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Networks are everywhereNetworks are everywhere
• Physical networks

– Defined by physical connections

– Clearly defined for each system 

– Applications: Power, water, communication 
networks  

• Functional networks 
– Defined by well-defined functional 

dependencies between entities

– Complete information is available; Needs 
abstraction

– Applications: Supply chains, chemical 
reaction networks

• Interaction networks
– Defined by interactions between entities

– Information is incomplete and noisy; Needs 
abstraction

– Applications: Cybersecurity, intelligence, 
epidemics 
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Twitter social 
network[Akshay Java, 
2007] 

Yeast protein interactions
[Bordalier institute]

U.S. Power Grid [GENI]

Network science is built on the common 
ground among these wide variety of 
applications.



Why Model Massive Graphs?Why Model Massive Graphs?
• Enable sharing of surrogate data

– Computer network traffic

– Social networks

– Financial transactions

• Insight into…
– Generative process

– Community structure

– Evolution

– Uncertainty

• Testing graph algorithms
– Scalability

– Versatility (e.g., vary degree 
distributions)

– Verification & validation
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Block Two-Level Erd}os-Renyi (BTER) graph; 
image courtesy of Nurcan Durak. 



Model DesiderataModel Desiderata
• Capture heavy-tailed degree 

distribution

– Not necessarily exactly power law

• Capture community structure

– Measured indirectly through 
clustering coefficient, k-cores, and 
other measures

• Able to “fit” real-world data

– Reproduce degree distribution

– Reproduce community structure

• Scales to 1T nodes

– Motivated by GRAPH500 
benchmark

– Typically also need for randomized 
fitting procedures
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A.-L. Barabasi and R. Albert. Emergence of scaling
in random networks. Science, 286(5349):509-512, 1999.

Actor 
Collaboration WWW Power Grid

M.E.J. Newman and M. Girvan, Finding and 
evaluating community structure in networks, 

Phys. Rev. E 69, 026113, 2004.
http://www.graph500.org/



Graph 500 Model: Graph 500 Model: 
Stochastic Kronecker Graphs (SKG)Stochastic Kronecker Graphs (SKG)

• SKG Inputs
– L = # of levels

– T = 2 x 2 generator matrix 
(entries sum to 1)

– M = # edges

• SKG Edge Insert Procedure 
– Choose a quadrant of the adjacency 

matrix proportional to entries of T

– Repeat for a total of L times to land at a 
single entry of the matrix

• Notes
– Size of adjacency matrix is 2L x 2L

– Some edges may be duplicates or self-
links and are ignored

– Edge generation is fully parallelizable

– We make the graph undirected in our 
studies

– Fitting to real data using “KronFit” takes 
between 7 mins for 20K nodes to 4 hrs 
for 500K nodes
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Chakrabarti , Zhan, & Faloutsos, SDM04; Leskovec et al., JMLR, 2010

Graph 500 Parameters

T = [0.57, 0.19; 0.19, 0.05]

L  {26, 29, 32, 26, 39, 42}

M = 16  2L



Degree Distribution of SKGDegree Distribution of SKG

• Standard degree distribution has large 
oscillations

– Theorem: Between lognormal and 
exponential tail

• Choose fixed random value ¹i for each of 
the L levels
– Formula provided in paper

– Noise goes down as size grows

• Level-specific generator matrix is given by
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SKG for Graph 500 for L=16

Seshadhri, Pinar & Kolda, arXiv:1102.5046, Sept 2011; short version in ICDM11



Isolates in SKG for Graph 500Isolates in SKG for Graph 500

• Assume symmetric generator, 
i.e., b=c, and L even

• Number of isolates is

• Impacts benchmark because 
number of nodes is less than 
anticipated and average degree is 
much higher!

L Isolated 
Nodes

Avg. 
Degree

26 51% 32

29 57% 37

32 62% 41

36 71% 55

39 71% 55

42 74% 62
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Seshadhri, Pinar & Kolda, arXiv:1102.5046, Sept 2011; short version to appear in ICDM11



The ChungThe Chung--Lu (CL) Model: Lu (CL) Model: 
An Alternative to SKGAn Alternative to SKG
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• Is there a model that can give better fits to degree 
distribution than SKG and is easier to fit?

