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Executive Summary

In vivo studies in both sheep and humans were plagued by a number of problems including
movement artifacts, biological noise, low signal-to-noise ratio (SNR), chest-wall reverberation,
and limited bandwidth recordings as discussed by [1]. To overcome these problems it was
decided to record heart valve sounds under controlled conditions deep in an anechoic water tank,
free from reverberation noise, including surface reflections. Experiments were conducted in a
deep water tank at the Transdec facility in San Diego, which satisfies these requirements. The
Transdec measurements are free of reverberations, but not totally free of acoustic and electrical
noise. We used a high quality hydrophone together with a wide-band data acquisition system
[2]. We recorded sounds from 100 repetitions of the opening-closing cycles on each of 50
different heart valves, including 21 SLS valves and 29 intact valves. The power spectrum of the
opening and closing phases of each cycle were calculated and outlier spectra removed as
described by Candy [2].

In this report, we discuss the results of our classification of the heart valve sound measurements.
The goal of this classification task was to apply the fundamental classification algorithms
developed for the clinical data in 1994 and 1996 to the measurements from the anechoic water
tank. From the beginning of this project, LLNL’s responsibility has been to process and classify
the heart valve opening sounds. For this experiment, however, we processed both the opening
sounds and closing sounds for comparison purposes. The results of this experiment show that
the classifier did not perform well. We believe this is because of low signal-to-noise ratio and
excessive variability in signal power from beat-to-beat for a given valve. The results of the

classification work is summarized as follows:
» For the opening sounds, the classifier failed to classify better than chance.

* Noise canceling applied to the opening sounds resulted in an increase in the estimate of the
probability of correct classification to 57.8%. However, this improvement is clearly not
significant enough to recommend the classification of opening sounds for use with clinical
data.

» For the closing sounds, the probability of correct classification was 83%. We believe that the
closing sounds worked better than the opening sounds for this experiment because the

closing sounds have a better SNR (signal-to-noise ratio).



Several issues having to do with the experiments make classification difficult.

» We observe excessive beat-to-beat variation in the sound signal energy for both opening
and closing sounds. The valves are apparently not being excited consistently and with
enough force, leading to excessive SNR.

» We observe excessive valve-to-valve variation in the signal sound energy for both opening
and closing sounds. We cannot be sure what causes this variation. Possible causes could
include variability in the physical characteristics of the valves, inconsistent excitations,

and environmental perturbations.

The resolution of these data issues and the improvement of classification results involves three
main recommended approaches: (1) Improvements in experiment design to obtain increased
SNR and reduced variability. (2) Signal processing R&D to use a nonstationary signal model
rather than a stationary one. The signal is transient and therefore nonstationary, so new features
using this model could result in significant benefit. (3) Classification algorithm R&D, including

work in advanced feature analysis.
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Introduction

Between 1979 and 1986 about 86,000 patients worldwide received Bjork-Shiley prosthetic heart
valve implants using the Convexo-Concave (BSCC) tilting disc design. As illustrated in Fig. 1,
the valve consists of a metal flange and a free-floating polymer occluder disc held between two
metal struts. The outlet strut is welded to the flange in contrast to the inlet strut which is integral
to it. By opening and closing, the disc alternately allows or restricts blood flow. The weak point
in this design is fatigue failure at the outlet-strut weld. In a small number of valves the outlet
strut fractures, resulting in a condition known as single-leg separation (SLS). By 1990 at least

600 failures occurred resulting in at least 400 deaths The actual failure rate is likely much larger

[3].

Blood Flow

Fig. 1. Bjork-Shiley Convexo-Concave (BSCC)
Prosthetic Heart Valve: Disc Occluder (tilted) and Outlet Strut

Because surgical replacement of heart valves is inherently risky, there is considerable interest in
developing minimally invasive techniques to identify reliably those patients with SLS valves.
Research has concentrated on two techniques: radiographic imaging and acoustical signal
analysis of'heart valve sounds. Radiography has drawbacks. First, it requires exposure ofthe
patient to ionizing radiation; Second, it is extremely difficult to achieve sufficient image
resolution to detect the separated leg. We believe the acoustic approach holds promise because it
seems reasonable to expect that an SLS valve would emit a different sound than an intact valve
when the disc occluder strikes the struts on opening or closing. One analogy (albeit imperfect) is
to a cracked bell. A bell with a crack would have different vibrational modes than a similar bell
without a crack. Detection would follow from a frequency analysis ofthe bell’s ring. This idea
has motivated us to study the frequency spectra of opening and closing valve sounds, and to find
a feature or set of spectral features that would discriminate intact from SLS valves.

In vivo studies in both sheep and humans were plagued by a number of problems including

movement artifacts, biological noise, low signal-to-noise ratio (SNR), chest-wall reverberation,



and limited bandwidth recordings as discussed by [1]. To overcome these problems it was
decided to record heart valve sounds under controlled conditions deep in an anechoic water tank,
free from reverberation noise. The main goal of this experiment was to obtain measurements of
“pure” heart valve sounds free of the scattering effects of the body. We used a high quality
hydrophone together with a wide-band data acquisition system [2]. We recorded sounds from
100 repetitions of the opening-closing cycles on each of 50 different heart valves, including both
SLS and intact types. The power spectrum of the opening and closing phases of each cycle were

calculated and outlier spectra removed as described by Candy [2].

In this report we discuss the results of our classification analysis of the heart valve sound
measurements from the anechoic water tank at Transdec in San Diego [2]. Our overall approach
is depicted in block diagram form in Fig. 2. The data acquisition step yields time series data
containing opening and closing valve sounds as well as noise and other transient events. The
signal extraction step separates the opening from the closing valve sounds. The signal
processing step yields an ensemble of closing and opening spectra for each valve. The feature
extraction step transforms these spectra into useful features for the classifier. The most salient
features are chosen during the feature selection step and this parsimonious set of features is use
by the classifier. The classifier can then identify a new valve as either intact or SLS. The
performance of the classifier is then assessed by calculating the rate of correct classification we

would expect on a new set of valves of unknown condition.

The data acquisition, signal extraction and signal processing steps were discussed in a another
report [2]. This report focuses on the feature extraction, feature selection and classification steps.
We analyze the experimental variability and interpret the results. The appendices contain

discussions of the theory behind our calculations.



Figure 2 Heart valve classification protocol block diagram.



