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ABSTRACT

The latest version of the Portals interconnect programming
interface contains several improvements intended for MPI
point-to-point and one-sided communication operations, in-
cluding new functionality defined in MPI-3. This paper dis-
cusses the rationale for these improvements to Portals and
describes how they can be used in an MPI implementation.
We provide preliminary micro-benchmark performance re-
sults using a reference implementation of Portals over In-
finiBand Verbs and the Open MPI implementation.
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1. INTRODUCTION
The MPI Standard [11] and accompanying implementa-

tions have evolved over the last twenty years to allow appli-
cations to continue to scale to machines with several hundred
thousand network endpoints and beyond. The MPI Forum
is continuing to develop the specification to address perfor-
mance, scalability, and usability issues that will be required
to allow applications to continue to run effectively on multi-
petascale systems and eventually on exascale systems. As
MPI evolves, so must the underlying transport layers upon
which MPI implementations are layered.
Similar to MPI, the Portals [7, 8] data movement layer

has been developed for nearly twenty years and has gone
through several updates to address performance, scalabil-
ity, and usability issues for implementing several upper-layer
protocols, including MPI, for extreme-scale computing plat-
forms. The previous generation of the Portals interface sup-
ported MPI and several other upper-layer protocols on the
Cray SeaStar [6] network on the Cray XT series of machines,
including Oak Ridge National Laboratory’s Jaguar, which
was the first petascale machine composed entirely of com-
modity x86 processors. The most recent version of Portals,
version 4.0 [4], has been enhanced to support new capabil-
ities available in MPI 3.0, such as non-blocking collective
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operations [14], as well as to provide optimizations for one-
sided networking interfaces like OpenSHMEM [1]. In this
paper, we describe the changes made to Portals to better
support MPI peer communication operations as well as MPI
one-sided operations.

The rest of paper is organized as follows: In section 2,
we first introduce basics of portals 4.0 and its important
functionalities. Then we continue with description of our
design and implementation in Section 3 along with Section
3.1 on point-to-point operations and Section 3.2 on one-sided
operations. In Section 4, we offer performance evaluation
and at last we discuss our future work in Section 6.

2. PORTALS 4.0
Portals 4.0 is a modern network data transfer interface

specification that is designed to be highly scalable and offer
low overhead. The main goal of Portals implementations is
to serve as optimized data transfer layers for upper layer
protocols like MPI. The motivation for the enhancements to
Portals between the previous version and the current version
have been previously discussed [10, 5].

Portals’ data transfer mechanism is one-sided. Usual one-
sided data transfer systems require three values for address-
ing a target buffer: rank, buffer id and offset. Portals ad-
dressing needs rank, an index to portal table (PTE), match

bits, and an optional offset. Each virtually initialized portal
network interface has at least 64 indices in a portal table
(PT), which is used as a protocol switch [9] for flexibility in
higher level protocols. Match bits is a 64-bit integer that is
used to match an incoming request with an already posted
match entry (ME). Match entry structure has a buffer ad-
dress, offset, an optional flag, and two 64-bit integers repre-
senting match bits and ignore bits. ignore bits serves as a
mask to ignore certain bits of incoming match bits.

There are two types of addressing semantics in Portals:
Matching and Non-matching. In matching semantics, each
incoming request is matched to a pre-posted match entry
based on its match bits while in non-matching semantics,
an incoming request will be assigned to the first buffer avail-
able. Matching semantics are useful for MPI implementa-
tions while non-matching semantics are better aligned for
implementations of systems such as OpenSHMEM.

In matching semantics, each PTE refers to a match list,
which is basically a list of match entries, and a list of un-
expected headers, which saves the information about unex-
pected requests in a list. Match lists are broken into two
sublists: the priority list and overflow list. Match entries
can be appended to both lists depending on the usage. The
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Figure 1: Portals 4.0 Addressing Semantics (Matching)

priority list is used for handling normal requests, while the
overflow list is designed to help handling unexpected mes-
sages1. In a Portals communication operation, if a request
cannot be matched to any match entries in priority list, the
overflow list will be searched and, regardless of a match in
overflow list, the request information will be saved in un-
expected header list. On the other hand, when appending
a match entry to a match list, first the unexpected header
list will be searched for a match and if the match is found it
will generate an appropriate event without appending match
entry to the match list, otherwise the match entry will be
appended to match list. While both priority and overflow
lists can be searched and modified for a match entry, there
is no direct access to the unexpected header list in Portals.
Exposing unexpected messages through the overflow list

