [10] to smooth the instantaneous amplitude 
and phase found by a standard Hilbert transform and then the 
curve fit model can be differentiated to estimate the 
instantaneous frequency, as explained below.

One obtains an analytic representation of the modal 

response, denoted ( )V t , by adding the Hilbert transform of the 

modal velocity, ( )v t , to the measured modal velocity of the 

mode of interest, ( ) ( )rv t q t  as follows

( ) ( ) ( )V t v t iv t                                (9)

The magnitude of the analytic signal is the decay envelope of 
the response and is approximated by

( )
0( ) eP tV t V                             (10)

where V0 is the initial amplitude. To maintain similarity with a 
linear system, the product of the natural frequency, ωn(t), and 
the coefficient of critical damping, ζ(t), is defined to be the time 
derivative of P(t). 

( )
( ) ( ) ( )n

dP t
t t t

dt
   �                 (11)

The instantaneous phase is the complex angle of the analytic 
signal, which can be obtained using the following (provided 
that a four-quadrant arctangent formula is used).

1 ( )
( ) tan

( )

v t
t

v t
   

  
 


                      (12)

The measured phase and the natural logarithm of the decay 
envelope are then smoothed by fitting a polynomial to the data.  
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In addition, before the data is fit, the beginning and end of the 
data are deleted since they tend to be contaminated by end 
effects in the Hilbert Transform. The time-derivative of the 
phase then gives the instantaneous damped natural frequency. 

( )
( )d

d t
t

dt


                            (13)

The time varying natural frequency is then found using the 
following equation:

   
2 2

( ) ( ) ( )n dt t t    
             

(14)

Now the energy dissipation per cycle can be calculated
from the change in kinetic energy over one cycle. The 
amplitude of the kinetic energy can be written as,

21
( )

2
KE M V t                        (15)

and the change in the kinetic energy is found by taking the 
derivative of this expression. Since the kinetic energy and its 
derivative are quite smooth, the energy dissipated per cycle, 
DExp, can be approximated by simply multiplying dKE/dt by the 
period (2/n(t)) (e.g. using a trapezoid rule to integrate the 
power dissipated as a function of time).

   
22 2 ( )

( )Exp

d d

dKE dP t
D V t

dt dt

 

 
        (16)

Finally, the experimental modal stiffness is solved for by 
squaring the time varying natural frequency.

2( )Exp nK t                        (17)

EXPERIMENTS ON TWO-BEAM STRUCTURE
The proposed damping model was assessed using 

experimental measurements on a structure comprise of two 
beams bolted together. The structure is tested in free-free 
conditions, and care was taken to design the experimental setup 
to minimize the effect of damping associated with the boundary 
conditions. Free boundary conditions were used because any 
other choice, e.g. clamped, would add even more damping to 
the system.

Test Structure
In this work, the structure consisted of two beams bolted 

together with four bolts as shown in Fig. 2. The two beams, 
each with dimensions 0.508m  0.051m  0.006m (20"  2" 
0.25") were fastened together with 1/4"-28 fine-threaded bolts 
and all components were made of AISI 304 stainless steel. The 
bolts were tightened to three different torque levels in these 
tests: 1.13, 3.39, 5.65 N-m (10, 30, and 50 in-lbs). For 
reference, the Society of Automotive Engineers (SAE) provides 
the general torque specification for this type of bolt to be 
approximately 8.5 N-m (75.0 in-lbs) [11] which results in bolt 

preload force of approximately 6700 N (1500 lbf). The largest 
torque used here was somewhat lower than this specification, 
but, as will be shown, this structure became quite linear for the 
range of excitation forces that were practical with this setup, so 
the bolts were kept somewhat loose to accentuate the 
nonlinearity.  Future works will explore methods of exciting the 
structure with higher force levels (closer to what might be seen 
in the applications of interest) so that more realistic torques can 
be used.

Fig. 2  Photograph of the two beam test 
structure.