Classification Results
The measurement data for the classification study included the following:
21 SLS valves
* 29 Intact valves
* 100 signal pairs (beats with openings and closings) per valve
* 512 samples (opening)
* 1024 samples (closing)
* 50,000 signal pairs
* 7.68 million samples

The goal of classification task was to apply the fundamental classification algorithms developed
for the clinical data in 1994 and 1996 to the measurements from the anechoic water tank. The
goal of this project was not to perform extensive algorithm research. The fundamental algorithms
developed for the clinical data are general in the sense that they can be used for classifying
patterns in general signals. However, for any particular application, the algorithm parameters
and the preprocessing steps applied to the data must be tuned for optimal performance. This
tuning process can involve extensive trials to determine the optimal parameter settings. We

performed such parameter studies and the results are presented below.

From the beginning of this project, LLNL’s responsibility has been to process and classify the
heart valve opening sounds. Closing sounds have been processed by other organizations. The
opening sounds have the advantage that they represent the vibration of the outlet strut when it is
struck by the valve disk, so they should contain information about whether or not the strut is
intact or SLS. The disadvantage of opening sounds is that they have low amplitude and signal-
to-noise ratio (SNR) relative to the much louder closing sounds. This low SNR makes
processing and classifying difficult. The closing sounds have the advantage that they have high
SNR, but the disadvantage that they include a very large contribution from the vibration of the

valve ring that can mask the relatively smaller sounds from the outlet strut.

One result of this experiment is the discovery that the signal-to-noise-ratio (SNR) of the opening

sounds is much lower than expected. This is manifested as excessive variability in signal energy



from beat-to-beat for a given valve. We discuss possible reasons for this result later in this
report.

Experiments with algorithm parameters

The classifier was configured with the same algorithms that were used successfully during the
1996 blind test of clinical data (see Appendix III). The classifier was trained and the data were
tested using the cross-validation method as discussed in Appendix III. We processed the data for

classification purposes using various combinations of data types and processing parameters.

Opening Sounds

For the openings, we tested the following cases/combinations (see Appendix III):

» Width of the frequency bands used for calculating power features: 1,2,3,4.5
(frequency bins).

« Distance metric: Mahalanobis, Bhattacharyya, Kullback-Liebler, Jeffreys

* Spectral estimator: MEM, MVDR

* Number of features used: 2,3 and 5

Conclusions: The opening sounds have poor signal-to-noise ratio (SNR) and a
large amount of beat-to-beat variation, which leads to very limited ability to
classify the valves. We settled on using the Mahalanobis distance with 3
features.

For the opening sounds, the classifier failed to classify better than chance. The probability of
correct classification (see Appendix III) was only 43%. We have not included performance plots
for the opening sounds in this report, because they have little or no meaning. We present an
analysis of the low SNR and large beat-to-beat variation later in this report. Given the poor
classifier performance for opening sounds, we experimented with the closing sounds to

determine their classification potential.
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Closing sounds
For the closing sounds, we tested the following cases/combinations
(see Appendix III):

» Width of the frequency bands used for calculating power features: 1,2,3,4.5

(frequency bins).
» Distance metric: Mahalanobis
* Spectral estimator: MEM

» Number of features used: 3

Conclusions: The closing sounds, as expected, have significantly greater SNR,
and provide a greatly increased ability to classify the valves. We settled on
using the Mahalanobis distance with 3 features.

The Probability of correct classification for closing sounds was 83%. The performance
results for the closing sounds are shown in Fig. 3. The following discussion describes

the performance plots and results depicted in Fig. 3.

Fig. 3 Confusion Matrix

The confusion matrix (see Appendix III) shows the performance summary of the classifier:

« Of the 29 intact valves, 25 were classified intact, giving specificity = P(INT | INT) = 86.2%.
« Of the 29 intact valves, 4 were classified SLS, giving P(false alarm) = P(SLS | INT) = 13.8%.
» Of the 21 SLS valves, 16 were classified SLS, giving P(Detection) = P(SLS | SLS) = 80%.

» Of the 21 SLS valves, 4 were classified INT, giving P(Miss) = P(INT | SLS) = 20%.

» We see that the probability of correct classification = .5[Sensitivity + Specificity] = 83%.

Fig. 3 Plots of the average SLS and INT spectra

Based upon the number of valves available, we asked the feature selector to choose the best 3

spectral features of the “sliding window” type form the set of features extracted (see Appendix
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IIT). We see that the features chosen by the sequential forward selection algorithm are the

following:
Feature 1 = Power in the frequency band of width 195.31 KHz centered at 25.39 KHz .
Feature 2 = Power in the frequency band of width 390.62 KHz centered at 96.39 KHz .

Feature 3 = Power in the frequency band of width 390.62 KHz centered at 39.55 KHz .

Fig. 3 Receiver Operating Characteristic (ROC) Curve

The ROC shows probability of detection plotted vs. probability of false alarm. The ROC curve
is calculated by varying the decision threshold in the second stage of the two-stage classifier
(see Appendix III). We choose the operating point on the curve to be the point for which the
threshold = .5. We also display another representation of the ROC curve in which the probability
of detection and probability of false alarm are plotted versus the threshold on the posterior
probability P(SLS |X), where X is the feature vector (see Appendix III). The two representations
of the ROC curve are equivalent.

Fig. 3 Plot of the Average Posterior Probability P(SLS| X) vs. Valve Index

The average posterior probability P(SLS | X) is plotted vs. the valve index (valve number, from 1
to 50). The fixed threshold on the posterior probability is .5 and is plotted on the figure. Valves
with posterior probability greater than or equal to .5 were classified SLS and those with posterior

probability less than .5 were classified intact.
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Fig. 3 The classification results are summarized for the following set of conditions: Valve #10 removed from the set, Closings
sounds only, Spectral estimation algorithm used = MVDR (Minimum Variance), Class separability measure = Mahalanobis

distance, Number of features used = 3.



Noise Canceling Results

We applied a noise canceling algorithm (reference) to the pre-processed opening signals
in an attempt to improve the SNR before classification. The algorithm works by using a
section of pre-beat noise (noise measured before the valve was excited) as a reference
noise. The algorithm adjusts the magnitude and phase of the reference noise and then
subtracts it from the beat signal. The result is a reduction in the noise and an increased
SNR. The classification results show a probability of correct classification of 57.8%.
This improvement is clearly not significant enough to recommend the classification of

opening sounds for use with clinical data.
Analysis of the variability in the measurements (See Appendix 1V)

During the time the experiments were taking place, visual inspection of the
measurements did not reveal any obvious excessive variability in the signal power of the
measurements. However, once the data were analyzed, it was found that for both
opening and closing sounds, there is considerable variability from beat-to-beat for a given
valve (see Appendix IV). There is also considerable variability from valve-to-valve.
Appendix IV presents a discussion of the variability of the measurements. Conclusions

we can draw are the following:

* Both opening and closing sounds exhibit excessive within-valve and between-valve

variation in the sound signal energy.

