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Motivation

Many nonlinear optics phenomena are due to the Kerr effect and its
associated nonlinear refractive index n,.

A good measurement of n, is therefore vital for understanding these
phenomena, such as: self-focusing, self-phase modulation, spectral
broadening, self-compression, and filamentation.

At our wavelength and pulsewidth of interest (1054 nm, 540 fs) no
such measurements for n, exist.

Using a wavefront sensor we propose to directly measure the self-
focusing contribution in a focused beam geometry setup.
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Conceptual Experimental Setup

= [nitially, a collimated low energy beam is focused (L1=f1) into a gas
cell and re-collimated with L2=f2.

= As the laser beam power increases, the focus will move a distance A
toward L1. This new focus is then re-imaged by L2 at a distance R+d,
where R is the radius of curvature measured at the wavefront sensor.

= A can then be calculated from the thin lens equation:

L1
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Wavefront Sensor Data

Typical measurement from our Phasics SID-4 wavefront sensor:

= (a) At 0.3 mJ beam energy, a flat wavefront with a PV “defocus” term of
-0.005 waves is recorded.

= (b) At 5.4 mJ of energy a “defocus” term of 0.05 waves is detected.
The radius of curvature R can be calculated from the Zernike
“defocus” term Z°,. For a WFS pupil of radius a: .
R

)
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Nonlinear Focal Shift

In a focusing beam geometry, to first order, nonlinear focal shift is due

to a combination of:

= Kerr effect: As the beam power increases, the Kerr effect leads to self-

focusing through the intensity dependent index change An=n,l .
= |onization: As the beam intensity increases near focus, the laser generated

electron density will de-focus the beam before it reaches the geometrical

focus. This also leads to a focal shift toward the input optic L1.

2.0X104-_ —2mJ
1.8x10%4 ~~~~4mJ
1.6x10™ -
1.4x10™ -
E1.2x10%
2 1.0x10%4
; 4
£ 8.0x10°
8 4
S 6.0x10°

4.0x10°

2.0x107° -

0.0 T T T T T } T T T
1.47 1.48 1.49 1.50 1.51 1.52 1.53

propagation distance z (m)

Laser beam waist versus propagation distance. Note how the
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Measurement showing focal shift versus laser energy/power.
Note the distinctly different behaviors for the two different

focusing geometries.
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Theoretical Modeling

The spatial evolution of the beam waist w(z,t) along the propagation
axis z is governed by the Kerr effect (and its associated n,) as well as
ionization (and its corresponding ionization coefficient (X)),
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The first two terms describe diffraction and self-focusing and the last
term represents a K" order multi-photon ionization (MPI) process.

For a square temporal pulse profile one can obtain a simple equation
that is solely dependent on propagation distance z.
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Experimental Results

The above equation can be numerically integrated using initial
conditions: w;=w(z=0) and dw(0)/dz=-w,/f1 .

Experimental data can then be fitted by varying n, and ¢(¥) (K=11 for
air/oxygen) until both focusing geometries can be reproduced
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Data Interpretation

= The measured n, value compares well with published data at
wavelengths close to 1054 nm.

= However, ¢{1) is about 10 orders of magnitude lower than would be
expected from the weak field Keldysh approximation. The reason for
that is the fact that the experiment operates in the intensity clamped
regime of 3.5x10'® W/m2 which is tunneling ionization dominated.
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Data Interpretation

PPT model of gas ionization rates versus laser intensity.

— = lonization rate predicted by weak field Keldysh approximation for O, at 1054nm

- Measured ionization rate
—— PPT model for oxygen at 1054nm
—— PPT model for oxygen at 800nm
1 018 —— PPT model for nitrogen at 1054nm
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Conclusion

We have demonstrated a novel method for measuring n, and the
associated ionization rate under atmospheric conditions.

It has been shown that ionization plays a large role in the self-focusing
behavior of ultra-intense laser beams.

A semi-analytical model has been employed to account for Kerr self-
focusing and plasma de-focusing. This model reproduces the data
well and allows for extraction of n, measurements and ionization
rates.

The measured ionization rates are consistent with predictions from the
PPT theory.

In principle, the above technique is applicable to a broader range of
wavelengths and pressures. However, one should make some initial
estimates of the expected focal shift in order to verify that the
wavefront sensor is sensitive enough to register the expected
wavefront deformations.
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