

Data Free Inference
in
Computational Models

SAND2012-0693C

Habib N. Najm

hnnajm@sandia.gov

Combustion Research Facility
Sandia National Laboratories, Livermore, CA

First Annual CESM Uncertainty Quantification and Analysis
Interest Group Meeting
Boulder, CO; Jan 30-31, 2012

Acknowledgement

B.J. Debusschere, R.D. Berry, K. Sargsyan, C. Safta

— Sandia National Laboratories, CA

R.G. Ghanem — U. South. California, Los Angeles, CA

O.M. Knio — Duke Univ., Durham, NC

O.P. Le Maître — CNRS, Paris, France

Y.M. Marzouk — Mass. Inst. of Tech., Cambridge, MA

This work was supported by:

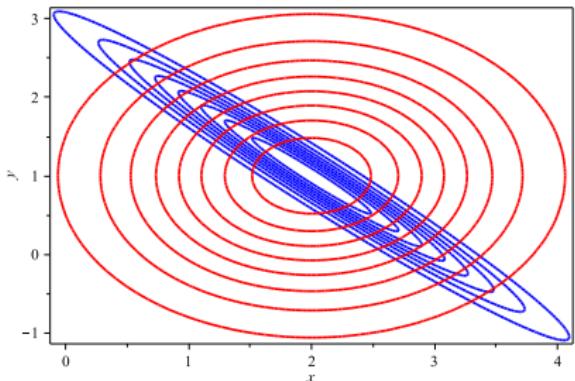
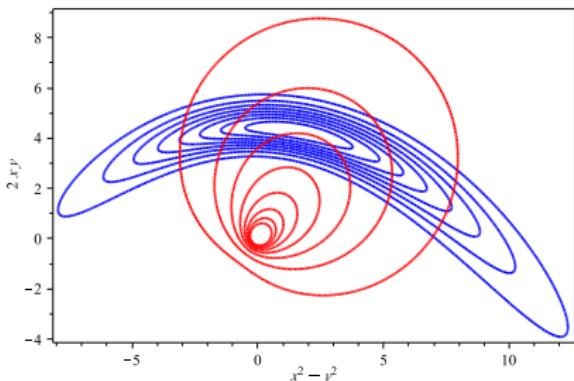
- US Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR), Scientific Discovery through Advanced Computing (SciDAC)
- DOE Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences, and Biosciences.
- DOE ASCR Applied Mathematics program.
- 2009 American Recovery and Reinvestment Act.

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000.

Motivation

- Probabilistic UQ requires specification of uncertain inputs
- Require joint PDF on input space
- PDF can be found given data
- Typically such PDFs are not available from the literature
 - Summary information, e.g. nominals and bounds, is usually available
- Uncertainty in computational predictions can depend strongly on detailed structure of the missing parametric PDF
- Need a procedure to reconstruct a PDF consistent with available information in the absence of the raw data
 - “Data Free” Inference (DFI) (Berry *et al.*, JCP 2012)

The strong role of detailed input PDF structure



- Simple nonlinear algebraic model $(u, v) = (x^2 - y^2, 2xy)$
- Two input PDFs, $p(x, y)$
 - same nominals/bounds
 - different correlation structure
- Drastically different output PDFs
 - different nominals and bounds

Outline

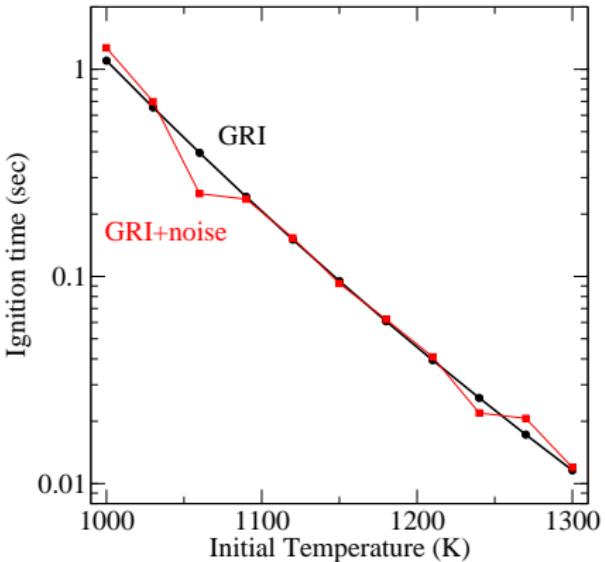
- 1 Motivation
- 2 Inference baseline in a chemical system
- 3 DFI demonstration in a chemical system
- 4 Closure