* Opening sounds are more variable than closing sounds.

Discussion and Conclusions:
» For the opening sounds, the classifier failed to classify better than chance.

* Noise canceling applied to the opening sounds resulted in an increase in probability of
correct classification to 57.8%. This improvement is clearly not significant enough to

recommend the classification of opening sounds for use with clinical data.
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» For the closing sounds, the probability of correct classification was 83%. We believe
that the closing sounds worked better than the opening sounds for this experiment
because the closing sounds have a better SNR.

* Several issues having to do with the experiments make classification difficult.

» We observe excessive beat-to-beat variation in the sound signal energy for both
opening and closing sounds. The valves are apparently not being excited
consistently and with enough force, leading to excessive SNR. We believe that
these effects are likely due to the distributed nature of the valve as an acoustic

source. In other words, a lumped constant model of the valve may not apply.

» We observe excessive valve-to-valve variation in the signal sound energy for both
opening and closing sounds. We cannot be sure what causes this variation.
Possible causes could include variability in the physical characteristics of the

valves, inconsistent excitations, and environmental perturbations.
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Recommendations for future work:

The opening sounds from the anechoic experiments are insufficient for classification
because they have low signal-to-noise ratio (SNR), and a large amount of beat-to-beat
variation. The resolution of these data issues and the improvement of classification
results involves three main recommended approaches: improvements in experiment
design to obtain increased SNR and reduced variability, signal processing R&D to use a
nonstationary signal model rather than a stationary one and classification algorithm R&D,

including work in advanced feature analysis.

Experiments

We expect that SNR can be increased and beat-to-beat variability can be reduced through
improvements in the experiment design. This is the most important aspect of the
recommended work, because classification results are heavily dependent on the quality of
the data. Promising ideas include but are not limited to refinements in the design of the
hoop that holds the valve, use of a sensor array to improve SNR, improved on-line
processing to test classifier performance at the experiment site and methods for ensuring
that the valve is excited exactly the same way for each beat.

Signal Processing

We recommend advanced work in signal processing, including the use of array
processing and noise canceling algorithms to improve SNR. We also recommend signal
processing R&D to use a nonstationary signal model rather than a stationary one. The
signal is transient and therefore nonstationary, so new features using this model could
result in significant benefit.

Another important aspect of this work is to ensure that all signal processing and
classification algorithms are available and applied during the experiment. During this
project, visual inspection of the measured signals was used to ensure data quality during
the experiment. We learned later that visual inspection was insufficient to detect subtle
beat-to-beat variations that were later detected during the statistical analysis. A
preliminary signal processing and classification analysis should be performed on the data
at the experiment site, rather than acquiring the data, ending the experiment, then
processing the data later. This way, if the variability of the data is large but not
detectable by visual inspection, it could be detected in time to adjust the experimental

conditions to avoid the variability.
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Classification

We recommend research in the area of classification algorithms. The classification results
reported here show that opening sounds are not classified effectively using the algorithms
and features designed for the clinical study in 1996. It is possible and quite likely that
use of other features and algorithms could provide better classification results. The

following steps in algorithm research are proposed as future directions.

The most important aspect of this work is feature analysis to find features which may
increase classification performance. Several promising approaches have not yet been
examined. These include but are not limited to the following: (1) Hierarchical multi-
scale transforms, including wavelet transforms to deal with the non-stationary nature of
the transient waveforms. The heart valve signals are transient and therefore
nonstationary, so new features using this model could result in significant benefit. (2) A
variety of specialized spectral features, (3) Specialized feature selection algorithms
designed to deal with non-Gaussian-distributed data and data outliers. (4) Improvements
in algorithms for dealing with small sample sizes (limited number of valves). We also

recommend research in classifier algorithms to exploit recent research in the literature.
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Appendix [

Data Acquisition and Signal Extraction

The data for the anechoic study was collected using a National Instruments™ LabView
data acquisition system. Analog signals from the hydrophone were (analog) bandpass
filtered (2 Hz—100 kHz) and then time-sampled at a rate of 200 kHz providing time
resolution of nearly 100 MHz, more than twice the prior in vivo studies with humans.
The signals were quantized (analog-to-digital conversion) at 12 bits, providing a signal-
to-error ratio of 74db [4]. We recorded data for at least 100 opening-closing cycles on
each of 50 valves. Individual opening and closing sound signals were extracted off-line
using our Automated Beat Extraction Process providing an ensemble of open and closing

sounds for each valve. The report by Candy gives additional details [2].

Prior studies at LLNL [5] and elsewhere [Reynolds, 1995 #14[6]] have focused on
closing sounds because they are stronger than opening sounds and easier to detect and
extract. Nevertheless, we believe the opening sounds should provide more information
about the condition of the valve because the occluder disc directly strikes the fractured
outlet strut on an SLS when opening. As a consequence the closing sound should contain
vibrational energy from the strut and our “cracked bell”_analogy obtains. Typical
opening and closing sound waveforms are shown in Fig. 4. The opening sound waveform

clearly exhibits a shorter duration and a lower SNR.

19



7msec

9msec

Fig. 4 (a) Extracted heart valve opening sound, (b) Extracted closing sound.
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Appendix 11

Signal Processing

The signal processing step converts the raw (digital) signal data into an ensemble of

sound spectra used for feature extraction/selection and classification. This is

accomplished by the following sequence of operations:

1.

We used the method known as Minimum Variance Distortionless Response (MVDR) [7]

Identification and extraction of the opening and closing phases of the sound signal

record using trigger pulse markers.

Separation of signals from leading and trailing noise
Trend removal and piecewise window tapering
Rescaling to unit variance

Spectrogram estimation

Removal of outlier spectra

to calculate 100 spectra for each of the 50 valves. For comparison purposes, we also

calculated spectra using Maximum Entropy Method (MEM) [8] also discussed in [9].

Because of experimental variability (discussed in more detail later in this report) the

spectra exhibit scatter both within and between valves. To cope with this variability, we

calculated a spectrum in the center of the scatter and retained the 50 spectra closest to this

center using a distance measure based on the Median Absolute Deviation (MAD) [10].

More details on this procedure are given by Candy [2].