Experimental Setup
The dynamic response of the two beam structure was 

measured using a Polytec scanning laser Doppler vibrometer 
(PSV-400) to measure the response at 70 points on the 
structure.  A Polytec single point laser Doppler vibrometer 
(OFV-534) was used to measure at a reference point to verify 
that the hammer hits were consistent. The reference laser was 
positioned close to the impact force location as seen in Fig. 2.
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Fig. 3  Photograph of the suspension 
setup for the two beam test structure.

The structure is suspended by 2 strings that support the 
weight of the structure and the 8 bungee cords prevent 
excessive rigid-body motion. The bungees and strings were 
connected to the beam at locations where the odd bending 
modes have little motion in order to minimize damping in those 
modes. 

An Alta Solutions automated impact hammer with a nylon 
hammer tip was used to supply the impact force, which is 
measured by a force gauge attached between the hammer and 
the hammer tip. Additional measurements were taken at higher 
force levels using a modal hammer; however, the supplied 
impact force was not as consistent. The mean and standard 
deviation of the maximum impact force for all of the torque 
levels and force levels that were used in this study are shown in 
Table 1.

Table 1:  Mean and standard deviation of the 
maximum impact force for all 70 measurements.

Torque 
(N-m)

Hammer 
Level

Mean 
Impact 

Force (N)

Standard 
Deviation of 

Impact Force (N)

1.13 1 (lowest) 20.24 0.80
1.13 2 32.77 0.27
1.13 3 86.44 0.68
1.13 4 (highest) 288.57 6.10

3.39 1 (lowest) 24.1 0.38
3.39 2 30.9 0.51
3.39 3 52.8 3.84
3.39 4 (highest) 180.1 58.24
3.39 Modal 

Hammer 1444.5 139.34

5.65 1 (lowest) 20.8 0.44
5.65 2 36.5 0.28
5.65 3 60.3 0.61
5.65 4 (highest) 238.6 15.30
5.65 Modal 

Hammer 1392.1 172.48

The automatic hammer provides a range of force levels 
between approximately 20 and 300 N. However, the force level 
is dependent upon the distance between the hammer tip and the 
beam and the voltage supplied to the automatic hammer.  For 
these reasons, the lowest and highest force varies for each 
measurement. For the automatic hammer, the standard 
deviation tends to increase as the force level is increased. At 
the highest force level, the automatic hammer has a large 
spread for all the torque levels especially the 3.39 N-m torque. 
The modal hammer is able to reach much higher force levels 
(approximately 1400 N); however, the standard deviations are 
much larger when compared to the automatic hammer.
  

Lab Setup Challenges
The damping ratios of a freely supported structure are 

sensitive to the support conditions, as was explored in detail by 
Carne, Griffith, and Casias in [12]. Therefore, special attention 
must be given to the support conditions to assure that the 
damping that they add does not contaminate the results. 
Initially, the two beam structures were suspended by two 
strings that act as pendulum supports as was done in [12]. 
These support conditions contributed very little damping to the 
system; however, several obstacles lead to the addition of 8 soft 
bungee cords in addition to the two strings.

Specifically, the velocity of the beam was measured with a 
scanning laser Doppler vibrometer in order to eliminate any 
damping associated with the cables that must be added if 
accelerometers were used. Hence, if the beam swings 
significantly in its pendulum mode, the point which the laser is 
measuring may change significantly during the measurement. 
Also, an automated hammer was used to excite the beam, but 
the hammer only retracts about 2.5 centimeters (1 inch) after 
impact. As a result, the pendulum motion of the beam caused 
almost unavoidable double hits when the bungee cords were not 
present. Finally, in the processing described subsequently, it is 
important for the automatic hammer to apply a highly 
consistent impact force. Any ambient swinging of the beam 
caused the impact forces to vary from test to test.  When the 
bungee cords were not present, it was extremely difficult and 
time consuming to try to manually eliminate the ambient 
swinging. For these reasons, soft bungee cords were added to 
the setup to suppress the rigid body motion of the beam while 
attempting to add as little stiffness and damping as possible to 
the system. The final set up was similar to that used in [13] and 
is shown in Error! Reference source not found.Fig. 3.  This 
setup was used for all of the measurements shown in this paper.

