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Networks are everywhere

* Physical networks
— Defined by physical connections
— Clearly defined for each system

— Applications: Power, water, communication
networks

= = T, *  Functional networks
— Defined by well-defined functional
dependencies between entities

— Complete information is available; Needs
abstraction

— Applications: Supply chains, chemical
reaction networks

s
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Yeast protein interactions ° Interaction networks
[Bordalier institute] . . . .
— Defined by interactions between entities

— Information is incomplete and noisy; Needs
abstraction

Twitter social

network[Akshay Java,
o : . . — Applications: Cybersecurity, intelligence,
Network science is built on the common egi%emics Y Y g

ground among these wide variety of
applications.
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Why Model Massive Graphs?

Enable sharing of surrogate data
— Computer network traffic

— Social networks

— Financial transactions

Insight into...

— Generative process

— Community structure

— Evolution

— Uncertainty

Testing graph algorithms
— Scalability

— Versatility (e.g., vary degree

distri bUtlonS) Block Two-Level Erd}os-Renyi (BTER) graph;

— Verification & validation image courtesy of Nurcan Durak.
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M.E.J. Newman and M. Girvan, Finding and
evaluating community structure in networks,
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A.-L. Barabasi and R. Albert. Emergence of scaling

in random networks. Science, 286(5349):509-512, 1999.
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Model Desiderata

Capture heavy-tailed degree
distribution

http://www.graph500.org/
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Scales to 1T nodes

— Motivated by GRAPH500
benchmark

— Not necessarily exactly power law

Capture community structure

— Measured indirectly through
clustering coefficient, k-cores, and
other measures

Able to “fit” real-world data

— Reproduce degree distribution
— Reproduce community structure

— Typically also need for randomized
fitting procedures



Graph 500 Model: () =
Stochastic Kronecker Graphs (SKG)

Chakrabarti , Zhan, & Faloutsos, SDMO04; Leskovec et al., JMLR, 2010

SKG Inputs

L = # of levels

T =2 x 2 generator matrix
(entries sum to 1)

M = # edges

SKG Edge Insert Procedure

Choose a quadrant of the adjacency
matrix proportional to entries of T

Repeat for a total of L times to land at a
single entry of the matrix

Notes

Size of adjacency matrix is 2- x 2t

Some edges may be duplicates or self-
links and are ignored

Edge generation is fully parallelizable

We make the graph undirected in our
studies

Fitting to real data using “KronFit” takes
between 7 mins for 20K nodes to 4 hrs
for 500K nodes
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Graph 500 Parameters
T=10.57,0.19; 0.19, 0.05]
L e {26,29, 32,26, 39,42}
M=16 x 2*
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Degree Distribution of SKG

Seshadhri, Pinar & Kolda, arXiv:1102.5046, Sept 2011; short version in ICDM11

Standard degree distribution has large : ‘ - SKG
oscillations e Noisy SKG (0.05)
* Nosiy SKG (0.10)
— Theorem: Between lognormal and .
. . %) 2
exponential tail S 10
Choose fixed random value ", for each of &
the L levels g
o]
— Formula provided in paper 10
— Noise goes down as size grows
Level-specific generator matrix is given by e o 2 o o
Qut Degree
_ 2pia . SKG for Graph 500 for L=16
1; = @ a+d b+ Hi P

b+ 1, d—ﬁ
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~ " Isolates in SKG for Graph 500

Seshadhri, Pinar & Kolda, arXiv:1102.5046, Sept 2011; short version to appear in ICDM11

W)

* Assume symmetric generator,

i.e., b=c, and L even L Isolated | A
_ . solate \7-
Number of isolates is - Degree

L/2

L 26 51% 32
I = —2A1"
__ZLM (L/Q + r) exp(=2A7"), 29 57% 37
32 62% 41
T=(a+b)/(1—-(a+D))
M 36 71% 55
A=rl4a+b)(1—(a+ b))] /2 39 71% 55
* Impacts benchmark because 42 U =
number of nodes is less than
anticipated and average degree is
much higher!
1/6/2012 Pinar - JMM 7



The Chung-Lu (CL) Model:
An Alternative to SKG
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Chung & Lu, PNAS, 2002; Chung & Lu, Annals of Combinatorics, 2002

Is there a model that can give better fits to degree
distribution than SKG and is easier to fit?
Chung-Lu Model

— d, = (desired) degree of node i (2.d; = M = # edges)

— Probability of single edge insertion at (i,j) = d;d;/M?
Scalable implementation chooses source and sink
for each edge independently

— Probability of choosing node i is d./M
Other names:

— Configuration Model (Newman, SIREV, 2003)

— Weighted Erdos-Rényi Model
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Similarity of CL to SKG for Graph 500

3 Scree Plot
10 . . :
% SKG
Fit CL to the degree & <
distribution produced by SKG s |
for Gl’aph 500 W|th L = 18 § 10°} Oéé : 5 Core decompositions
i SEEEEESSSEERRESSSEEERS 10 ' ' —  ska
5 Degree Distribution O cL
* SKG .
O CL 10’ 5
: 0 5 10 15 20 25 o
3 Assortativity 10° D |
10°

Avg. of Avg. Degree of Neighbors

10

10 10
Degree
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CL Better Fit to E-values, Core, Etc.
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Core decompositions

+  soc-Epinions1
SKG
NSKG
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Both CL and SKG Produce Poor ) .
Clustering Coefficients

ﬁlustering Coefficienh

t. = # triangles at vertex i

d; = degree of vertex i

/Global Clustering Coeff.\

t
o= il

d;
RN

A, Clustering Coefficient

Cluskering Coefficient

10
*
107
10°
107 .
+  Soc-Epinicns
# SKG
+ MSKEG
2| = CL
10 1 ¥ S s
10 10 10 10 10
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Community Structure in Graphs

Numerous community finding algorithms exist
— Difficult to validate

— Trouble in finding full range of sizes

Instead, use related measures like clustering
coefficient

— Triangles arise because of community structure . -
M.E.J. Newman and M. Girvan, Finding and

What “community” structure must be present to = nscommuntysiucture | networks, Fhys.

ensure a high clustering coefficient, especially for Clustering Coefficient

-

_ p) = Q ¢ ca-AstroPh
low-degree nodes: 5o ¥ O cahs
.- = CL
— How many communities? g
006
— What do they look like? <.
5
0.2
>
<
0
10° 10’ 10° 10°
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k- Building the basis for a model

Empirical Observations Theoretical Analysis
* Networks contain communities. * Theorem: If a community has s edges
 The sizes of the communities are then there must be Q(Vs) vertices
small, and do not grow (or grow very with degree Q(Vs).
slowly) for larger graphs. (e.g., .

Dunbar number) Corollary: For graphs with skewed
, . , degree distribution, the number of
* Clustering coefficients are highest for communities grows with the number
small degree vertices. of nodes

* Vertex degree is correlated to the

average degree of neighbors. e Corollary: Within a community the

degree should be small.

Hypothesis: Real-world interaction networks consist of a
scale —free collection of dense ErdGs-Rényi graphs.

We are not only trying to build a formal model, we are
trying to formalize the model building process itself.

1/6/2012 Pinar - JMM 13



Preprocessing:
Create explicit
communities

Phase 1:
Erdos-Rényi
graphs in each
community

Phase 2:
CL model on
“excess” degree

BTER: A New Model with @
Explicit Community Structure

Idea: Model should have O(n)
communities in order to get high
clustering coefficients

Preprocessing: Generate
communities

— Determined by desired degree
distribution

— All nodes have (close to) the same
degree

— Size of cluster = min degree + 1
Phase 1: Generate ER graph on each
community

— User must specify connectivity
coefficient for each community, 72,

— We use a function of the min degree in
the community, d,

Phase 2: Generate CL graph on
“excess” degree

— e(i) =d(i) = 2, d, where vertexiisin
community k
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~~“_Co-authorship (ca-AstroPh)

o Degree Distribution 1 Clustering Coefficient Scres Plot
{ ca-AstroPh = 2 ¢ ca-AstroPh 120 * ' ' O ca-AstroPh
L g * BTER 2 48l * BTER | * BTER
108 ¥ s, + CL £ + CL 1007, +CL
3 S ol *
s C,)0.6- |'s O%
310° £ 5 |t 8
O 'y 2 0.4 1 E 60y &%@@@Q
101- } ; ] O 0.2} 401 %MM
50
. < 20 B e i 8 B O S R S S R B B
107 X AR 0 , O 5 10 15 20 25
10 10 10 10 10 10

e 18,771 nodes 396,100 edges; based on arxiv

repository Eigenvalues are not
* Global clustering coefficients: <l determined by
— Original: 0.32, BTER: 0.31, CL: 0.01 degree distribution

 Normalized size of the connected components
— Original: 0.95, BTER: 0.86, CL: 1.0

1/6/2012 Pinar - JMM 15
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Trust Network