Generate ignition "data" using a detailed model+noise

- Ignition using a detailed chemical model for methane-air chemistry
- Ignition time versus Initial Temperature
- Multiplicative noise error model
- 11 data points:

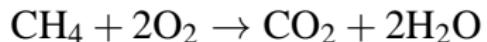
$$d_i = t_{\text{ig},i}^{\text{GRI}} (1 + \sigma \epsilon_i)$$

$$\epsilon \sim N(0, 1)$$



Fitting with a simple chemical model

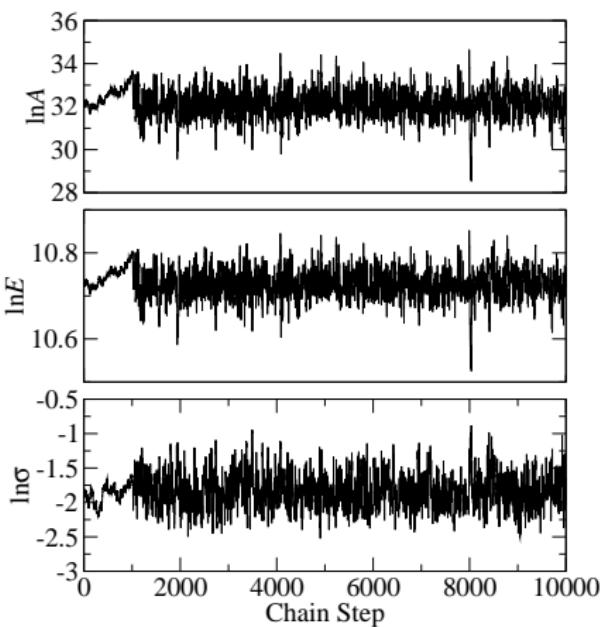
- Fit a global single-step irreversible chemical model



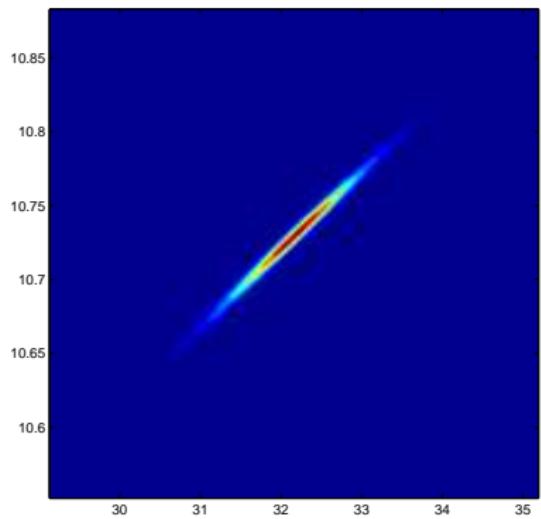
$$\mathfrak{R} = [\text{CH}_4][\text{O}_2]k_f$$

$$k_f = A \exp(-E/R^o T)$$

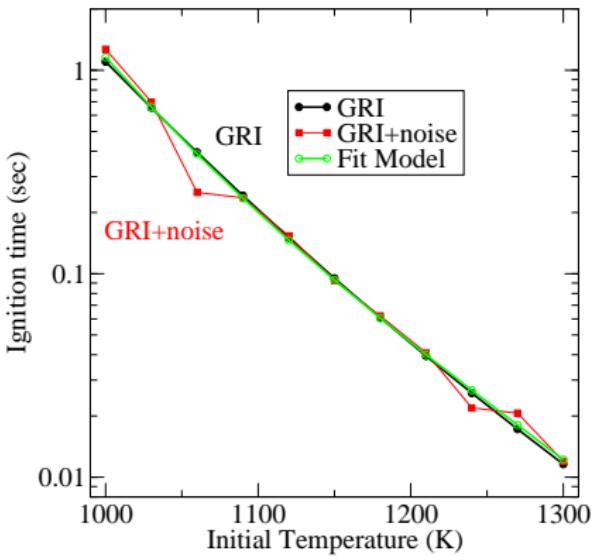
- Infer 3-D parameter vector ($\ln A$, $\ln E$, $\ln \sigma$)
- Good mixing with adaptive MCMC when start at MLE



