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Overview iy

= Given a deterministic system of equations for uncertainty quantification
= Stochastic Collocation Method (SCM)
= Stochastic Galerkin Method (SGM, aka SFEM)

= How do we efficiently solve these with Monte Carlo?

= We compare various approaches and implementations:
= Brute-force (Monte Carlo approach)
= SCM (quadrature-based approach)
= Separate (Independent or Correlated) Calculations
= Intrusive Correlated Sampling

= SGM (solution of coupled equations)

Sandia
National
Laboratories




Sandia
Transport Equation with Random Parameters ) foen

= The mono-energetic transport equation with isotropic scattering:

Yelw)
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= We consider the total and scattering cross sections to be independently
uncertain (and the distribution of uncertainty is uniform):
Bi(w) = (B¢) + 5 & (w) Ve (w) = (B,) + B, &e(w)
= Using the polynomial chaos spectral approach, we represent the angular
flux as an expansion of random Legendre polynomials:
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= The flux expansion coefficients are found from orthogonality:
1 1
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Uncertainty Propagation by Monte Carlo ) i,

The brute-force approach, which we use for benchmarking purposes, is to
randomly sample from the uncertain cross section distribution:

Se(&) = (Te) + De & Be(€s) = (Ze) + L5 &

Solve the transport problem for that realization:

- = ~ Ys(€s) -
G- Vo7, 0 6, €) + T€v(r 0 60.6) = 22 o7 6. 8.)

Tally each flux result, either as a histogram distribution or as distribution
moments:
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Uncertainty Propagation 7
by the Stochastic Collocation Method
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= |n SCM, the integration of the flux expansion moments
1 1
T.I,fl.’fem('F= ﬁ) = Im f [’I,J(TT, ﬁ, fft; Es) Pi (‘ft }Pm (‘Ss)d&dgs
~1-1
is replaced by a quadrature rule:

K K
bm (7, Q) = am > Y wk wati (7, Q) Bi(EF) P (1)

k=1n=1

= The flux at each quadrature point is determined by solving the transport
equation with cross sections evaluated at the corresponding point. In

general, this does not require a modification of the transport code.
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Uncertainty Propagation by SCM ) e,
with Correlated Random Number Sequences |

= For each quadrature cross section pair, we solve the transport equation
using the same random number sequence for each corresponding history.

Uncertainty Propagation by SCM
with Correlated Sampling Monte Carlo

= For each quadrature cross section pair, we solve the transport equation
using the same random numbers to achieve the same sample outcomes
along the same particle path for each corresponding history.

= The latter imposes greater correlation to achieve better efficiency but
does require modifications to the Monte Carlo transport code.
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Correlated Sampling in Monte Carlo ) feums,

We sample event outcomes using a nominal cross section case. We adjust
the particle weight based on the probability of the sampled outcome in
each SCM case. As in biasing schemes, the weight adjustment is the ratio
of the true probability of an outcome to the probability as simulated.

Pk,n

Psim

Wout k,n — Win.k.n

We are biasing the sampled distance to interaction and the absorption
probability. (Our nominal case uses survival biasing.) The following weight
adjustments are made when a particle moves and interacts:

(Z¢) + Ee&f S ik : . .
Wout kn = = exp [—E;Et s] Win, kn Particle moves to an interaction
t
— . . .
Wout, k,n = €XP [—Etft S} Win,k,n Particle moves to a non-interaction

(o) +Zuf
(B) + L, &F

Wout,k,n = lin,k,n Particle interaction event
Since the nominal case is the same for all quadrature points, an array of

weights can be used to track and tally all cases in a single simulation. ,



Uncertainty Propagation =
by the Stochastic Galerkin Method

= |n SGM, we exploit the orthogonality of the uncertainty basis functions

m—+ 1 m
P,
2m +1 (&) + 2m + 1

me(f) - mel(f)

to derive an infinite set of coupled moment equations:
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These equations can be truncated in various ways. We consider truncations
at [ +m = K — 1, resultingin K (K +1)/2 moments (designated SG-1) and
at /= K —1 andm = K — 1 resultingin K2 moments (designated SG-2)