Degree Distribution Clustering Coefficient

| 04 | Scree Plot
& soc-Epinions1 - % ¢ soc-Epinions1 200 35 [0 éoc-EpihionsA
* CB)[ER 3 * BTER * BTER
8 CL -
: 0.3 _150] CL
S E
202 2 100l ©
3 > o
E L #,000
¥
G 0.1 501 . Rk ]
> %QMQQQ@%%@@@Q
Z
(1300 o % 5 10 15 20 25

» 75,879 vertices, 811,480 edges; based on Epinion web site; edges represent
rust between two users

* Global clustering coefficients:
— Original: 0.07, BTER: 0.07, CL: 0.03
 Normalized size of the connected components
— Original: 1.0, BTER: 0.96, CL: 0.98
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" “Visualization of BTER Adjacency Matri

Adjacency Matrix

Red = Phase 1
Blue = Phase 2

Adjacency Matrix - Lower Right Corner

1/6/2012 Pinar - JMM 17



Observations on BTER

 Requires desired degree distribution

— Approximation can be used to save space
. Adjacency Matrix
* Phase 1: Communities T T

— All nodes have the same (expected)
degree; easy generation of dense
subgraphs

— But there are ways we could allow the
communities to be heterogeneous

— Community edge density is a parameter
which may be tuned to fit real data

* Phase 2: Uses expected excess degree
— Enables “streaming edge” generation
 BTER edge generation is fully parallelizable
— community membership for each node
— edge density for each community

— excess degree (in expectation) for each
node

1/6/2012 Pinar - JMM 18



Concluding Remarks

Modeling of graphs underlie many challenges for
principled graph analysis

The challenge is not in building a formal model,
but formalizing the modeling process itself.

We proposed the Block Two-Level Erdos-Rényi

Avny. Clustering Coefficient

(BTER)

— New theory says there must be many dense
subgraphs for high clustering coefficient

— New BTER model explicitly creates dense communities
using ER

— Exceptional similarities to real data in terms of
clustering coefficients and eigenvalues

The code is available at
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Clustering Coefficient

0.4

10’ 10° 10° 10*
Degree
Clustering Coefficient

% & soc-Epinions1
* BTER
CL

http://www.sandia.gov/~tgkolda/bter supplemet/. - o @
* For more information, ; : /\

— Ali Pinar apinar@sandia.gov s e
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Relevant Publications

 Modeling of graphs

— C.Seshadhri, T. Kolda, and A. Pinar, “The Blocked Two-Level Erdos Renyi Graph Model,”
submitted for journal publication

— C.Seshadhri, A. Pinar, and T. Kolda, “An In Depth study of Stochastic Kronecker Graphs,"
submitted for journal publication.

— A. Pinar, C. Seshadhri, and T. Kolda, “Comparison of Scalable Graph Generation Models,”
submitted for conference publication.

— C.Seshadhri, A. Pinar, and T. Kolda, “An In Depth study of Stochastic Kronecker Graphs,” to
appear in Proc. Int. Conf. on Data Mining (ICDM).

* Sampling Graphs

— . Stanton and A. Pinar, “Constructing and uniform sampling graphs with prescribed joint
degree distribution using Markov Chains,” submitted for journal publication.

— |.Stanton and A. Pinar, “Sampling graphs with prescribed joint degree distribution using
Markov Chains,” Proc. ALENEX 11.

e  Community structure

— M. Rocklin, and A. Pinar, “On Clustering on Graphs with Multiple Edge Types,” submitted for
journal publication.

— M. Rocklin and A. Pinar, “Latent Clustering on Graphs with Multiple Edge Types,” Proc. 8th
Workshop on Algorithms and Models for the Web Graph (WAW11).

— M. Rocklin and A. Pinar, “Computing an Aggregate Ed%e-weight function for CIustering
Graphs with Multiple Edge Types,” in Proc. 7th Workshop on Algorithms and Models for the
Web Graph (WAW10).
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Naive Addition of Noise

Seshadhri, Pinar & Kolda, arXiv:1102.5046, Sept 2011; short version in ICDM11

“To smooth out fluctuations in the degree distributions, we add some noise to the (a, b, c, d)
values at each stage of the recursion and then renormalize (so that a+b+c+d = 1).” — CZF04

10000000 =
* . * Noise per edge b=0.1
. . 1000000 ‘s
Adding noise at every edge » NSKG b=0.1
insertion does not work! 100000
Example at left in Graph500 10000
with L=26. 1000 §
Figure by Todd Plantenga, using 100 §§
his Hadoop MapReduce SKG ' 2
. . 10 $o 3
implementation. © 3 !,
1 L2 2 & o 0 R o o F =
1 10 100 1000 10000 100000 1000000
1/6/2012 Pinar - JMM

22



Sandia

Fitting CL to the SKG deg. dist. () .
vields exceptionally similar graph

Seshadhri, Pinar & Kolda, preprint, Oct 2011

Let z(i) = # zeros in binary representation of i (likewise for j).
Let ¢ = # zeros common to binary representations of i and j.