Once an ensemble of spectra are created and screened they are ready for the next step in

the process, Feature Analysis.
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Appendix III

Feature Analysis and Classification

Feature Analysis

We define feature analysis as an iterative procedure used to reduce the dimension of the
data under consideration. Without dimensional reduction one is plagued by what Richard
Bellman called “the curse of dimensionality” [11]. For example the power spectrum of a
heart valve opening sound signal has dimension of 512 (the length of the spectrum
vector). Since most of these dimensions contain little information useful for
classification, reduction to a low dimensional subspace has the highest priority. The
performance of the classifier is critically dependent on having the right set of features.
Feature analysis consists of (1) feature extraction, or computing a large set of features
based upon engineering judgment and knowledge of the physical processes that generate
the data, and (2) feature selection, or the process of choosing an optimal subset of
features from the larger set of extracted features. The process is iterative in the sense that
we extract features, select features, evaluate classification performance, and loop back to
the extraction step to make adjustments until optimum or acceptable performance is

realized.

Feature Extraction

In general defining features is limited only by one’s imagination. How we define the
features depends on well we can model the underlying physical process that generated the
data. In the most favorable situation, we have a full knowledge (strong model) of the
physical processes, and we can choose features that have physical meaning. With a
strong model we could numerically simulate heart valve sounds and make a meaningful
interpretation of the classification. When little modeling information is available (weak
model), we must make the best of an undesirable situation by using as much prior
physical knowledge as we have, together with good engineering judgment. In the absence
of prior modeling information (10 model), we usually fail to get meaningful, interpretable
results. We call this “data chasing” [12]. To mitigate against this, we perform controlled
experiments where we have prior knowledge (ground truth) about the valve condition,

and use intelligent search techniques to find an effective set of features.

For the heart valve classification problem, strong models are not available, moreover, we

have little physical knowledge about valve responses, so our models are weak. The
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challenge is to find effective features and then understand the physics of why they are

effective afterward.

We decided to do our feature analysis in the spectral domain following reasons:

Alignment of multiple opening and closing sound waveforms in time is extremely

difficult [1], and we prefer to avoid it is possible.

By using the magnitude the power spectra, we neglect the phase information and

avoid the temporal alignment problem.

Features derived from signal spectra provide more physical insight than temporal
waveforms. Finite element analysis [13], laboratory studies [14], and laser vibrometer
analysis [15] suggest that intact valves have a resonant frequencies missing in SLS

valves. However these studies have not been conclusive for classification.

Spectra provide a very compact representation of the information in a physical

process, and compactness is desirable for reducing the dimension of the data.

Instead of using predicted or observed frequency peaks, we decided to search the entire

frequency spectrum for a set of features that provides the best classification performance.

We did this for the following reasons:

In our opinion, the predictions from finite element modeling have not been

sufficiently validated.

Laboratory measurements show significant variability in the spectra from valve to

valve.

We have automatic techniques for feature selection that allow us to pick the best
subset of features. We search an initial high-dimensional feature space for a low-

dimensional subset that provides the best separation of clusters in the feature space.

After automatically selecting features, we can still use our prior physical knowledge
and engineering judgment to check that the selected features make physical sense and
to learn more about the physical processes. If it turns out that the feature selector
chooses the same features indicated by the models, then we will have gained a much
greater confidence in the models and a much greater intuition about the physical

processes. If the feature selector chooses features different than the ones indicated by
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the models, then we question the validity of the models and the assumption that
resonant peaks necessarily provide the best discriminants to use for heart valve

classification.

Defining Features: Fixed Window Method

First we resolve the entire spectrum into N contiguous frequency bins each of width Af.
Then we form a set of analysis windows each of width W Af, so W counts the number of
frequency bins in a single analysis window, and there are a total of N/ analysis
windows across the spectrum. Thus W =1 gives maximum resolution, while W = N gives
the minimum resolution (the whole spectrum). Features are defined from the areas of the
analysis windows which is the mean spectral power in the window, see Fig. 5. Our initial
studies started with ' =1 [16] and increased later [17]. While the results were
promising, we decided to abandon the fixed window technique in favor of a more

sophisticated sliding window technique described in the next section.

Defining Features: Sliding Window Method

Since both the center frequency and width of spectral peaks are variable we have opted
for a “sliding window” technique for computing features (see Fig. 5). Here, the feature
we compute is the mean spectral power in a frequency band W frequency bins wide. To
create the initial feature set, we let the window slide over the spectrum and compute
spectral features using W =1,2,..., W, . Therefore the number of features in the initial

set is:

Witax W

Y (N-i)=—2L(2N -, —1)

pan 2

Weused W, =5, so for opening sounds, we have N =512 for a total of 2,5145 features
in the initial set. As we show later in the paper, this very large feature set is rich in

information and results in robust classifier performance.
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Fixed adjacent window features Sliding window features

PSD (f) PSD (f)

Fig. 5. For fixed adjacent window features, the number of frequency bands (= the
number of features. We use the more numerous sliding window features to mitigate the
possibility of missing spectral peaks.

Feature Selection

Feature selection is the process of choosing the best subset from an initial set to train the

classifier. We discuss the criterion for deciding what is “best” in the next section. We do

this by using aforward selection scheme that selects the best subset of features. Feature

selection is important for several reasons.

First, we wish to minimize the effects ofthe “curse of dimensionality,” in the sense
that the classification computational complexity increases rapidly with the dimension
ofthe feature vector.

We wish to use only features that add significant value to the quality ofthe
classification results. Unimportant or redundant features add negative or zero value
and should be removed [18]. Later in this section, we describe algorithms for

evaluating the importance of features.

For training sets of finite size (as we have here) the classifier performance does not
monotonically increase with the dimension ofthe feature space, it peaks at some
threshold [19]. Jain studied this peaking effect for multivariate Gaussian data [20].
While our features are not Gaussian it seems reasonable to expect the peaking effect
will hold for the heart valve signal data. Clearly, our goal is to find the number of
features corresponding to the knee in the curve.
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e An important by-product of feature selection can sometimes be increased knowledge
of the physical processes that create the data. By understanding which features are
most important, we can often draw important conclusions about the physical reasons
why they are important, and this can lead to productive insights that aid in the system

design.

e If we use multiple sensors or multichannel measurements, we may wish to use sensor
feature fusion, so feature selection helps us determine which sensors are the most
important [21].

Another important consideration is a bounding relationship between the number of
features used and the size of the training set. A combination of theoretical and empirical
studies has led to the following rule of thumb [18]

Where N is the size of training set, N, is the number of classes, and N, is the number
of features. For example, for 50 valves and two classes (intact, SLS) we should use fewer

than 5 features.

An important implication of this rule of thumb is an upper bound on the number of
features to use, given the number of independent training samples. Note that if the sample
size is small, as it is in this heart valve study, it severely limits the number of features we
can use. In much of our work, for example, we were limited to about 2 or 3 features,
because the small sample size would not support more features. This is discussed in

greater detail in section 8.