is one of the most visible changes made to Portals to bet-
ter support MPI. Searching the unexpected message list and
posting a receive must be done atomically, and the previous
approach in Portals was inefficient. For an offloaded im-
plementation, the previous approach required a round-trip
operation between the host and network. The overflow list
allows the network to perform the search-and-post operation
and either identify a matching unexpected message or post
the receive without further involvement from the host.
Data transfer operations use memory descriptors (MDs)

on the initiator side. Each MD describes a region of mem-
ory and optional event queues and should be bound using
PtlMDBind() before start of any communication operations.
Binding is an important function that is necessary for un-
derlying networks like InfiniBand [12] to pin the memory
before any data transfer.
Portals uses an event-based mechanism to notify the up-

per layer any type of event. Each PTE includes an event
queue which records all events. An event contains all the
information about an operation and its consequences. Cap-
turing all information on an event introduces high overhead

1A arrival message is unexpected when there is match-entry
posted in match-list to accept the match bits of message

which is not needed in every case. To compensate this prob-
lem another lightweight event type called Counting Events

(CT) is introduced. Counting events are used to record just
the number of successful or failed operations happened on a
particular MD or ME. They are also used in triggered oper-
ation when an operation should not be started until certain
number of events happen in an event queue [2]. Both types
of event can report event type and its state as either success
or failure. During an operation different events can happen
on both initiator and target side.

3. DESIGN AND IMPLEMENTATION
In this section, we describe our implementation of MPI

3.0 on Portals 4.0. We based our work on the Open MPI de-
velopment trunk.2 Both MPI point-to-point and one-sided
data movement operations are implemented on top of Por-
tals 4.0. For each types of protocols one or more PTEs are
allocated. In the next section, we describe the implementa-
tion of each protocol in detail.

3.1 Point-to-Point Operations
Based on the approach in [9], our MPI point-to-point com-

munication uses a two-level protocol for optimizing short
and long message transfers. For long transfers we have two
protocols from which to choose: eager and rendezvous. Dur-
ing initialization three PTEs are allocated: recv, read and
flow control. The recv PTE is used for sending/receiving
messages, while read PTE is used for rendezvous long mes-
sages and overflow PTE is used to handle message processing
in case of overflow.

The match bits for point-to-point protocols are partitioned
into four parts: Four bits are reserved to encode the type of
protocol (long and short transfers, two bits are enough but
four is chosen for simplicity and reserve for further modifi-
cations of protocol), 12 bits for communicator’s context id,
16 bits for source rank, and 32 bits for message tag. Match

2The point-to-point work is available in Open MPI 1.7 and
the one-sided work will be available in Open MPI 1.4.2.



bits allow for a reunification of the partitioned name space of
MPI’s multiplexing and demultiplexing of messages with the
concepts of communicator ‘context’, message tag, source or
destination ranks, and transport properties internal to the
implementation without multiple stages of demultiplexing in
software.

3.1.1 Short Messages

In our implementation, short messages are transferred us-
ing an eager protocol. The entire message buffer is trans-
ferred and if target is not ready, the message will be buffered
in target. When MPI_SEND() is called in initiator, an associ-
ated MD is created, configured with the buffer information,
target address, and match bits, and is bound through por-
tals library. On the target side, on the call to MPI_RECV(),
an ME is configured and attached to the priority list. A call
to Portals’ PtlPut() in initiator will transfer buffer to the
target side.
In order to buffer unexpected messages, 16 MEs with

1 MB buffers will be attached to the overflow list of the recv
PTE and its ignore bits are configured to accept any incom-
ing short message. If a message is unexpected, Portals will
save the message in unexpected buffer and its information
in the unexpected header list. The PTL_PUT event in tar-
get shows the arrival of message in the unexpected buffer.
When MPI_RECV() is called in the target, attachment re-
quest is called for appropriate ME to priority list, but por-
tals first will search through unexpected header list and if it
finds a match, target will be notified with its information in
a PTL_PUT_OVERFLOW event and message have to be copied
manually to destination buffer from unexpected buffer. Ini-
tiator process will be notified of completion of transfer in
local side in a PTL_SEND event and if needed an additional
PTL_ACK event shows whether transfer was succeed or failed
(dropped in target).