• Chung-Lu Model

– di = (desired) degree of node i (di = M = # edges)

– Probability of single edge insertion at (i,j) = didj/M2

• Scalable implementation chooses source and sink 
for each edge independently

– Probability of choosing node i is di/M

• Other names: 

– Configuration Model (Newman, SIREV, 2003)

– Weighted Erdös-Rényi Model

Chung & Lu, PNAS, 2002; Chung & Lu, Annals of Combinatorics, 2002



Similarity of CL to SKG for Graph 500Similarity of CL to SKG for Graph 500
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Fit CL to the degree 
distribution produced by SKG 

for Graph 500 with L = 18



CL Better Fit to ECL Better Fit to E--values, Core, Etc.values, Core, Etc.
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Both CL and SKG Produce Poor Both CL and SKG Produce Poor 
Clustering CoefficientsClustering Coefficients
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ti = # triangles at vertex i
di = degree of vertex i

Clustering Coefficient

Global Clustering Coeff.



Community Structure in GraphsCommunity Structure in Graphs
• Numerous community finding algorithms exist

– Difficult to validate

– Trouble in finding full range of sizes

• Instead, use related measures like clustering 
coefficient

– Triangles arise because of community structure

• What “community” structure must be present to 
ensure a high clustering coefficient, especially for 
low-degree nodes?

– How many communities?

– What do they look like?
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M.E.J. Newman and M. Girvan, Finding and 
evaluating community structure in networks, Phys. 

Rev. E 69, 026113, 2004.



Building the basis for a modelBuilding the basis for a model
Empirical Observations
• Networks contain communities.

• The sizes of the  communities are 
small, and do not grow (or grow very 
slowly) for larger graphs. (e.g., 
Dunbar number). 

• Clustering coefficients are highest for 
small degree vertices. 

• Vertex degree is correlated to the 
average degree of neighbors.

Theoretical Analysis 
• Theorem: If a community has s edges 

then there must be Ω(√s) vertices 
with degree Ω(√s). 

• Corollary: For graphs with skewed 
degree distribution, the number of 
communities grows with the number 
of nodes.

• Corollary: Within a community the 
degree  should be small.
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We are not only trying  to build a formal model, we are 
trying to formalize the model building process itself. 

Hypothesis: Real-world interaction networks consist of a
scale –free collection of dense Erdős-Rényi graphs.



BTER: A New Model with BTER: A New Model with 
Explicit Community StructureExplicit Community Structure

• Idea: Model should have O(n) 
communities in order to get high 
clustering coefficients

• Preprocessing: Generate 
communities 

– Determined by desired degree 
distribution

– All nodes have (close to) the same 
degree 

– Size of cluster = min degree + 1

• Phase 1: Generate ER graph on each 
community

– User must specify connectivity 
coefficient for each community, ½k

– We use a function of the min degree in 
the community, dk

• Phase 2: Generate CL graph on 
“excess” degree

– e(i) = d(i) – ½k dk where vertex i is in 
community k
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Preprocessing:
Create explicit 
communities

Phase 1: 
Erdös-Rényi
graphs in each 
community

Phase 2:
CL model on 
“excess” degree 



CoCo--authorship (authorship (caca--AstroPhAstroPh))
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• 18,771 nodes 396,100 edges; based on arxiv
repository

• Global clustering coefficients: 

– Original: 0.32, BTER: 0.31, CL: 0.01

• Normalized size of the connected components

– Original: 0.95, BTER: 0.86, CL: 1.0

Eigenvalues are not 
determined by 

degree distribution



Trust NetworkTrust Network
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• 75,879 vertices, 811,480 edges; based on Epinion web site; edges represent 
rust between two users

• Global clustering coefficients: 

– Original: 0.07, BTER: 0.07, CL: 0.03

• Normalized size of the connected components

– Original: 1.0, BTER: 0.96, CL: 0.98



Visualization of BTER Adjacency MatrixVisualization of BTER Adjacency Matrix
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Red = Phase 1
Blue = Phase 2



Observations on BTERObservations on BTER
• Requires desired degree distribution

– Approximation can be used to save space

• Phase 1: Communities 

– All nodes have the same (expected) 
degree; easy generation of dense 
subgraphs

– But there are ways we  could allow the 
communities to be heterogeneous

– Community edge density is a parameter 
which may be tuned to fit real data

• Phase 2: Uses expected excess degree 

– Enables “streaming edge” generation

• BTER edge generation is fully parallelizable

– community membership for each node

– edge density for each community

– excess degree (in expectation) for each 
node
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Concluding RemarksConcluding Remarks
• Modeling of graphs underlie many challenges for 

principled graph analysis
• The challenge is not in building a formal model, 

but  formalizing the modeling process itself. 
• We proposed the Block Two-Level Erdös-Rényi

(BTER)
– New theory says there must be many dense 

subgraphs for high clustering coefficient

– New BTER model explicitly creates dense communities 
using ER

– Exceptional similarities to real data in terms of 
clustering coefficients and eigenvalues

• The code is available at 
http://www.sandia.gov/~tgkolda/bter_supplemet/.