A comparison was done to ensure that the addition of 
bungee cords did not add significant damping to the system. A 
monolithic structure, without interfaces and bolts, was chosen 
to ensure that the measured damping was only due to the 
structure itself and the support conditions. A single beam was 
suspended with two strings with and without the bungees cords
and the damping ratios for the first three modes were found 
using the Algorithm of Mode Isolation (AMI) [14, 15] and are 
presented in Table 2.

Table 2:  Modal Damping Ratios for a single beam 
with and without bungees.

Elastic 
Mode #

ζ without bungees
(%)

ζ with bungees (%)

1 0.010 0.016
2 0.025 0.057
3 0.020 0.044

The damping of all of the modes is very light, as one 
would expect for a monolithic structure. When the bungees 
were added to the setup, the damping ratios for all modes 
increased by about a factor of two. The bungees and strings 
were connected to the beam at locations where the motion of 
the symmetric or odd bending modes is minimum, to minimize 
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the damping that is added to those modes, but these locations 
are expected to add some damping to the second mode.  
However, the results show that the supports added some 
damping to the first and third modes as well.  These damping 
ratios are an average of the damping ratios found at a range of 
force levels; the structure is linear so the force level did not 
have a significant impact on the damping 

Table 3:  Averaged Modal Damping Ratios for the two
beam test structure.

Elastic 
Mode #

1.13 N-m 
Torque, ζ 

(%)

3.39 N-m 
Torque, ζ (%) 

5.65 N-m 
Torque, ζ 

(%) 
1 1.2 0.29 0.16
2 0.57 0.48 0.26
3 0.31 0.16 0.11

For comparison, the approximate linear modal damping 
ratios for the two beam structure at each of the three torque 
levels are presented in Table 3. Due to the nonlinearity 
introduced by the joints in the two beam structure, the damping 
ratios would seem to change with the amount of excitation 
applied. The damping ratios presented in Table 3 are averaged 
over the range of force excitations used in these experiments, 
and hence they represent a linear fit to a structure which is 
known to be nonlinear and this probably does introduce some 
distortion. For each mode, the damping is observed to decrease 
as the bolt torque increases. This was expected since increasing 
the bolt torque inhibits micro-slip and hence should decrease 
the measured damping. However, even at the tightest bolt 
torque (5.65 N-m) the modal damping ratios have increased by 
a factors of 10, 4.5, and 2.5 for the first three modes 
respectively.   Therefore, it seems that a significant portion of 
the measured damping is due to the joints in the structure in 
addition to the material damping and the damping provided by 
the support conditions.

Lab Data Processing
A couple of approaches were explored to extract modal 

velocity ring-downs from the laboratory data. Mass normalized 
mode shapes were found by fitting a linear modal model with 
the Algorithm of Mode Isolation (AMI) [14, 15]. Then the 
mode shapes were used in a modal filter.

x = q                                    (18)

However, when using a modal filter the modal responses 
showed clear evidence of frequency content due to other 
modes, which would contaminate the Hilbert transform 
analysis.  Since this system’s modes are well separated, the 
modes were isolated by creating a band pass filter to isolate 
each mode, as was done in [16], using a fourth order 
Butterworth filter.  The filtered responses were then divided by 
the corresponding mass normalized mode shape at each point, j, 

to estimate the modal displacement as follows, /r j jrq x  

There were 70 measurement points which were then averaged 

to estimate a single modal velocity for each mode. Some 
measurement points were excluded from averaging process if 
the mode was excited to heavily or not sufficiently. A trimmed 
mean was used to determine which measurements to keep.  The 
trimmed mean procedure excluded 8 high and low outliers from 
the set of 70 measurements points.  All measurement points 
whose maximum velocity was within 50 percent of the trimmed 
mean were kept. Resulting statistics on the filtered impact 
hammer data is presented in Table 4.