3.1.2 Long Messages

We have two implementations for long message transfers:
eager and rendezvous. In the default eager protocol, the
message is eagerly sent to the receiver. If no ME is at-
tached in target, the whole message will be dropped and its
information will be saved in unexpected header list. After
MPI_RECV() call, the message can be retrieved using Ptl-

Get() operation in the target using a unique send identi-
fier generated by the sender and sent in the original request
as out-of-band data. In the rendezvous protocol, the first
eager limit bytes of the message are sent eagerly. If the
message is unexpected, the first part of the message is de-
livered in the short message unexpected queue, otherwise it
is delivered directly into user memory. A PtlGet() is issued
either when the receive is posted (for the unexpected case)
or during the next test/wait call (for the expected case).
The eager protocol always provides asynchronous progress
but wastes bandwidth for unexpected messages, while the
rendezvous protocol only provides asynchronous progress for
unexpected messages but does not waste bandwidth.

3.1.3 Overflow Control

In message passing systems exhaustion and overflow can
happen when traffic toward a single process gets out of con-
trol. Resource exhaustion specially happens with two-sided
semantics where unexpected messages happen frequently. In
our implementation two situations can trigger overflow. Ei-

ther number of unprocessed unexpected short messages go
over its limits or many long messages are left at buffer that
cause resource exhaustion. [3] implements a recovery-based
overflow control mechanism in our implementation. Portals
4.0 provides a valuable interface for handling unexpected
messages though overflow list and unexpected header list.
In addition PTE can be disabled to stop receiving any in-
coming message in case of any resource exhaustion. Two
methods were implemented, a static credit based, which
increases allocated memory for unexpected short messages
when number of processes increases. A second approach is a
receiver-managed flow control which basically when overflow
happens, PTE is disabled and all other processes are notified
that a process entered into a flow control recovery session
(triggered operations are used to notify all processes), All
send operations are queued locally and waiting operations
in receive queue are processed. All processes exit control
flow recovery through a barrier and finally waiting messages
are retransmitted to their destination.

3.2 One-sided Operations
The Portals 4 implementation of one-sided supports true

asynchronous operation for both active and passive target
synchronization, with an eager protocol used for communi-
cation in both situations. Each window includes a commu-
nicator duplicated from the communicator used to create
the window. This communicator is used both for collective
operations during active target synchronization and as the
source of a unique identifier for the window. Each window is
represented in Portals by two match list entries, one expos-
ing the user memory for the window and the other expos-
ing control data, such as lock status and post and complete
counts. Additionally, a window includes two memory de-
scriptors that cover all memory of the local process. Both
memory descriptors increase a counting event for acknowl-
edgments and one also generates full events and is used for
the new request-based operations. Window creation is al-
ways collective, and a barrier in particular is used to ensure
that all memory descriptors are set up before any process
exits the creation function.

The new MPI-3 dynamic windows pose a challenge for
many network interfaces, since the dynamic nature of the ex-
posed memory requires significant sharing of state through-
out the window lifetime. Portals optionally allows a list
entry or match list entry to span a process’ virtual memory
space. Current implementations provide this support, so the
current one-sided implementation creates a single match list
entry exposing the entire process space for dynamic win-
dows. A scheme of match list entries per exposed segment
will be used in the unexpected case where a Portals imple-
mentation does not provide this feature.

3.2.1 Communication

Portals imposes a number of data transfer sizes that are
important to the MPI-3 one-sided implementation. Atomic
operations are limited to an implementation-defined size,
likely to be in the range of the network’s packet size. Op-
erations are only data ordered (they are always header or-
dered unless explicitly requested to be unordered) if they
are smaller than another implementation-defined size. For
MPI_PUT() and MPI_GET() operations, these sizes do not
come into play, as they are always unordered. However,
accumulate operations must be broken down at the source



into multiple operations no larger than the maximum atomic
size (or maximum ordered size if strict ordering is enabled).
Portals provides put and get interfaces similar to those

provided by MPI_PUT() and MPI_GET(), so in the common
case, these MPI calls are simple wrappers around the un-
derlying Portals call. Non-contiguous user-defined datatypes
are broken up into multiple puts of contiguous datatypes, al-
though this feature is currently under development and only
contiguous datatypes are currently supported. For each Por-
tals put or get call, a 64-bit operation count is incremented,
which allows the implementation to track the number of out-
standing operations by comparing the value of the operation
counter and the counting event associated with the window’s
memory descriptors.
Portals provides atomic and fetch-atomic operations ca-

pable of implementing the accumulate operations of MPI-
3, including native support for most of the MPI-3 primi-
tive datatypes and reduction operations. The exception is
native support for MPI_MINLOC and MPI_MAXLOC. Presently,
these operations are implemented using a lock/unlock strat-
egy, although we are investigating using a thread to avoid
network polling. Unlike the put and get operations, which
only had to be concerned with user-defined datatypes, accu-
mulate operations must also initiate operations that remain
under the message size limits previously described. Like put
and get operations, non-contiguous or long accumulate op-
erations will be split into multiple smaller messages. This is
safe from an atomicity standpoint, as MPI only guarantees
atomicity on the primitive datatype level.
The request-based operations are implemented similarly,

but operations are initiated from a memory descriptor that
generates full events on completion. During the operation, a
request is generated and a pointer to that request is passed
through the user ptr field of the Portals operation and cor-
responding event, allowing completion to be marked on the
event. The operation counter and counting event are still
manipulated like non-request operations, allowing the syn-
chronization operations to only track one completion mech-
anism.