• For more information,
– Ali Pinar apinar@sandia.gov
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mailto:apinar@sandia.gov
mailto:apinar@sandia.gov
http://www.sandia.gov/~tgkolda/bter_supplemet/


Relevant PublicationsRelevant Publications
• Modeling of graphs

– C. Seshadhri, T. Kolda, and A. Pinar, “The Blocked Two-Level Erdos Renyi Graph Model,” 
submitted for journal publication

– C. Seshadhri, A. Pinar, and T. Kolda, “An In Depth study of Stochastic Kronecker Graphs," 
submitted for journal publication.

– A. Pinar, C. Seshadhri, and T. Kolda, “Comparison of Scalable Graph Generation Models,” 
submitted for conference publication. 

– C. Seshadhri, A. Pinar, and T. Kolda, “An In Depth study of Stochastic Kronecker Graphs,” to 
appear in Proc. Int. Conf. on Data Mining (ICDM). 

• Sampling Graphs
– I. Stanton and A. Pinar, “Constructing and uniform sampling graphs with prescribed joint 

degree distribution using Markov Chains,” submitted for journal publication.
– I. Stanton and A. Pinar, “Sampling graphs with prescribed joint degree distribution using 

Markov Chains,” Proc. ALENEX 11.

• Community structure
– M. Rocklin, and A. Pinar, “On Clustering on Graphs with Multiple Edge Types,” submitted for 

journal publication.
– M. Rocklin and A. Pinar, “Latent Clustering on Graphs with Multiple Edge Types,” Proc. 8th 

Workshop on Algorithms and Models for the Web Graph (WAW11).
– M. Rocklin and A. Pinar, “Computing an Aggregate Edge-weight function for Clustering 

Graphs with Multiple Edge Types,” in Proc. 7th Workshop on Algorithms and Models for the 
Web Graph (WAW10).
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Supplementary MaterialSupplementary Material
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Naïve Addition of NoiseNaïve Addition of Noise
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“To smooth out fluctuations in the degree distributions, we add some noise to the (a, b, c, d) 
values at each stage of the recursion and then renormalize (so that a+b+c+d = 1).” – CZF04

Adding noise at every edge 
insertion does not work!

Example at left in Graph500 
with L=26.

Figure by Todd Plantenga, using 
his Hadoop MapReduce SKG 
implementation.

Seshadhri, Pinar & Kolda, arXiv:1102.5046, Sept 2011; short version in ICDM11



Fitting CL to the SKG deg. dist. Fitting CL to the SKG deg. dist. 
yields exceptionally similar graphyields exceptionally similar graph
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Let z(i) = # zeros in binary representation of i (likewise for j).
Let c = # zeros common to binary representations of i and j.

If a/b = c/d, then PSKG = PCL

Note similarity of 
adjacency matrices 

generated by 
SKG and CL for 

Graph 500

Seshadhri, Pinar & Kolda, preprint, Oct 2011



CL Trivial to Fit to Real Data and CL Trivial to Fit to Real Data and 
More Accurate  than SKG or NSKGMore Accurate  than SKG or NSKG
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CL has a closer fit to the 
degree distribution than 
SKG or NSKG.

Using SKG parameters 
from Leskovec et al., 
JMLR, 2010.



Similarity of CL to NSKG for Graph 500Similarity of CL to NSKG for Graph 500
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Fit CL to the degree 
distribution produced by NSKG 

for Graph 500 with L = 18



CL vs. SKGCL vs. SKG
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• SKG Model (generator for Graph 500)
– Only 6 parameters!