Table 4:  Mean and standard deviation of the 
maximum impact force for all filtered measurements.
Torque 
(N-m)

Hammer Level Mean 
Impact 

Force (N)

Standard 
Deviation of 

Impact Force 
(N)

1.13 1 (lowest) 20.0 0.088
1.13 2 32.8 0.025
1.13 3 86.5 0.041
1.13 4 (highest) 289.3 0.213

3.39 1 (lowest) 24.2 0.013
3.39 2 30.8 0.019
3.39 3 52.7 0.125
3.39 4 (highest) 191.3 1.585
3.39 Modal Hammer 1475.7 3.081

5.65 1 (lowest) 20.9 0.009
5.65 2 36.5 0.005
5.65 3 60.3 0.011
5.65 4 (highest) 237.2 0.310
5.65 Modal Hammer 1400.4 3.225

All of the filtered standard deviations in Table 4 are smaller 
than the initial standard deviations shown in Table 1. Again, for 
the automatic hammer, the standard deviation tends to increase 
as the force level is increased. Yet, at the highest force level, the 
automatic hammer has a much more reasonable maximum 
standard deviation of 1.6 N or 0.83%.  The modal hammer 
standard deviations are also improved with a value of 
approximately 3 N.

In order to compute the model's energy dissipation, a 
displacement ring-down is needed from the experiment. By 
first integrating the measured velocity signal with respect to 
time using a trapezoidal numerical integration, one can 
approximate the measured displacement signal. Using the same 
data processing technique as discussed above, the modal 
displacement ring-down was also obtained and averaged. The 
displacement ring-down is used to compare the dissipation 
model (Eq. 6) to the measured experimental data (Eq. 16).

OPTIMIZING MODEL PARAMETERS
The damping parameters {FS, KT, K∞, χ, β, C} of the modal 

model, seen in Fig. 1, were fit to experimental data using
several different optimization routines. The objective function 
is posed as:

Min D Kf f f                           (19)
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where

 

2
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Experiment Model
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D D

 
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          (20)

and

 

2

max

Experiment Model

K

Experiment Model

K K
f

K K

 
 
  

          (21)

Note that the dissipation and stiffness objective functions, fD
and fK respectively, are weighted so that their values are on the 
order of 1.

The nonlinear objective function, Eq. 19, can be optimized 
using either local or global optimization. Both techniques were
explored by the authors in this work; however, when multiple 
local minima exist, local optimization algorithms tended to be 
highly dependent on the starting guess. Therefore, a global 
optimization algorithm (the DIRECT algorithm developed by 
Jones et al. [17]) was used to provide a more robust approach to 
optimizing the parameters. In addition, local optimization 
routines were used in MATLAB (fminsearch, fmincon, 
lsqnonlin [18]) to fine tune the solution and ensure 
convergence. Even with the global optimization algorithm, it 
was important to have a reasonable starting guess. For this 
work, starting guesses for the {FS, KT, K∞, χ, β} parameters 
were found using the graphical approach described in [6].

The graphical approach that was used to deduce the 
starting values will be summarized briefly, assuming the 
experimental energy dissipated per cycle, DExp, and stiffness, 
KExp, have been obtained from a set of measurements using the 
approach described in [16]. The energy dissipation per cycle 
and stiffness can be plotted versus the modal force which, with 
mass normalized mode shapes, is equal to the modal 

acceleration q . The χ parameter is found by fitting a line to 

the data for the log of energy dissipation versus log of the 
modal force at low force levels.  Then the χ parameter for each 
mode r is given by:

Slope 3r r                              (22)

In order to deduce the modal Iwan stiffness, KT, the natural 
frequencies of each mode are plotted versus modal joint force.  
A softening of the system, characterized by a drop in frequency, 
illustrates the amount of modal stiffness associated with all the 
relevant joints of the system. The equation for modal joint 
stiffness for each mode becomes

2 2
, 0, , 0, ,T r r r r rK K K                    (23)

where ω0 is the natural frequency corresponding to the case 
when all the joints in the structure exhibit no slipping, and ω∞ is 
the natural frequency when all of the joints are slipping.
However, macro-slip was not clearly observed at the force 

levels tested so ω∞ values were assumed to be slightly lower 
than the lowest measured omega value.