Pska (i, j) = acb?D ezl e ql—z()==(j)=c
Pew(iy§) = (a+b)*D(c+ d) - > (a+ ¢)*D (b + d)L =)

If a/b =c/d, then Py =P,

/

A

x 10°

SKG

Note similarity of
adjacency matrices
generated by
SKG and CL for
Graph 500

x105/




CL Trivial to Fit to Real Data and @)

More Accurate than SKG or NSKG

CL has a closer fit to the
degree distribution than
SKG or NSKG.

Using SKG parameters §
from Leskovec et al.,
JMLR, 2010.
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Degres Distribubicn

L N

soc-Epinionst |]
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Similarity of CL to NSKG for Graph 500

Fit CL to the degree

distribution produced by NSKG
for Graph 500 with L =18

Degree Distribution

+
O

NSKG
CL
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|Eigenvalue|

Avg. of Avg. Degree of Neighbors

s Scree Plot
10 - : -
+ NSKG
S o CL
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10%} Og+++++ . '
Oo00000EEEEBEEEHEEGG
10" : : : '
0 5 10 15 20
Assortativity

10
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CL vs. SKG
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SKG Model (generator for Graph 500)

Only 6 parameters!

Embarrassingly parallel edge generation

*  Some work must be done to remove duplicate links, if desired
Constrained to lognormal degree distribution (assuming noise)

Difficult to fit to real data

* Minutes to hours and cannot reproduce degree distribution

CL Model (should be used at least as a control)
Requires full degree distribution

* May be possible to approximate with a few parameters
Embarrassingly parallel edge generation

» Still need work to remove duplicates
Trivial to fit to real data by using degree distribution

* Note that the fit of CL w.r.t. SKG likelihood function is actually quite good

Neither model yields good high clustering coefficients

May not be appropriate for capturing community structure

10

From

Todes



COMMUNITY STRUCTURE
IN GRAPHS
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Related Work on Community Structure

* Lancichinetti et al. (PLoS 2010) shows
that there are many communities
and a variety of sizes

— Use two different methods for detecting
communities

— Communities differ, but trends in sizes
are the same

* Eigenspoke analysis of Prakash et al.
(2010) reveals dense subgraphs

Prakash et al., EigenSpokes:
Surprising Patterns and
Scalable Community
Chipping in Large Graphs,
Advances in Knowledge
Discovery and Data Mining,
2010

FRat 2y -

2 - i -.--..:..-.-

(c) Spy Plots of sub-
graph of Top 20 Nodes
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Characterizing the Community Structure of
Complex Networks, PLoS ONE, 2010
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~ 'Relationship of BTER and LFR Models

Both explicitly insert communities

e  Community structure

- BTER:dgenerated automatically
according to degree distribution

— LFR: power law distributed
e Assignment of nodes to communities

— BTER: Determined during community
building phase

— LFR: Random assignments; any node
can go into a community where the size
is higher than its “internal degree”

 Internal vs. external links
— BTER: Varies by node

— LFR: constant proportions for all nodes Lancichinetti, Fortunato, & Radicchi,
* Community sizes Benchmark graphs for testing community
— BTER: All sizes down to 3 nodes detection algorithms, Phys. Rev. E, 2008
— LFR: Minimum community size specified
by user
e Scalabilty

— FLR community assighment procedure
is not obviously parallelizable

1/6/2012 Pinar - JMM 29
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BTER Hlustration for () &=
Power Law Distribution

Degree Distribution Power Law Gamma = 1.9
10* ] Nodes: 10, 269
* O Phase 1 Total Edges: 38, 628
Phase 2 Phase 1 Edges: 20,426
3 .
10% 2% x BTER | Phase 2 Edges: 18,344
Ex o7 (1-02 o= )
o p="5 " log(dpax — 1)
2
10} %,
‘ KD 3 Clustering Coefficient
0.4
: y "
1 3
10 ¢ % 0.3 * **ﬂﬁﬁ*&f ***
%02 A
10 & o ®
e = #
10 s GCC=0.20 k
0 0 11 - 2
10 10 10

Degree
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~ Co-authorship Network (ca-AstroPh)