Bayesian Inference Posterior and Nominal Prediction



Marginal joint posterior on $(\ln A, \ln E)$ exhibits strong correlation



Nominal fit model is consistent with the true model

Data Free Inference (DFI)

(Berry *et al.*, JCP 2012)

- Intuition: In the absence of data, the structure of the fit model, combined with the nominals and bounds, implicitly inform the correlation between the parameters
- Goal: Make this information *explicit* in the joint PDF
- DFI: discover a consensus joint PDF on the parameters consistent with given information:
 - Nominal parameter values
 - Bounds
 - The fit model
 - The data range
 - ... potentially other/different constraints

Data Free Inference Challenge

Discarding initial data, reconstruct marginal ($\ln A$, $\ln E$) posterior using the following information

- Form of fit model
- Range of initial temperature
- Nominal fit parameter values of $\ln A$ and $\ln E$
- Marginal 5% and 95% quantiles on $\ln A$ and $\ln E$

Further, for now, presume

- Multiplicative Gaussian errors
- $N = 8$ data points

DFI Algorithm Structure

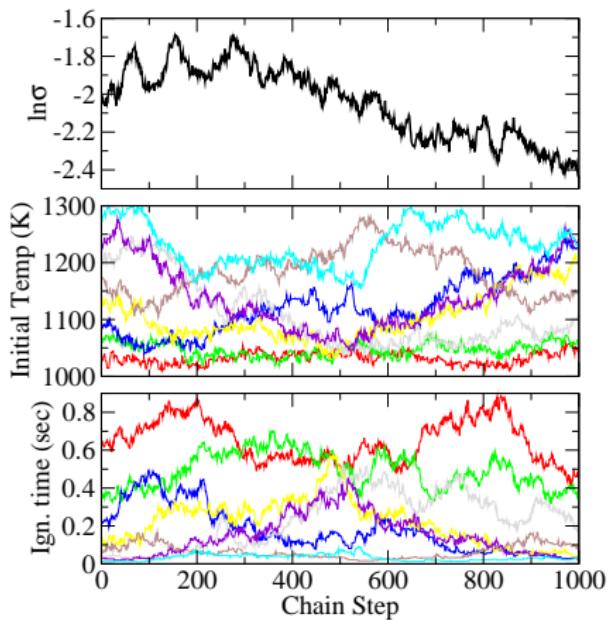
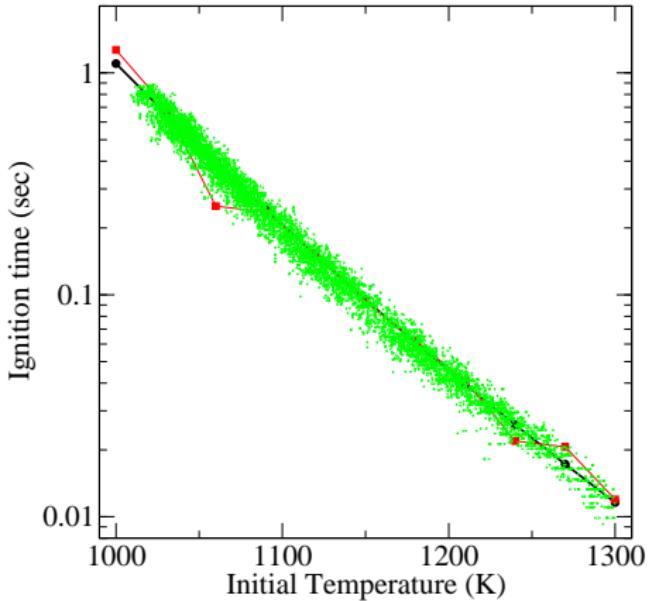
Basic idea:

- Explore the space of hypothetical data sets
 - MCMC chain on the data
 - Each state defines a data set
- For each data set:
 - MCMC chain on the parameters
 - Evaluate statistics on resulting posterior
 - Accept data set if posterior is consistent with given information
- Evaluate pooled posterior from all acceptable posteriors