Measures of Class Separability

The best feature set is the one that will ultimately produce a classifier that will have the
smallest classification error. Since it is not always feasible to select features on the basis
of classification error, we need a surrogate measure. For the two group classification
problem, a useful surrogate is use some measure of class separability based on an inter-
group metric. Then for a given metric, the best feature set will be the one that maximizes
the distance between classes. Our approach is to find the best feature set for a number of
commonly used distance metrics and then use that metric which gives the smallest
classification error. To demonstrate that this is a reasonable approach, we will show the

relationship between classification error and inter-class distance.
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We let y€{0,1} be the class label for intact and SLS valves respectively. The classifier
isarule y(x) that predicts the class membership for an observed feature vector x. The

classifier can make two kinds or errors:

1. An error of the first kind where y(x) =1 when y = 0.
2. An error of the second kind where y(x)=0 wheny =1

At every point in feature space the classifier will either classify correctly or make an error

of the first or second kinds. The minimum error is achieved by using Bayes’ rule

y(x)=1for f(x)=

= =

y(x)=0for f(x)<
#(x)=Pefy=1jx]

in which case the probability of misclassification is:
Prlerror] = Min{ f(x),1 - f(x)}

The above probability is conditioned on the value of the feature vector x. We can

calculate average error for a Bayes’ classifier for the whole feature space by:
Average Error = JMin{f(x),l — f(x)}p(x) dx

where the domain of integration is the whole feature space, and p(x) is the unconditional
probability density. We can write p(x) in terms of the prior probabilities of intact and

SLS, 7, and 7, and the class conditional densities.

p(X) =P (X) TP (X)

and from the definition of f(x) we get:

(x) = T, (x)
oo (X) + 7, p1 (X)

therefore the average error of a Bayes’ classifier becomes:
[ Min{z,p, (x),7,p,(x)} dx

From the above expression, we see that if in some sense p,(x) and p,(x) are nearly
identical, then minimum average classification error must be close to Min{r,,7,}. In
other words, the classifier assigns nearly all observations to the most probable class

irrespective of the observed feature. For example if 7, > 7, the classifier would classify
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nearly all unknown valves as intact and the probability of misclassification is simply 7,
the prior probability of SLS. Conversely if p,(x) and p,(x) overlap very little, then the
integrand in the above expression is small and the probability of error is small. Therefore
we see there is a connection between misclassification and the separability of p,(x) and
p,(x). Strictly speaking this discussion applies to the Bayes’ classifier which generally
cannot be realized in practice because we usually don’t know p,(x) and p,(x).

Nevertheless separability is a useful guideline for selecting features.

One commonly used inter-class distance metric is the Bhattacharya distance. This
distance is directly tied to the average error of a Bayes’ classifier. Bhattacharya started
with the fact that the geometric mean of two positive numbers is less the minimum of the
two, therefore [22]

Min{ﬂopo (x). 7,1 (X)} = \/ﬂopo (X)'\/ﬂ:lpl (x)

Substituting this inequality into the expression for the average error of a Bayes’ classifier

gives:

[ Min{z,p,(x),7,p,(x)}dx < [ 70,0, ()7, (x) dx

which can be rewritten as follows:

J-Mm{ﬂopo (X): Tp (X)} dx < AT J. pO(X)pl (X)dx =4 ﬂoﬂle_JB

The integral part of the term on the right in the above equation is the basic definition of
the Bhattacharya distance J, between p,(x) and p,(x). A feature set that maximizes this
distance will minimize an upper bound of the average probability of misclassification

error. When p,(x) and p,(x) are both multivariate normal, the Bhattacharyya distance

becomes:
1
| so+z T 1 pEtE) 3)
JBzg(‘uo_‘ul)T[%] (,LLO—,LLI)+—10g - T
(AR

where i, and u, /i, and /i, are the mean vectors computed over the feature vectors in

classes 0 and 1 and X and X, are the corresponding covariance matrices.

Another metric is Kullback-Liebler distance (KL) [Kullback, 1994 #54]. Unlike
Bhattacharyya, the KL distance is not specifically tied to the Bayes’ classifier; it is

28



motivated by concepts from statistics and information theory. The basic idea behind the

KL is to write the unconditional log likelihood ratio of p,(x) and p,(x) as follows:

log(m) - log(w] _ 1%{M]

p(x) Pr[y = 1x] Prly =1]

The right hand side of the above equation is the log of the odds in favor of y = 0 given an
observation of the feature x. It is also called the discrimination or weight of evidence for y
= 0 against y = 1. If we average the log likelihood ratio over all of the feature space, we
get the basic defining equation for the K. distance:

KL(po (x),p, (X)) = Jpo (x) log(m) dx
n(x)

which is interpreted as the mean information for discrimination of y = 0 against y = 1
provided by the feature x. Strictly speaking the K distance is not a metric because it
lacks the symmetry property KL( Do> pl) # KL( D po) and the triangle inequality does not
hold. Nevertheless it has found very wide application in classification, and we use it as if
it were a metric. The KL is also called the directed divergence [23]. A symmetric form of
the KL called the Jeffrey’s distance or the divergence

JD(pmpl) = KL(pOap1)+KL(pOap1)~

Again when p (x) and p,(x) are both multivariate normal, we can get an explicit
formula for the K distance [23]:

1, B IO B r
KL(pOapl) - Elogm + Etr(zo(zl - z0 )) + Etr(zz (.uo — U )(.uo - :ul) )

an expression distinct from the Bhattacharyya distance. However, when the two class

covariance matrices are equal, X, =%, =X, both the Bhattacharya distance and the KL

distance reduce to the same metric known as the Mahalanobis distance [24].

N = (g — ) =7 (1, - 1)

Thus we can interpret the Mahalanobis distance as a bound on classification error for a
Bayes’ classifier, or more generally as an information metric. Usually don’t know p,(x)
and p,(x) nor are the features necessarily normally distributed. As a matter of practice,
we use all these metrics to select feature sets and then see which set gives a classifier
with the best performance.
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Searching for the Best Features: The Branch and Bound Algorithm

To select a feature set, we could search all possible subsets of the largest feature set and
choose the subset that maximizes a given metric. This approach can be computationally
intense. For example if the large set has 50 features, and we limit the maximum number

of features to 5 in accordance with our “rule of thumb”, then we must search:

50 50 50 50 50
+ + + + =2.369,935
different subsets.