Degree Distribution

10
o ca-AstroPh WMM LCC %
| % BTER ca-AstroPh 18,771 396,100
10% + CL BTER 18,681 401,788 86
CL 18352 412,384 100
c
2
- X
210
O
1
10}
0
10
10
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Co-authorship Network (ca-AstroPh)

Clustering Coefficient

1 : .
OTER = < O ¢ ca-AstroPh
- *
Phase 1 Edges: 290,268 © %
Phase 2 Edges: 112,808 2 0.8/
g
_ _ log(d—1) \* O g gl
p=0.95 (1 05 ot~ 1)) 2 0.
£
@ _
4%' 0.4
m°m- =
@)
ca-AstroPh 0.32 5 02
BTER 0.31 é
CL 0.01 0
0
10
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"”’“‘E”o-aufﬁorship Network (ca-AstroPh)

Degree Distribution

o O ca-AstroPh Scree Plot
10% t ?IER _ 120 - : : .
* O ca-AstroPh
Ny * BTER
B + CL
3

5%
O
$@@@@@®Q@®®QQQQ@Q

Eigenvalues are not
determined by
degree distribution i

S

II+IIIIILIIIIIII

.......

10 15 20 25
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~ Co-authorship Network (ca-ContMat)

Degree Distribution
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$ ca-CondMat
* BTER
+ CL

mmm

ca-CondMat 23,133
22,938

186,878
190,144

1/6/2012
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22,390 194,190

82
100
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Co-authorship Network (ca-ContMat)

Clustering Coefficient

1 .
BTER >
— ca-CondMat
Phase 1 Edges: 135,246 S - O % BTER
Phase 2 Edges: 55,124 G 0.8 *SI?Q) oL
. © * <
B B log(d — 1) Q
p=0.95 (1 0.95 fla— 1)) % 0.6}
=
() |
= 04
__Graph | GCC | 5
: O
Ca-CondMat  0.26 5 0.2
BTER 0.23 Z
CL 0.00 0
10° 10°

1/6/2012 Pinar - JMM 35



(=
Co-authorship Network (ca-ContMat)

- Degree Distribution Scree PIOt
¢ $og, i (E:;_E;ndMat 45 - - - .
oy oL | * O ca-CondMat
) 40t * BTER
10% %, . O
107 % | ) 39
1010O 10' €%03 c_:; 30; %
> %
Degree GCJ @@@
29 2555@5 '
w o
15¢ ]
5 10 15 20 25
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~© Citation Network (cit-HepPh)

Degree Distribution

W

4
10 -
NIl Graph | Nodes | Edges [LCC%
* BTER cit-HepPh 34,546 841,754 100
107§ S0, + CL BTER 34,351 870,750 99
CL 34,174 880,520 100
I=
2
> X
310
O
1
10 ¢
0
10°L
10
1/6/2012 Pinar - JMM 37



() i,
Citation Network (cit-HepPh)

Clustering Coefficient

O
o

BTER = O cit-HepPh
Phase 1 Edges: 510,864 QC) %« BTER
Phase 2 Edges: 362,358 © 0.4} $ QO L
, 9 *
B B log(d — 1)
p=0.7 (1 0.6 log(dmax—l)) (E)Do_g
=
O
4@ 0.2
_Graph | GCC S
cit-HepPh 0.15 5 0.1
BTER 0.16 Z N
cL 0 0
10" 10' 10° 10°
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Citation Network (cit-HepPh)

Degree Distribution

10° — Scree Plot
o | 120 | | " cit-HepPh
* cit-Hep
. * BTER
q‘é‘}? 1 OO i CL
10’ E_%‘;‘, |
T T
10" — Z%Eﬁm& , =2 801 A%
10 10 10 10 ® <>
Degree é Oé
S ool Tk
= 50000
~ *RRQ
20l ¥22445004
20

10 15 20 25
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~“ Trust Network (soc-Epinions1)

Degree Distribution

‘

10 -
. 2 ! TR
E 1 11,480
$$ L oL pinions1 75,879 8
BTER 72,425 812,724 96
» cL 71,223 812,190 98
5
@)
O
0
10—
10
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Trust Network (soc-Epinions1)

Clustering Coefficient
0.4

% 0 soc-Epinions
¥ BTER

BTER
Phase 1 Edges: 300,162
Phase 2 Edges: 515,192

log(d—1) \~
=0.711-1.25
=07 (11 )

Avg. Clustering Coefficient
o
N

| Graph | GCC 0.1
soc-Epinionsl 0.07
BTER 0.07 0
cL 0.03 10° 10"
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Trust Network (soc-Epinions1)

Degree Distribution

¢ soc-Epinions1

|Eigenvalue|

200
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