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Si Quantum electronics

Tracy et. al., APL 97, 192110 (2010) 

CB valleys in Si: 2-4 splitting

SNL QIST: DQD S-T Qubits in Si
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Method: TB+FCI
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Atomistic tight-binding (NEMO 3D)

• LCAO, full bandstructure method 
(no extra parameter for VS) 
• miscut (tilt)
• surface roughness
• alloy disorder 
• strain 
• hetero-structures
• realistic device geometries
• E-fields
• B-fields
• multi-million atom systems (HPC)

Good 1e wfs +
Full CI for few 
electrons

Configuration Interaction 
E. Nielsen, et. al. PRB 82, 
075319 (2010).

• Few electron full Hamiltonian
• J, K in k-space
• Computational speed (HPC)
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B-field

1. Hyperfine Stark Effect (CQC2T)

Collaboration: F. Mahiyaddin, A. Morello, A. Dzurak, L. Hollenberg

A(E)/4

A(E) |(E, r0)|
2

Hyperfine resonance measured: 2.8 mT

Hyperfine resonance of bulk P: 4.2 mT
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Hyperfine Stark Effect (CQC2T)

Top Gate = 1.5V
Plunger Gate = -1.875V
Barriers – 0.625V

NEXT_NANO (3D potential)

Plunger Gate Top

60nm

40nm
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Quadratic 
regime

Bulk donors – ionization limited

Theory: Rahman et al. PRL 99, 
036403 (2007)

High Field Hyperfine Stark Effect

Bulk-like 
donor

Donor near 
interface

High-field regime accessible 
due to surface hybridization
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CQC2T measurements explained
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Device 1 – Contact Hyperfine (mT) at different locations of donor 
Slice x at 10 nm from centre of plunger towards barriers
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2. Ideal DQD 2e states (NEMO+CI)
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
T(1,1)

S(1,1)

S(0,2)

Single-valley (GaAs)

TB+CI

Multiple singlets and 
triplets with small 
valley coupling
(E. Nielsen)J
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Defect at tunnel barrier (1e states)
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20 nm

potential

Tunnel coupled gap
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Defect at tunnel barrier between dots
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2 nm

• Curve flattens as tunnel 
barrier is lowered

• Exchange at zero 
detuning increases

• J curve is sensitive to 
defect depth and 
magnitude

• Defects in the barrier 
can make it hard to form 
a DQD
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Defect at center of one dot (1e states)

20 nm
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potential



Slide 13

Defect at dot center
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• Defect away from the tunnel 
barrier manifests as a shift in 
the J-curve (modified 
detuning)

• Produces asymmetry 
between the (0,2) and (2,0) 
occupation by changing the 
electrostatic landscape. 



Slide 14

Defect at different distances from barrier
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• J-curve is sensitive to 
defect location relative to 
the dots
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Atomistic models of interfaces: miscuts
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2 degrees (step length 3.8 nm, 7:1/4)

• QDs parabolic in x, y

• Uniform E-field in z (5-10 MV/m)

Si

0.5 degrees (step length 15 nm, 28:1/4)

Si

SiGe

Si

• 20% Ge, 80% Si

• Kharche et. al., APL 90, 092109 (2007)

+ alloy disorder
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Effect of tilt / ideal steps
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VS -> number of steps the wf samples.

E-field increases VS.

Higher tilt suppresses VS.

At fixed tilt, larger dots -> smaller VS
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Intuition from EMT
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M. Friesen et al., APL 89, 202106 (2006)

Ev  2 dr3ei2k0z F(r)
2
Vv(r)VS:

2k0z  0.85z 
a0

4
Ideal Steps:

Roughness randomizes the phase factor, cancels out the suppression.

Step height: a0/4 (monolayer)

Extended wavefunction More confined wavefunction
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Effect of barrier material (alloy disorder)
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2 degree tilt

Alloy disorder -> atomistic fluctuations in CB edge.

Less quantum confinement -> less VS.

Roughness  -> increases VS (tends to nullify tilt).

Passivated vs. SiGe barriers

Roughness

Si

SiGe
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Atomistic models of interfaces: step roughness
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Reconstructed surfaces in y

Roughness model: alternate ideal and 
rough steps, Zandvliet & Elswijk, PRB 
48, 14269 (1993).

Other models: 
Goodnick et al.,PRB 32, 8171 (1985)
Jones et. al., PRL 75, 1570 (1995)
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Effect of step roughness
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2 degrees

Roughness increases VS: partially cancels the effect of tilt.

Alloy disordered systems are more complicated.

Future work: Different roughness profiles

Passivated

2 degrees

SiGe
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Conclusions
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• Atomistc tight-binding – a high precision tool for device modeling 

• Hyperfine Stark effect modeling is helping to understand measurements

• Developed TB + CI methodology to investigate J-curves

• J-curves are sensitive to defect locations and densities, but mostly 
tunable

• Effect of valley splitting, surface roughness, miscuts can be studied 