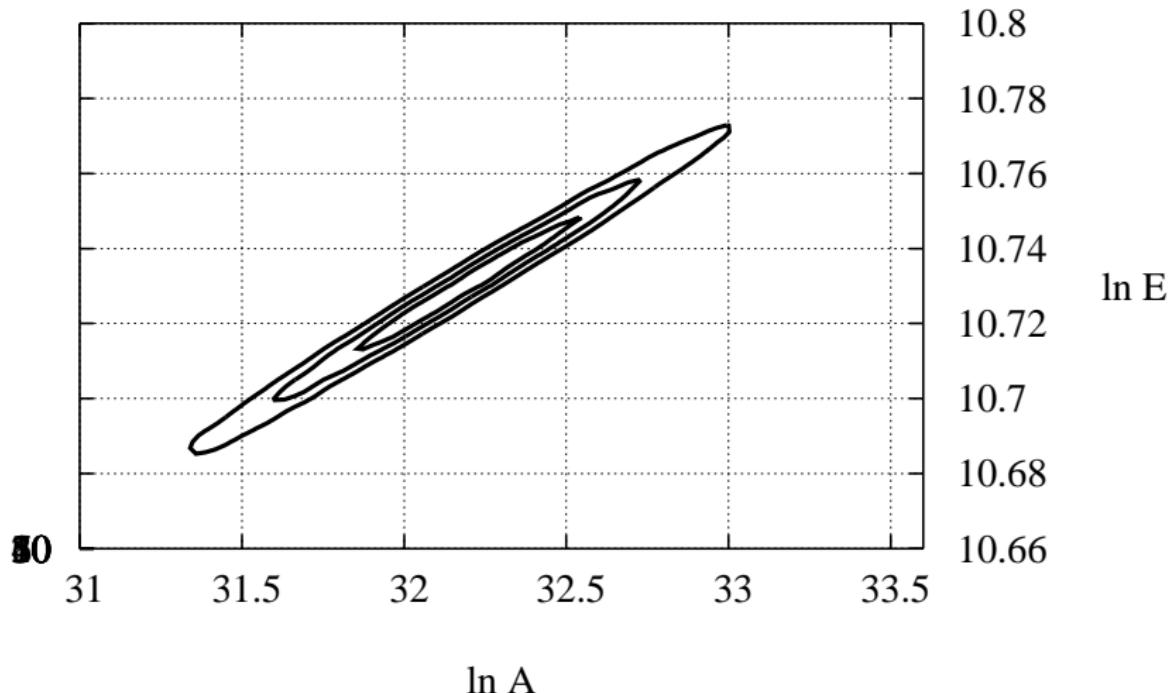
Logarithmic pooling:

$$p(\lambda|y) = \left[\prod_{i=1}^K p(\lambda|y_i) \right]^{1/K}$$

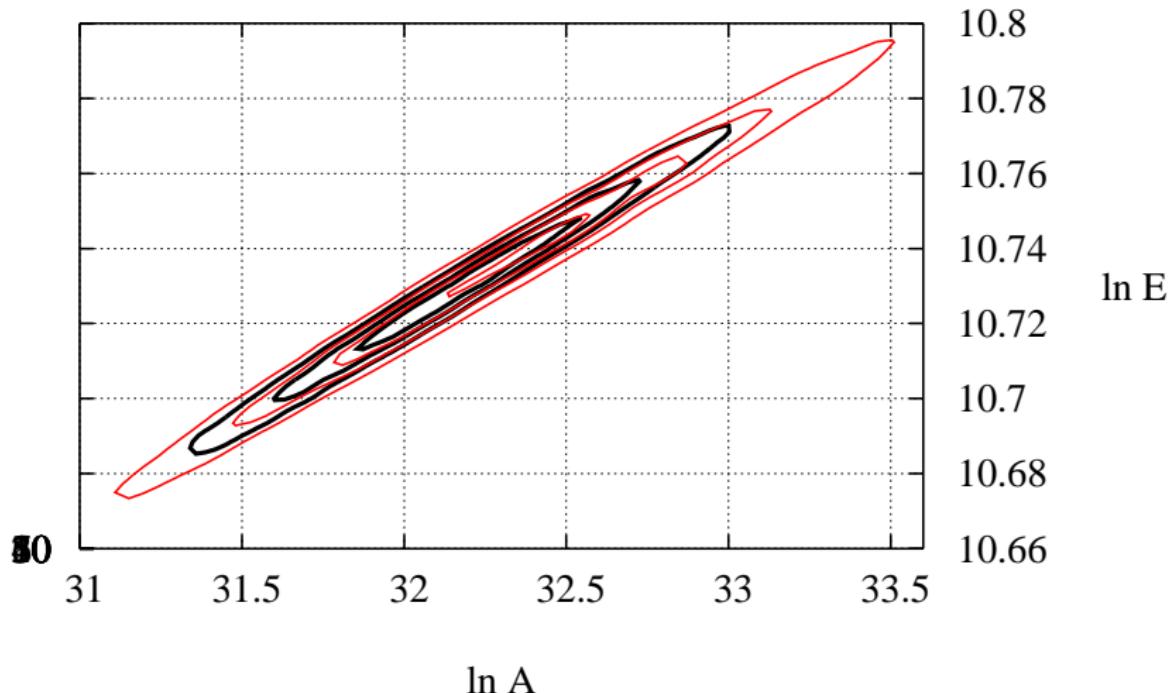
Short sample from outer/data chain



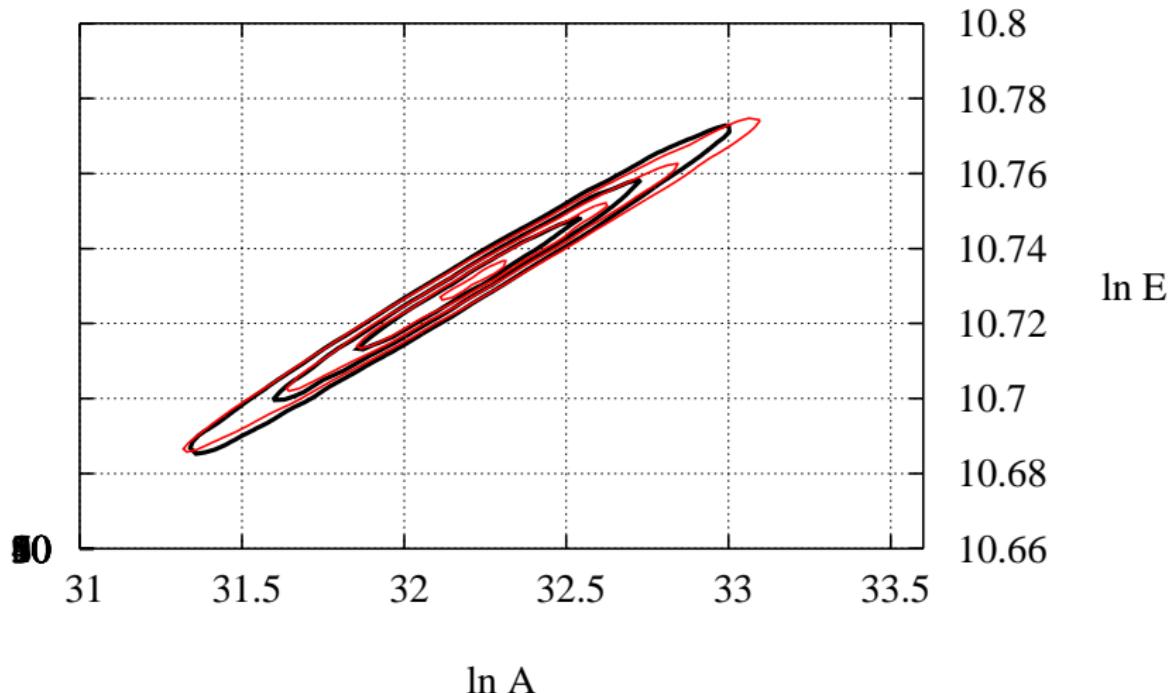
Reference Posterior – based on actual data



Ref + DFI posterior based on a 1000-long data chain



Ref + DFI posterior based on a 5000-long data chain



Closure

- Need for probabilistic characterization of uncertain inputs of climate models
 - Correlations important for uncertainty in predictions
- Given either old or new data
 - Bayesian inference can be used to provide the joint posterior PDF on model parameters
- In the absence of data
 - DFI \Rightarrow joint PDF consistent with available information
 - Relationship to the Bayesian missing data problem, and maximum entropy estimation
 - Require information on experiments/instruments/fitting used to measure each parameter