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OINT

Quantum Infarmation ScT
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Si Quantum electronics

CB valleys in Si: 2-4 splitting
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OINT

Ovantum Information S¢T

Good 1e wfs

Atomistic tight-binding (NEMO 3D)

» LCAQ, full bandstructure method
(no extra parameter for VS)

» miscut (tilt)

* surface roughness

» alloy disorder

* strain

* hetero-structures

» realistic device geometries

* E-fields

- B-fields

» multi-million atom systems (HPC)

Method: TB+FCl

Full Cl for few
electrons

Configuration Interaction
E. Nielsen, et. al. PRB 82,
075319 (2010).

* Few electron full Hamiltonian
* J, Kin k-space
« Computational speed (HPC)
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Ql‘ﬂ 1. Hyperfine Stark Effect (CQC2T)

Quantum Infarmation ScT
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Hyperfine resonance measured: 2.8 mT

Hyperfine resonance of bulk P: 4.2 mT
Collaboration: F. Mahiyaddin, A. Morello, A. Dzurak, L. Hollenberg
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\Q“
QNl Hyperfine Stark Effect (CQC2T)

Quantum Infarmation ScT
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Q
m\‘l' % High Field Hyperfine Stark Effect

Quantum Infarmation ScT
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036403 (2007) High-field regime accessible
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L)
m\‘l CQC2T measurements explained

Quantum Infarmation ScT
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Device 1 — Contact Hyperfine (mT) at different locations of donor
m Slice x at 10 nm from centre of plunger towards barriers

Quantum Infarmation ScT
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Quantum Infarmation ScT
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2. ldeal DQD 2e

states (NEMO+ClI)

Single-valley (GaAs)

T(1,1)
S(1,1)
TB+Cl
S(0,2)
Singlet
Triplet -----
Multiple singlets and
S A triplets with small
----------- valley coupling
I (E. Nielsen)
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L
m\‘l Defect at tunnel barrier (1e states)

Quantum Infarmation ScT
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k)
m\‘l' % Defect at tunnel barrier between dots

Quantum Infarmation ScT
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m\‘l' Defect at center of one dot (1e states)

Quantum Infarmation ScT
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m\l. %
Quantum Infarmation ScT
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@ :z=1m flnterface

Defect at dot center
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» Defect away from the tunnel
barrier manifests as a shift in
the J-curve (modified
detuning)

* Produces asymmetry
between the (0,2) and (2,0)
occupation by changing the
electrostatic landscape.
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m\‘l' Defect at different distances from barrier

Quantum Infarmation ScT
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Q
m\‘r % Atomistic models of interfaces: miscuts

Quantum Infarmation ScT
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* QDs parabolicin x, y
* Uniform E-field in z (5-10 MV/m)
* 20% Ge, 80% Si

» Kharche et. al., APL 90, 092109 (2007)
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Quantum Infarmation ScT

Effect of tilt / ideal steps

Tilted passivated surface: F=5 MV/m
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Higher tilt suppresses VS.

At fixed tilt, larger dots -> smaller VS

Tilted passivated surface: F=5 MV/m
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VS -> number of steps the wf samples.

E-field increases VS.
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Q
m\‘l. % Intuition from EMT

Quantum Infarmation ScT

M. Friesen et al., APL 89, 202106 (2006)

Extended wavefunction More confined wavefunction
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Step height: a0/4 (monolayer)

VS: E = 2“ dr’e

ACRAG

Ideal Steps: z:% 2k, z=0.857

Roughness randomizes the phase factor, cancels out the suppression.
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a
m\‘l % Effect of barrier material (alloy disorder)

Quantum Infarmation ScT

Passivated vs. SiGe barriers
Passivated vs SiGe: 2 deg tilt, F=5 MV/m
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Alloy disorder -> atomistic fluctuations in CB edge.
Less quantum confinement -> less VS.
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m\‘l % Atomistic models of interfaces: step roughness

Quantum Infarmation ScT
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Roughness model: alternate ideal and
rough steps, Zandvliet & Elswijk, PRB
48, 14269 (1993).

Other models:
Goodnick et al.,PRB 32, 8171 (1985)
Jones et. al., PRL 75, 1570 (1995)
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Quantum Infarmation ScT

Passivated
ldeal vs rough: 2 deg tilt, F=5 MV/m
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Effect of step roughness

Roughness increases VS: partially cancels the effect of tilt.

Alloy disordered systems are more complicated.

Future work: Different roughness profiles

SiGe
Ideal vs rough (SiGe): 2 deg tilt, F=5 MV/m
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L
m\‘l' Conclusions

Quantum Infarmation ScT

» Atomistc tight-binding — a high precision tool for device modeling
» Hyperfine Stark effect modeling is helping to understand measurements
* Developed TB + Cl methodology to investigate J-curves

 J-curves are sensitive to defect locations and densities, but mostly
tunable

« Effect of valley splitting, surface roughness, miscuts can be studied
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