One alternative to the exhaustive search technique is the branch and bound algorithm,
[25]. Tt is globally optimal in the sense that it finds the optimal feature set, but it generally
does not require as much computation time as the exhaustive search method. At worst
using branch and bound can be as computationally intensive as the exhaustive search, but
that rarely happens. The branch and bound works by rejecting suboptimal subsets without
direct evaluation of the distance metric J, and guarantees that the selected subset yields

the globally best value of any criterion function J that satisfies a monotonicity condition.
Jl(xl)ZJz(xlaxz)Z ZJm(xlanJ xm)

where J,(x,, x,, -+ x,) is the criterion function evaluated using all features except

X, X,, --- x, from the feature set. The restriction of monotonicity is not severe, and is
not a limitation in practice, because it simply requires that a set S of features is at least as
good as any proper subset of itself for the purpose of class separation. A large number of
criteria, including the Bhattacharya criterion satisfy the monotonicity condition [25].
While more efficient than exhaustive search, the branch and bound algorithm is still too
computationally intensive for the heart valve problem feature set. Instead we have elected

to use the sequential forward selection algorithm despite its suboptimal properties.

Sequential Forward Selection

Sequential forward selection (SFS) is a bottom-up process. The algorithm starts with the
null (empty) set of features. Then at the first step it chooses a feature from the maximal
feature set that maximizes the distance metric.J. The monotonicity condition guarantees
than any of the remaining features will increase J, therefore pick the one that causes the
largest increase. Continue adding features until a stopping criterion is met such as the

number of features.
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Figure 6. Features selected using the data from Nov 98. SFS,

Mabhalanobis, 3 features, classic covariance, two-stage classifier.
The SFS algorithm requires much less computation than branch and bound algorithm,
and appears to work well in practice [17]. Nevertheless it has drawbacks. The algorithm
never removes a selected feature and it could miss a combination of features that that is
superior and thus SFS might not capture the optimal subset that an exhaustive search
would discover. For heart valve analysis, we found the performance ofthe SFS algorithm
to be generally satisfactory, and the optimality ofthe branch and bound algorithm was

not worth the high computational cost.

Classification

Classification for the heart valve sounds uses the supervised learning approach. This
approach uses a training sample of known cases to construct a classification rule to
classify future unknown cases. Both the training sample and future unknown cases are
assumed to be random samples from the same population of possible valves. The process
is two-step: 1. Training and 2. Performance evaluation. With a limited amount of data (as
is the case for the heart valve study) there is tension between the two steps in the sense

that each step needs sufficient data to work reliability. We will discuss methods to deal
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with this tension so that the available data does “double duty” for training and evaluation

in a statistically valid way.

The training step makes use of a data base 7' = {xl., yl.}, of previously solved cases where
we know the value of y, € {0,1} (the group identifier) and the corresponding feature
vector x, for each valve 7. Most supervised learning approaches to classification try to
approximate the Bayes’ classifier by “learning” the function f(x)=Pr[y =1x] from the
training data. Two contrasting points of view have emerged from research on how to do
this. The first, known as the diagnostic paradigm [26] casts the problem as one of
function estimation. In other words a regression like framework. Popular methods that
follow this approach are nearest neighbor methods, artificial neural nets, and logistic
regression. The other point of view, the sampling paradigm, uses estimates of the class
conditional distributions p,(x) and p,(x) with the prior probabilities 7, and 7, to
approximate f(x) by Bayes’ formula and the plug-in principle. The estimated
distributions (indicated by the circumflex notation) are “plugged into” the Bayes’ rule as

if they were the true distributions.

A(X) — ﬂ:lﬁl (X)
7, Po(X) + 70,1 (X)

Examples of methods following this approach are Fisher linear discriminant analysis

[19], and kernel discriminant analysis [27].

For the heart valve classifier, we have adopted the sampling paradigm with the plug-in
principle, using the Parzen estimator [28] to calculate class-conditional density estimates
P,(x) and p,(x). This approach has the desirable property that it provides the optimal
Bayes classifier in the limit as the number of training samples approaches infinity. The

classification rule becomes:

For z,p,(x) > 7,p,(x) choose INTACT
For 7,p,(x) < 7,p,(x) choose SLS

When training the classifier, the prior probabilities 7, and 7, are set to their respective
proportions in the training set. For clinical application 7, and 7, would incorporate all
information about the patient and the best estimate about the incidence of SLS in the
population from which the patient was selected. This step is extremely important as we
expect 7w, >> m,. We also see that the features must provide good separability or else the

priors will dominate the decision rule.
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The estimate for p,(x) is given by the following expression [29]:

iuw=——f¥——§km{—“‘xﬂqx‘xﬁ}

2
(27)2 s = 25

m, = number of SLS feature vectors

x, = ith SLS feature vector or dimension d, i =1,2,...m,
d = dimension of feature space

x = d dimensional point in feature space

s, = smoothing parameter for SLS features

The estimate for p,(x) follows by an obvious change of notation. The choice of the
smoothing parameters s, and s, are essential for tuning the pdf estimators. The accuracy
of the decision boundaries depends upon the accuracy with which the underlying pdf’s
are estimated. In the limit, as s, , — O, the result is no smoothing at all, and the classifier
approaches the nearest neighbor classifier [30]. As s, — oo, the result is over smoothing
and the classifier approaches a linear classifier, with the decision surface being a
hyperplane.

Misclassification can happen in two distinct ways. First we can classify an intact valve as
SLS, an error of the first kind. Conversely we could classify an SLS valve as intact, an
error of the second kind. Following standard statistical notation from hypothesis testing,
the probability of the error of the first kind is o and the probability of a error of the
second kind is 1— 3. Medical terminology uses the term specificity for the quantity 1— ¢,
and sensitivity for the quantity 3 within the framework of hypothesis testing. If X is a

random feature vector then the error probabilities are given by:
o =Pr[ 7, p,(X) < 7,5, (X)| v = 0]
1- B =Prm,p,(X)>7p,(X)|y=1]
If p,(x)=p,(x) and p,(x) = p,(x) then the classifier achieves the minimum pmc
(probability of misclassification) with
pme =m0+ 7, (1- )

and the actual values of avand B are determined by carrying out the appropriate
multidimensional integrals. Following Bayes’ rule will automatically determine ¢ and 3.
If we want a different value of & then we must modify the decision rule which will

change the value of 8 and the classifier will no longer achieve the minimum pmc. The
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o—f3 tradeoff is known as the receiver operating curve (ROC) and the Bayes’ classifier is

a specific point on this curve.