The modal joint slip force, FS, can be estimated from the 
modal force level at which the stiffness or frequency begins to 
drop. To find the last parameter, β, all of the previous 
parameters found are needed along with the y-intercept, A, of 
the line that was fit in order to find the χ parameter.  Then, the 
following equation was formed from [2] that can be used to 

solve for 
r numerically.
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(24)

Finally, a reasonable starting guess for the modal viscous 
damping parameter, C, can be obtained from the modal 
damping ratios presented in Table 3 with C = 2mζω0.

RESULTS
The measurements from the beam were band-pass filtered 

and averaged as described previously to isolate the first bending 
mode of the beam, with the bolts tightened to 3.39 N-m. The 
optimization procedure was then used to find the modal 
parameters that best fit the data both with and without the 
additional viscous damping term. The model without the 
viscous damper relies entirely on the Iwan joint to dissipate 
energy. The parameters of the optimized models are shown in 
Table 5.

   
Table 5: Optimized parameters of the first bending mode of 
vibration at a bolt torque of 3.39 N-m, for the modal models 
with and without the viscous damper.

Parameter Iwan Model Iwan & Viscous 
Damper Model

FS 6.23 2.33
KT 2.61·105 1.37·105

K∞ 3.19·105 4.41·105

χ -0.272 -0.178
β 0.836 0.0316
C N/A 3.96
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Fig. 4  Frequency comparison of two 
optimized modal models to experimental 

data.

Fig. 4 shows the natural frequency of the modal Iwan 
model versus the total modal force for the two modal models, 
reconstructed using Eq. (7).  The measurements show that the 
natural frequency of this mode changes approximately 20 Hz 
over the range of forces that were applied.  Both models seem
to be capable of capturing the change in natural frequency over 
this range.  Unfortunately, the natural frequency is not observed 
to level off at ω∞ so it appears that the system never completely 
reaches macro slip .
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Fig. 5  Energy dissipation comparison 
of two optimized modal models to 

experimental data over a range of forces.

Fig. 5 shows the modal energy dissipation versus total 
modal force for the two modal models and the experimental 
data at five different excitation levels. The Iwan model without 
a viscous damper in parallel fails to fit the measurements at low 
amplitude, while the model with only a viscous damper does 
not capture the increase in damping at high forces.  (Because of 
the logarithmic scale, the difference at high force levels may 
appear to be small yet the linear model is significantly in error 
at high force levels.) In contrast, the modal Iwan model with a 
viscous damper in parallel provides an excellent approximation 
to the measured energy dissipation. It should also be noted that 
the disagreement seen when the Iwan model was used alone 
does not appear to be due to the choice of parameters. 
Considerable effort was spent to optimize that model's
parameters to better match the measurements, yet the fit could 
not be improved without decreasing the agreement of the 
natural frequency versus force plot in Fig. 4. This difficulty 
disappeared when a viscous damper was added to the model.

The differences between these models is more easily 
visualized by comparing the slope of the energy dissipation 
versus force curve. As mentioned previously, a single Iwan 
joint exhibits a slope of 3+ on a log dissipation versus log 
force plot. Fig. 6 compares the slope of the two optimized 
modal models with the experimentally measured slope. A fifth 
order polynomial was fit to the to the laboratory data in order to 
compute its slope.   Also, it should be noted that the the Iwan 
models with and without the viscous damper are optimized to 
this polynomial fitted line.  Without an additional viscous 
damper, the modal Iwan model has a much larger slope than the 
laboratory data at low force levels. On the other hand, when a 
viscous damper is added in parallel with the Iwan joint, the 
slope follows the laboratory data more closely over the entire 
range of force levels.

Note that the optimized models have identified a value for 
the slip force, FS, that is in the range of the measured forces. 
Thus, at the highest measured force levels macro-slip has been 
initiated in both models. Unfortunately, the exciter that was 
used was not capable of even higher forces so macro-slip could 
not be fully characterized.
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Fig. 6  Slope of energy dissipation 
versus modal force for modal Iwan models 

and a polynomial fit to the experimental 
measurements.

