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On-orbit cryocoolers — MTI Satellite

launched: 3/12/00
= Capacity 3W @ 65K, M T I mﬂg‘

closed loop temperature
control

= Ran continuously from
11/2000 to 11/2007
(battery anomaly),

restarted 2/2008 and
running since

= With small adjustments to
closed-loop control, has
kept FPA very stable @
75K throughout life




Thermal detector needs

= Requirement:
= Eliminated or reduced cooling requirements, while maintaining or
improving HgCdTe-like NETD
= Possible Approaches: -
= Uncooled, high-sensitivity IR FPA
= Reduced cooling requirements
= Spatially-separated cooling

= Technologies:
= Next-Gen Bolometer technology
= High-conductivity FPA radiator/substrate
= Flexible, long-life heatpiping
= High-efficiency TE cooling
= |Low-vibration, high reliability sterling cooling




Problem & approach

PROBLEM
= Current on-orbit cryo-coolers use mechanical pumps which can cause vibration and image
blur

= Mechanical cryo-coolers require large radiators to remove heat which can increase satellite
size and mass

= Importance — Development of small, agile coolers that do not interfere with satellite
operability is needed

APPROACH

» Optical refrigeration provides a solid state, reliable means of vibrationless cooling

Laser light Shining laser light on a
||— l material results in bulk
cooling through anti-Stokes
luminescence.

* Increasing the n-doping in the passivation layer creates a small depletion region around
the InGaP/GaAs junction




The cooling cycle in semiconductors

Radiative relaxation must dominate e-h

pair recombination for cooling to occur. External quantum efficiency:
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Optical characterization shows long
lifetimes

GalnP, n-doped: 2e17 — 1e19 cm® o
Cooling layer: GaAs, undoped ®
GalnP, n-doped: 2e17 — 1e19 cm? ?55
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Increased n-doping in the GalnP leads
to longer lifetimes

0.5 pm GalnP, n-doped: 2e17 cm™ o e 0.5 um GalnP, n-doped: 1e18 cm™
1.0 um GaAs, undoped o : double - ® 1.0 um GaAs, undoped
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Luminescence extraction simulation

For luminescence to contribute to cooling it must
be extracted from the sample to free space.

sample, n=3.
1. Generated luminescence gets trapped inside the \v 2% of light
semiconductor due to total internal reflection ‘ extracted

1.0 cm dia.
ZnSe dome lens

~ 13% of light
~ extracted

Luminescence

toluminescence »)

\ extraction modeling —

0.5 pm GaInP.__ HE
1.0 um GaAs o

0.5 um GalnP o 2 \Reconed

surface

L.

" dome, n=25

2. Bonding of the semiconductor to a high index
opftical element facilitates luminescence extraction




ZEMAX modeling results:
geometry and material eIy

: . .. structure
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Texturing has the consequence of
luminescence red-shifting

ZnSe Dome, Luminescence Redshifting, 300K
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results in greater luminescence red-
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Break-even cooling condition

at 300K*
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*M. Sheik-Bahae and R. I. Epstein, Phys. Rev. Lett., Vol. 92, No.24, pp. 247403-1 (2004).




Significance

Developed GalnP/GaAs double heterostructures with:

1. High n-doping (=107% cm?3) in the passivating GalnP layer
2. Longer nonradiative lifetimes compared to baseline structures

How:

« Use gas purges between layer growths to create abrupt junctions and prevent dopant
bleeding

Next Steps:

1. Fractional heating - external quantum efficiency (EQE) measurements