The decision rule becomes:

D) 5 y=0
p,(x)
ﬁO(X) S/’L:y:l
p(x)

Practical Aspects of Choosing the Smoothing Parameter

We have two methods for choosing the smoothing parameter, s; manually and
automatically. In the manual mode, we simply choose values of s and compute the
resulting probability of correct classification( pcc). The curve for pce generally has a
“knee” or maximum, and we choose the value of s that maximizes pcc. In the automatic
mode, we build a loop into the classifier software that allows us to automatically try a
range of values for s and map out a curve for pcc versus s, which we can automatically
search for the maximum. One possible disadvantage of this technique is that the same
value of s 1s used for both intact and SLS. We plan to use different smoothing parameters

for future work based on our success in other classification projects.

We have found that even small changes in the smoothing parameter affect the pcc for the
heart valve data, and for this reason we opted for the automatic tuning of s. Others [31]
report pcc as being to small changes of s. However Spect’s comment is at least in part
motivated by experimental results using 46 dimensional feature space with only 249
cases in the training set.

We used kernel-based classifier described here instead of the back propagation
(artificial) neural network [30] because, it learns with only one pass through the data,
does not get stuck in local minima, and can be updated easily as new training data
become available. It’s main drawback is that it sometimes requires more storage, but this
problem can be mitigated.
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The Two Stage Classifier

We use a two-stage classification scheme, because we need to fuse the data from multiple
signals from a single valve. We fuse by using a two-stage classifier, made from two
single-stage classifiers, one classifying the signals from a single valve, and the second
uses the results of the first classifier as features for the second classifier which classifies

valves. The two-stage classifier is diagramed in Fig. 7.

Beat Classification Valve Classification
(for one valve) (for one valve)

Feature Vectors X,

forbeatsi=12,.. P Percent SLS

Threshold (let this vary)

under test
SLS
X Beat Compute % of
—>| PNN — >| Beats Classified |
g;at SLS Valve is
SLS
T No
c > o
Valve is INT

Fig. 7. Decision fusion is achieved as the two-stage classifier classifies beats for a given
valve in the first stage, then classifies the valve in the second stage.

First Stage Classifier

In the first stage, the training set consists of all features from opening signal spectra from
all valves. Two feature vectors are treated as independent cases even if they originate
from the same valve. This produces large training set of approximately 50 x 50 = 2,500
cases. The smoothing parameter is tuned by finding the value that minimizes pmc. The
output of the classifier consists of assigning each signal spectrum to a valve class, intact

or SLS. These decisions are then passed off to the second stage classifier as inputs.

Second Stage Classifier

The second stage classifier works by using a one-dimensional feature based on the
fraction of signal spectra classified as intact or SLS for a given valve. Thus the training

set is given as:
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T = {eiayi}
0= number classified correctly

total in the class
ye{0,1}

where the index 7 runs from 1 to the total number of valves from both classes. For
example (94, y4) could have a value (.8,1). This would mean 80% of the signal spectra
were classified as class 1 (SLS) for valve 4 which is known to be SLS. The second stage
classifier is equivalent to Neyman-Pearson-Wald detector for a simple (as opposed to

composite) hypothesis where the null hypothesis is a valve is intact. The decision rule is:

0>y=y=1
0<y=y=0

By allowing the threshold 7y to vary over a range of values, we can map out an ROC and
select combinations of sensitivity and specificity.

Statistical Confidence Interval

The sponsors are very interested in knowing the confidence with which we can specify
the performance of classifiers. In addition, they are extremely interested in knowing how
many valves must be explanted from patients in order to train the classifiers to obtain
acceptable performance. Clearly, these issues have great medical, social and monetary

impact. In this section, we present techniques for answering these important question.

In the process of evaluating valve classification performance, we estimate conditional
probabilities based upon experiments with real data and a finite number of statistical
samples. We can specify the performance in terms of sensitivity and specificity. In order
to fully specify the performance, however, it is desired to specify the confidence we have
in the estimates of the conditional probabilities. We can do this by calculating a statistical

confidence interval about the pcc.

If we model the classifier as a sequence of Bernoulli trials [32], the number of correct
classifications has the binomial distribution with parameter pcc and number of trials V.
In the absence of knowledge of prior probabilities and losses, we assume that both classes

are equally probable, so 7, = 7, =0.5. In this case we get:
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pcc=l—pmc=1—[ﬂoa+”l(l_ﬁ)]
:%[sensitivity + SpeCiﬁCit}’]

The maximum likelihood estimate pcc is given by:

. number of correct classifications
pee =

number of test cases

We can write the 95% confidence interval about the true value of pcc as follows.
P{L < pcc < U}=.95

where [ and U are the lower and upper bounds, respectively, of the confidence interval.
The confidence interval is a random interval that covers the true probability with a
frequency 95%. This does not mean a particular interval contains the true value of pcc
with probability 95%. The reason for this somewhat convoluted interpretation is that pcc
is an unknown constant and not a random variable, and we cannot make probability
statements about constants within the frequentist framework statistics. The normal

approximation for the confidence interval uses:

L =péc—l.96‘/L§mc , and U=p50+l.96"L§mc

However, for our application, we are very interested in small sample sizes, because we
have only 50 valves in the training set. Therefore, we are forced to use more accurate
estimates of  and U which are valid for small sample sizes, and these estimates are given

as follows:

L:Npéc+2—21/NpécpnA10+l and U:Npéc+2+21/NpécpnA10+l

N+4 N+4

We can evaluate L and U, and plot them versus pcc and pmc, for various values of &, as
in Fig. 9. In this case, N is the number of valves in the training set, so this plot can give us
important insight into the number of training valves required to give a satisfactory

confidence interval.
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10 samples
100 samples

1000 samples

phat = ML Est.

Figure 8. The lower and upper bounds (L and U respectively) for the 95% confidence
interval about the true value of probability of correct classification (p) are plotted for
various values of N (or n), the number of valves in the training set. The abcissa depicts the
maximum likelihood estimate of p obtained from the results of training experiments with
valves having known condition. The ordinate depicts the values of L and U. The
approximation for large sample size is not appropriate for our application, so we use the
better approximation, which is valid for small sample size.