– Embarrassingly parallel edge generation

• Some work must be done to remove duplicate links, if desired

– Constrained to lognormal degree distribution (assuming noise)

– Difficult to fit to real data 

• Minutes to hours and cannot reproduce degree distribution

• CL Model (should be used at least as a control)
– Requires full degree distribution

• May be possible to approximate with a few parameters

– Embarrassingly parallel edge generation

• Still need work to remove duplicates

– Trivial to fit to real data by using degree distribution

• Note that the fit of CL w.r.t. SKG likelihood function is actually quite good

• Neither model yields good high clustering coefficients
– May not be appropriate for capturing community structure



COMMUNITY STRUCTURE COMMUNITY STRUCTURE 
IN GRAPHSIN GRAPHS
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Related Work on Community StructureRelated Work on Community Structure
• Lancichinetti et al. (PLoS 2010) shows 

that there are  many communities 
and a variety of sizes

– Use two different methods for detecting 
communities

– Communities differ, but trends in sizes 
are the same

• Eigenspoke analysis of Prakash et al. 
(2010) reveals dense subgraphs
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Lancichinetti, Kivelä, Saramäki, & Fortunato, 
Characterizing the Community Structure of 

Complex Networks, PLoS ONE, 2010

Prakash et al., EigenSpokes: 
Surprising Patterns and 
Scalable Community 
Chipping in Large Graphs,
Advances in Knowledge 
Discovery and Data Mining, 
2010



Relationship of BTER and LFR ModelsRelationship of BTER and LFR Models
• Both explicitly insert communities
• Community structure

– BTER: generated automatically 
according to degree distribution

– LFR: power law distributed

• Assignment of nodes to communities
– BTER: Determined during community 

building phase
– LFR: Random assignments; any node 

can go into a community where the size 
is higher than its “internal degree” 

• Internal vs. external links
– BTER: Varies by node
– LFR: constant proportions for all nodes

• Community sizes
– BTER: All sizes down to 3 nodes
– LFR: Minimum community size specified 

by user

• Scalabilty
– FLR community assignment procedure 

is not obviously parallelizable
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Lancichinetti, Fortunato, & Radicchi, 
Benchmark graphs for testing community 
detection algorithms, Phys. Rev. E, 2008



BTER Illustration for BTER Illustration for 
Power Law DistributionPower Law Distribution
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Power Law Gamma = 1.9
Nodes: 10, 269
Total Edges: 38, 628
Phase 1 Edges: 20,426
Phase 2 Edges: 18,344

GCC = 0.20



CoCo--authorship Network (caauthorship Network (ca--AstroPhAstroPh))
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Graph Nodes Edges LCC %

ca-AstroPh 18,771 396,100 95

BTER 18,681 401,788 86

CL 18,352 412,384 100



CoCo--authorship Network (caauthorship Network (ca--AstroPhAstroPh))
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Graph GCC

ca-AstroPh 0.32

BTER 0.31

CL 0.01

BTER 
Phase 1 Edges: 290,268
Phase 2 Edges: 112, 808



CoCo--authorship Network (caauthorship Network (ca--AstroPhAstroPh))
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Eigenvalues are not 
determined by 

degree distribution



CoCo--authorship Network (caauthorship Network (ca--ContMatContMat))
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Graph Nodes Edges LCC %

ca-CondMat 23,133 186,878 92

BTER 22,938 190,144 82

CL 22,390 194,190 100



CoCo--authorship Network (caauthorship Network (ca--ContMatContMat))
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Graph GCC

Ca-CondMat 0.26

BTER 0.23

CL 0.00

BTER 
Phase 1 Edges: 135,246
Phase 2 Edges:  55,124



CoCo--authorship Network (caauthorship Network (ca--ContMatContMat))
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Citation Network (citCitation Network (cit--HepPhHepPh))
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Graph Nodes Edges LCC %

cit-HepPh 34,546 841,754 100

BTER 34,351 870,750 99

CL 34,174 880,520 100



Citation Network (citCitation Network (cit--HepPhHepPh))
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Graph GCC

cit-HepPh 0.15

BTER 0.16

CL 0

BTER 
Phase 1 Edges: 510,864
Phase 2 Edges: 362,358



Citation Network (citCitation Network (cit--HepPhHepPh))
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Trust Network (socTrust Network (soc--Epinions1)Epinions1)
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Graph Nodes Edges LCC %

Epinions1 75,879 811,480 100

BTER 72,425 812,724 96

CL 71,223 812,190 98



Trust Network (socTrust Network (soc--Epinions1)Epinions1)
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Graph GCC

soc-Epinions1 0.07

BTER 0.07

CL 0.03

BTER 
Phase 1 Edges: 300,162
Phase 2 Edges: 515,192



Trust Network (socTrust Network (soc--Epinions1)Epinions1)
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