Uncertainty Propagation by SGM using ) e
Interaction-Based Weight Adjustments
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= We regroup the equation and write it in matrix notation as
Q- VO + AT =AT+A, | ®IQ
4
= We sample distance to interaction
Q- V¥ + (8,)® =0
= We randomly select between scattering and streaming events, with the
fraction of scattering events given by

P <23>+2SA
Y4 (3g) + X
and particle weight adjustments given by either
Wo = —Wj ! At or Wo = Wii As
° : fs (Zt)

1— fs (Et>




Uncertainty Propagation by SGM using ) e
Streaming- and Scattering-Based Weight Adjustments
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= Using the same matrix notation, we again sample distance to interaction as
Q- V& + (Z)¥ =0
=  Weights are adjusted for streaming based on the eigenvalue problem
Q.- V¥ = A ¥
with the general solution

J
exp (A;s) ,where "¢V = 4)(i)

ML..

?“0—|—S

= Scattering interactions are based on
(Xs) As
(X) (Xs) Jar

where the ratio of the mean cross sections can be treated by sampling for
particle absorption or treated as a survival biasing weight adjustment.

Q- V¥ = W dS)
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Stability Limitations 7 i,
in the Stochastic Galerkin Method
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= The uncertainty in the cross sections imposes stability limitations on the
SGM equations. With no uncertainty in the total cross section, we can
show that ratio of the absorption cross section to the (uniform)
uncertainty in the scattering cross section must be greater than the
largest point in a Gauss-Legendre quadrature of order K.

107 -
—_ 3=0.19 pI
—_— =017
107 ——— ¥.=0.15 ~
- — 5 =0.13 Dig 0.00 | 0.01 | 0.02 | 0.04 | 0.08
B —_— X0 =0.11
10" = _— z§=o.09
—_— 3 =007 003 | -835|-747 | -551 | -4.09 | -2.76
3105 _ 005 | -459 | -452 | -404 | -3.16 | -2.45
§ 007 | -3.61 | -342 | -3.19 | -2.72 | -2.24
S0 0.09 || -3.01 [ -291 | -2.76 | -2.46 | -2.08
Slope = -3 0.11 || -2.65 | -2.59 | -248 | -2.26 | -1.97
107 0.13 || -2.39 | -236 | -2.28 | -2.11 | -1.87
i 0.15 | -2.21 | -2.19 | -2.13 | -2.00 | -1.80
107 ; 0.17 || -2.08 | -2.05 | -2.01 | -1.90 | -1.74
I o ) 1, . 0.19 | -1.97 | -1.95 | -1.92 | -1.82 | -1.69
1010‘ 10° 10°
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Test Problems i) Nt

= Two test problems use slab thickness of 1.0 and the following parameters:

o~

Problem (%) (Xs) >, Y

Number (cm™') (em™ Y (em™!) (cm™1)
| 1.0 0.5 0.1 0.05
2 5.0 2.5 0.5 0.25

= |n both cases, c=0.5 and uncertainties are £10%.
= Benchmark calculations used 10° histories in 10° realizations.
= SGM and SCM calculations used 107 histories with K=4.

= We have examined other test problems and concluded that the method is
stable and effective as long as:

¥F > 0,8 > 0,and 57" > 0

= Making 2, uncertain, rather than X;, may be a more natural approach.
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Results: Uncertainty Distributions

= (T, Q, w) distributions are obtained by randomly sampling &:(w ) and
£<(w) and using the flux-moment results to evaluate:
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K-1K-1
(T L w) =D ) bim(F Q) Pi(&(w)) Prn(€s(w))
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Results: Figures-of-Merit