This same procedure was repeated for the first three elastic 
modes at three different bolt torques and the identified modal 
Iwan parameters are shown in Table 6. In general, the slip 
force parameter, FS, tends to increases when the bolts are 
tightened for all modes considered. As the bolts are tightened, 
the preload in the bolts increases so larger forces are required to 
initiate macro-slip. As the bolts are tightened, one would 
expect that the K∞ parameter for each mode would stay 
relatively constant while the joint stiffness, KT, would increase.
However, the optimized stiffness parameters, KT and K∞, seem 
not to follow much of a trend for this system. This probably 
indicates that the measured data is not adequate to reliably 
estimate K∞, as might be expected since the excitation force 
was not sufficient to bring the system well into macro slip.  The 
joint parameter, , can be observed to decrease as the bolt 
torques or stiffness of the system increased. Thus, the energy 
dissipation resembles a linear system at high bolt torques.  
Finally, the viscous damping parameter, C, seems to remain in a 
similar range for each mode considered.  The equivalent low-
amplitude damping ratio was computed for each case and these 
are also shown and they seem to be plausible lower bounds for 
the damping that noted in Table 3.

Table 6: Optimized parameters for a modal Iwan model 
with a viscous damper.  First three elastic modes each at 
varying bolt torques.

Bolt Torque 
N-m (in-lbf)

1.13 (10) 3.39 (30) 5.65 (50)

1st Elastic Mode
FS 2.17 2.33 2.49
KT 1.03·105 1.37·105 1.01·105

K∞ 5.16 ·105 4.41·105 4.79·105

χ -0.115 -0.178 -0.437
β 4.34·10-4 0.0316 0.214
C 1.71 3.96 1.84

f0 (Hz) 125.2 121.0 121.2

  (%) 0.083 0.199 0.092

2nd Elastic Mode
FS 0.739 1.07 1.18
KT 1.71·105 1.63·105 2.41·105

K∞ 1.79·106 1.66·106 1.58·106

χ -0.171 -0.428 -0.938
β 0.698 2.90 7.75
C 6.31 1.06 7.06

f0 (Hz) 222.9 214.9 214.8

  (%) 0.172 0.030 0.200

3rd Elastic Mode
FS 0.966 1.39 1.02
KT 3.15·105 2.86·105 1.31·105

K∞ 8.28·106 8.58·106 9.05·106

χ -0.0550 -0.150 -0.286
β 0.471 0.164 0.00305
C 4.14 7.26 5.65

f0 (Hz) 466.6 473.9 482.2

  (%) 0.054 0.093 0.071

CONCLUSION
In this work, a viscous damper was added in parallel with a 

modal Iwan model and a procedure was discussed to identify 
parameters for the model from laboratory data. The 4-
parameter Iwan model was found to fit the measurements very 
well for the first three bending modes, suggesting that modal 
coupling was weak and that a modal Iwan model may be an 
effective way of accounting for the nonlinear damping 
associated with the mechanical joints of the system.  The 
measurements also showed that it was important to also have a 
viscous damper in parallel with the Iwan element in order to 
account for the linear damping associated with the material and 
the boundary conditions.  This modal Iwan approach is very 
appealing since it allows one to treat a structure as a set of 
uncoupled linear modes with slightly nonlinear characteristics 
in the micro-slip regime.  There are only a few parameters to 
identify and the parameters , , C and KT are all fairly clearly 
represented in the modal response.  On the other hand, in this 
study FS and K∞ were somewhat difficult to estimate since we 
were not able to apply large enough input forces to drive the 
system well into the macro-slip regime.

Work is under way to explore whether systems such as 
these system can be well modeled as having uncoupled modes 
of vibration as was done here.  To date, the results suggest that 
this approach can be very successful until the structure reaches 
macro-slip and sometimes at surprisingly high force levels [6].
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