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Overview

 Given a deterministic system of equations for uncertainty quantification

 Stochastic Collocation Method (SCM)

 Stochastic Galerkin Method (SGM, aka SFEM)

 How do we efficiently solve these with Monte Carlo?

 We compare various approaches and implementations:

 Brute-force (Monte Carlo approach)

 SCM (quadrature-based approach)

 Separate (Independent or Correlated) Calculations

 Intrusive Correlated Sampling

 SGM (solution of coupled equations)



Transport Equation with Random Parameters

 The mono-energetic transport equation with isotropic scattering:

 We consider the total and scattering cross sections to be independently 
uncertain (and the distribution of uncertainty is uniform):

 Using the polynomial chaos spectral approach, we represent the angular 
flux as an expansion of random Legendre polynomials:

 The flux expansion coefficients are found from orthogonality:
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Uncertainty Propagation by Monte Carlo

 The brute-force approach, which we use for benchmarking purposes, is to 
randomly sample from the uncertain cross section distribution:

 Solve the transport problem for that realization:

 Tally each flux result, either as a histogram distribution or as distribution 
moments:
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Uncertainty Propagation
by the Stochastic Collocation Method

 In SCM, the integration of the flux expansion moments

is replaced by a quadrature rule:

 The flux at each quadrature point is determined by solving the transport 
equation with cross sections evaluated at the corresponding point.  In 
general, this does not require a modification of the transport code.
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Uncertainty Propagation by SCM
with Correlated Random Number Sequences

 For each quadrature cross section pair, we solve the transport equation 
using the same random number sequence for each corresponding history.
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Uncertainty Propagation by SCM
with Correlated Sampling Monte Carlo

 For each quadrature cross section pair, we solve the transport equation 
using the same random numbers to achieve the same sample outcomes 
along the same particle path for each corresponding history.

 The latter imposes greater correlation to achieve better efficiency but 
does require modifications to the Monte Carlo transport code.



Correlated Sampling in Monte Carlo

 We sample event outcomes using a nominal cross section case.  We adjust 
the particle weight based on the probability of the sampled outcome in 
each SCM case. As in biasing schemes, the weight adjustment is the ratio 
of the true probability of an outcome to the probability as simulated.

 We are biasing the sampled distance to interaction and the absorption 
probability.  (Our nominal case uses survival biasing.)  The following weight 
adjustments are made when a particle moves and interacts:

 Since the nominal case is the same for all quadrature points, an array of 
weights can be used to track and tally all cases in a single simulation.
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Uncertainty Propagation
by the Stochastic Galerkin Method

 In SGM, we exploit the orthogonality of the uncertainty basis functions

to derive an infinite set of coupled moment equations:

These equations can be truncated in various ways.  We consider truncations 
at , resulting in moments (designated SG-1) and 
at and resulting in moments (designated SG-2)
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Uncertainty Propagation by SGM using
Interaction-Based Weight Adjustments

 We regroup the equation and write it in matrix notation as

 We sample distance to interaction

 We randomly select between scattering and streaming events, with the 
fraction of scattering events given by

and particle weight adjustments given by either

or
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Uncertainty Propagation by SGM using
Streaming- and Scattering-Based Weight Adjustments

 Using the same matrix notation, we again sample distance to interaction as

 Weights are adjusted for streaming based on the eigenvalue problem

with the general solution

, where

 Scattering interactions are based on

where the ratio of the mean cross sections can be treated by sampling for 
particle absorption or treated as a survival biasing weight adjustment.
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Stability Limitations
in the Stochastic Galerkin Method

 The uncertainty in the cross sections imposes stability limitations on the 
SGM equations.  With no uncertainty in the total cross section, we can 
show that ratio of the absorption cross section to the (uniform) 
uncertainty in the scattering cross section must be greater than the 
largest point in a Gauss-Legendre quadrature of order K.
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Test Problems

 Two test problems use slab thickness of 1.0 and the following parameters:

 In both cases, c=0.5 and uncertainties are ±10%.

 Benchmark calculations used 105 histories in 106 realizations.

 SGM and SCM calculations used 107 histories with K=4.

 We have examined other test problems and concluded that the method is 
stable and effective as long as:

 Making       uncertain, rather than      , may be a more natural approach.
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Results:  Uncertainty Distributions

 distributions are obtained by randomly sampling and

and using the flux-moment results to evaluate:
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Results:  Figures-of-Merit

Problem #1:

Results are omitted for values with standard deviation greater than 10%.

Flux moments omitted from the SG-1S calculation.

 Without converged benchmark results, the accuracy of the higher SCM 
moments might be questioned, but all results reported are within 
reasonable statistical agreement.
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Conclusions

 The SCM correlated random number sequence approach is effective for 
calculating low-order moments of uncertainty distributions.

 While the SCM correlated-sampling approach is most efficient,                             
it has drawbacks:

 It requires an intrusive implementation: modifying the particle weight array, 
adding the biasing-based weight-adjustment logic, and implementing the 
array-based tally logic.

 It may introduce memory issues when scaled to large numbers of uncertain 
parameters, high quadrature orders, and/or highly differential tallies.

 The stochastic Galerkin method (SGM) has better scaling than SCM (with 
tensor product quadrature) for large numbers of uncertain parameters.

 The most appealing approach for us appears to be a post-processing tool 
that uses correlated-sampling weight manipulation to enable SCM with 
any quadrature scheme, including adaptive sparse-grid quadrature.
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Results:  Uncertainty Distributions

 distributions are obtained by randomly sampling and

and using the flux-moment results to evaluate:
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Results:  Convergence Behavior

 Representative behavior is shown here for the moment
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