For example, during the training process with real valves, we obtained an estimated p
equal to 1. The sponsor, Shiley, is very interested in knowing the confidence with which
we can specify p for a given valve, and they are very interested in knowing how many
known valves they must obtain from clinical explantations in order to obtain an
acceptable confidence. For the case in which p=1, we can see from Fig. 9 that the upper
bound, U, is always equal to one, but the value of L varies significantly as a function of
the number of valves, N, as shown in Table 1. For a small number ofvalves, N=10, we
see that L = .71, which the sponsor found to be clearly unacceptable. For N = 1000, we
can achieve a very high confidence with L = .996. The sponsor, of course, finds this to be
acceptable, but impractical, because it would require an enormous monetary cost and an
excessive amount oftime to wait for 1000 patients to become available and to actually
explant 1000 valves. On the other hand, when N=100, L = .96, which is both acceptable
and practical. L=.96 is high enough to be of value when decision-makers are specifying
confidence. In addition, N=100 is a reasonable compromise, because we have plans to

obtain information from about 100 explanted valves within the next year or so.
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Table 1. This table of confidence interval bounds represents selected values of the bounds
(shown graphically in Fig. 9 for the case in which the estimated probability of correct classification
equals one. The importance of a large sample size (number of valves) is evident.

N, the # of training Lower Bound, L Upper Bound, U
valves
10 .7183 1.0
17 .8095 1.0
19 .826 1.0
100 9615 1.0
1000 .9960 1.0

For one of our earlier studies, we had only N=17 valves in the training set. In that case,
we achieved P(CC)=1, and this lead to confidence interval bounds of L=.8095 and U=1.0.
Our current work has N=19, which leads to L=.826 and U=1.0. These bounds are not
acceptable, and we await the arrival of data from additional valve explantations that will
give at least N=100, so we can obtain a more acceptable confidence interval with at least
L=.96 and U=1.0.

Performance Assessment

Once a classifier is fully specified, we need to determine how well it will perform on
future valves where the true condition is unknown. One commonly used performance
measure is the probability of misclassification pmc. Usually we cannot calculate pmc
from first principles, and we have to estimate it by running the classifier on a fest sef of
known valves. The estimate p#ic (the apparent error rate) should be near the true error

rate pmc. We measure nearness by the mean squared error (MSE):
MSE = E[(pmc - pn%c)z]
We can write the MSE in terms of the BIAS (systematic error) and VAR (random error):
. 2 n 2
MSE = (K[ pic — pme]) + E[(pmc — pmc) ]

= BIAS* + Var*

Using the training set as the test set (usually) produces a negative BIAS, so on average
the apparent error rate is less than the true error rate, and the performance of the classifier

appears better than it actually is. Using a test set independent of the training set will
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guarantee an unbiased estimate of pmc, but at the expense of requiring a large test set. For

example, if pmc = 5%, then for N valves in the test set, the standard deviation of piic is:

pmc(1— pmc)

O pic = M
Setting two standard deviations to be 2% and solving for M we get M = 475 for an
approximately 95% confidence interval with end points of .01 and .09. Therefore an
independent test set would require almost 500 valves to get a reasonably accurate
estimate of pmc, nearly ten times the number of available valves. Using any valves from
the training set to form the test set would also diminish the performance of the classifier.
To cope with the need to use as many valves in the training set as possible for small data
bases, the hold-one-out technique [33] is often used to estimate pmc. Here, we use all the
available data samples to train the classifier, except for one which is “held out.” Next, we
insert the held out sample back into the training set and hold out another sample for
testing. We repeat the procedure, holding out one sample and training with the remaining
samples at each iteration until all of the samples have been held out once. The
misclassification rate is then estimated by predicting all the held-out valves.
Unfortunately, while hold-one-out provides an unbiased estimate of pmc, it sometimes
has a high variance [34] because the hold-one-out training sets are too similar to the full
training set. This can be a problem when the prediction rule is unstable. By accepting
some bias, but less variance a smaller MSE is achieved by using k-fold cross-validation
instead of hold-one-out. With this technique, the data base is divided into & equal parts
(usually 5 or 10). One part is selected as the test set and the classifier is trained on the
remaining & - 1 parts. This process gives k estimates of pmc, which are combined. Note

that when k = N, k-fold cross-validation becomes hold-one-out.
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Appendix [V

Analysis of Sound Data Variability

An important experimental diagnostic is the variability of the energy in an opening or
closing sound signal. The electrical output (a voltage) v(¢) from the hydrophone at time ¢
is proportional to the sound pressure p(¢) incident on the hydrophone aperture. If we
integrate p’(¢) over the duration 7 of the sound transient, the resulting quantity is
proportional to the acoustic energy incident on the area of the aperture. Dividing by 7'

gives the average acoustic power captured by the hydrophone. Therefore we can write:

i=1

l T 2 l T 2 l < 2 _2
?J.O p (Z)dt~?J‘0 % (Z)dfzﬁz"i =v
Vv = var(v)+ v’ = var(v)

The last equation follows from the mean hydrophone voltage v being zero. We see that
the (statistical) variance of the samples of sound signal amplitudes is proportional to
average acoustic power. Finally taking the square root of the variance gives the RMS
(root mean square) of the signal, a measure of the intensity of the sound. By studying the

variation in RMS, we can identify irregular sounds.

We use the boxplot technique [10] to display the RMS data. Each box icon corresponds
to data from a single valve, and it gives a graphical representation of the summary
statistics: location, spread, skewness and outliers. For example, in Fig. 9 we have the
RMS values of opening sounds from intact values, and we see that valve 25 has an single
large outlier. This signal should be removed. We can also see that the whole of the RMS
values from valve 28 are spread over a larger range than the other valves in this group.
However, in Fig. 10 we have a similar plot for the closing sounds and Note both valves
25 and 28 are unremarkable. Figs. 11 and 12 are the boxplots for SLS valves. Again we
can see valves with outliers such as 36 and 44. The figures give an visual impression that
the RMS data for opening sounds is more variable than for closing sounds. We can
compare opening and closing sounds by using the coefficient of variation CV, defined as

the ratio of the standard deviation to the mean.

Var(RMS)

CV ="t
Mean( RMS)
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Since there are a number of outliers, we replace the standard deviation by its robust
equivilent, the MAD statistic [10], defined by:

|y, —m] }

MAD(v) = Median{ v, —m
where m = Median(v)

In Figs. 13 and 14 we plot the difference in coefficients of variation (opening CV minus
closing CV) for both intact and SLS valves. Both groups show greater variation for

opening sounds.
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Beat RMS for Intact Opening Sounds
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Fig. 9. Beat RMS values for intact valves, opening sounds
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Beat RMS For Intact Closing Sounds
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Fig. 10. Beat RMS values for intact valves, closing sounds
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Fig. 11. Beat RMS values for SLS valves, opening sounds
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Fig. 12. Beat RMS values for SLS valves, closing sounds
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Fig. 13. Excess coefficient of variation over closing sounds for intact valves
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Fig. 14. Excess coefficient of variation over closing sounds for SLS valves
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