Problem #1:
Flux Moment Figure of Merit

SCM SGM

T MC | I[-SC |CR-SC | CS-SC | SG-1S | SG-2S8 | SG-2I
00 | 5.30E-1 || 3.9E+3 | 5.1E+5 | 5.2E+4 | 3.0E+5 | 4.0E+4 | 3.9E+4 | 2.2E+5
0.1 | 2.38E-2 || 5.8E-3 | 4.5E+2 | 1.2E+4 | 5.0E+4 | 7.6E+3 | 74E+3 | 2.7E+4
02 | 7.51E-4 a 27E-1 | 6.2E+3 | 3.5E+4 | 5.8E+3 | 5.6E+3 | 1.7E+4
0.3 | 2.09E-5 a a 3.1E+3 | 1.6E+4 | 3.1E+3 | 3.0E+3 | 9.1E+3
1.1 | -4.74E-3 a 8.0E+0 | 3.1E+2 | 3.2E+4 | 4.7E+3 | 4.6E+3 | 8.5E+3
09 | 2.43E-5 a a | 4.6E+0 | 8.1E+3 b 1.5E+3 | 1.6E+3
33 | -1.15E-7 a a 49E-2 | 2.4E+3 b 49E+2 | 3.5E+2
Time (s): 44190 | 6589 7424 739 5306 5448 575

(1 Results are omitted for values with standard deviation greater than 10%.

b Flux moments omitted from the SG-1S calculation.

=  Without converged benchmark results, the accuracy of the higher SCM
moments might be questioned, but all results reported are within
reasonable statistical agreement.
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Results: Figures-of-Merit

Problem #1:
Flux Moment Figure of Merit

SCM SGM

b | Yim MC | I-SC | CR-SC| CS-SC | SG-1S | SG-2S | SG-21
00 | 1.78E-2 || 1.4E+2 | 5.3E+3 | 49E+2 | 2.3E+3 | 3.2E+2 | 3.1E+2 | 3.0E+3
01 | 2.58E-3 || 2.6E-2 | 3.4E+1 | 6. 9E+2 | 2.8E+3 | 42E+2 | 4.0E+2 | 2.5E+3
0.2 | 2.23E-4 a 14E-1 | 1.OE+3 | 4.3E+3 | 6.4E+2 | 6.2E+2 | 1.9E+3
03 | 1.57E-5 a a 1.3E+3 | 5S5E+3 | 82E+2 | 8.0OE+2 | 1.8E+3
1.1 | -1.84E-3 | 1.6E-2 | 7.1E+0 | 2.8E+2 | 3.0E+3 | 44E+2 | 4.2E+2 | 2.6E+3
29 | 5.72E-5 a a | 42F+1 | 3.9E+3 b | 58F+2 | 2.3E+3
33 | -1.19E-6 a a 3.3E+0 | 3.6E+3 b 52E+2 | 1.3E+3
Time (s): 57210 | 6380 5576 683 5876 6053 591

(1 Results are omitted for values with standard deviation greater than 10%.

b Flux moments omitted from the SG-1S calculation.

=  Without converged benchmark results, the accuracy of the higher SCM
moments might be questioned, but all results reported are within
reasonable statistical agreement.
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Conclusions i) Natora

= The SCM correlated random number sequence approach is effective for
calculating low-order moments of uncertainty distributions.

=  While the SCM correlated-sampling approach is most efficient,
it has drawbacks:

= |t requires an intrusive implementation: modifying the particle weight array,
adding the biasing-based weight-adjustment logic, and implementing the
array-based tally logic.

= |t may introduce memory issues when scaled to large numbers of uncertain
parameters, high quadrature orders, and/or highly differential tallies.

= The stochastic Galerkin method (SGM) has better scaling than SCM (with
tensor product quadrature) for large numbers of uncertain parameters.

= The most appealing approach for us appears to be a post-processing tool
that uses correlated-sampling weight manipulation to enable SCM with
any quadrature scheme, including adaptive sparse-grid quadrature.
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Results: Uncertainty Distributions ) feums,

= (T, Q, w) distributions are obtained by randomly sampling &:(w ) and
£<(w) and using the flux-moment results to evaluate:

K-1K-1
(T L w) =D ) bim(F Q) Pi(&(w)) Prn(€s(w))
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Results: Convergence Behavior ) feums,

=  Representative behavior is shown here for the moment ’l}bgrg
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