3.2.2 Active Target

Two types of active target synchronizations are defined
in the MPI standard: Fence and generalized. MPI_WIN_-

FENCE() is a collective call which is called on both ’bookends’
of communication (before and after a set of puts and/or
gets constituting an epoch). After this call, all one-sided op-
erations should be finished on both local side and remote
sides, from the perspective of each process. Fence waits for
the counting event to reach the same value as the opera-
tion counter, meaning that all operations have completed
remotely (a Portals acknowledgment is only generated after
remote completion), then enters a barrier call on the com-
municator associated with the window.
Generalized active target synchronization allows subsets

of processes to synchronize, using MPI groups to describe
the overlapping exposure and access epochs. An exposure
epoch is started by a call to MPI_WIN_POST(), which atomi-
cally increments a counter on each process in the associated
access epoch. The access epoch is started by a call to MPI_-

WIN_START(), which spins waiting for the atomic counter
to reach the number of processes in the associated exposure
epoch. Completion is essentially the inverse, with MPI_WIN_-

COMPLETE waiting for remote completion using the counting

event and then incrementing an atomic counter at the pro-
cess in the exposure epoch. MPI_WIN_TEST() and MPI_WIN_-

WAIT() indicate completion when the atomic counter reaches
the size of the group.

3.2.3 Passive Target

Passive target synchronization allows true one-sided com-
munication, in which the target does not have to enter the
MPI library for progress to be made. Passive target access
epochs are bounded by calls to MPI_WIN_LOCK() and MPI_-

WIN_UNLOCK(), which provide exclusive or shared access to
the remote window. MPI-3 adds MPI_WIN_LOCK_ALL() and
MPI_WIN_UNLOCK_ALL() to allow global access epochs, and a
set of flush routines to complete communication calls with-
out completing the access epoch. Finally, MPI_WIN_SYNC()
allows the user to synchronize the private and public copies
of a window without ending the access epoch.

The one-sided implementation over Portals 4 utilizes a
64-bit atomic value at each process to represent the current
lock status, with the lower 32 bits representing a shared lock
counter and the upper 32 bits representing the exclusive lock
counter. A process wishing to start a shared access epoch
on a remote process atomically increments the 64 bit value.
If the updated value is greater than 232, the target is in
an exclusive lock and the counter is atomically decremented
and the process must retry acquiring the lock. If the up-
dated value is less than 232, the process has acquired the
shared access. When the process wishes to end the epoch,
the counter is atomically decremented. A process wishing
to have an exclusive access epoch performs a 64-bit com-
pare and swap operation on the lock value, requiring the
entire value to be 0 and swapping in a 1 at the 32nd bit. If
the compare and swap succeeds, the process has exclusive
access. Otherwise, it must retry. A masked update setting
just the 32nd bit to 0 releases the exclusive access.

The lock-all semantics are implemented by requesting a
shared lock from all peers in the window, with linear com-
plexity. It is assumed that most users of lock-all will provide
the MPI_MODE_NOCHECK assert to lock-all, which eliminates
the required linear operations. Likewise, the nocheck assert
removes the need for the lock communication in the basic
lock case.

The decision to use a polling lock is the result of two
conflicting requirements: to avoid polling on long-latency
events and the requirement to avoid state which scales with
the number of processes in the job. An MCS lock [13] avoids
remote polling, but requires a word of state on every pro-
cess for every lock. A window can be seen as having p locks,
one for each rank in the window, requiring p words of state
at each rank be associated with each window. The polling
implementation, on the other hand, requires only 1 word of
state at each rank be associated with each window, greatly
reducing memory footprint in return for added network op-
erations.

As a trade-off for implementing very lightweight event
tracking, the Portals one-sided implementation is unable to
differentiate between local and remote completion or per-
target completion. All flush variants therefore implement
global remote completion semantics. Although this increases
the cost of local or per-target remote completion, we believe
the trade-off in lower synchronization cost and increased
message rate is advantageous to most applications.



4. EXPERIMENTS
In this section, we describe our experimental results with

the implementation on our machines with 24 cores Intel(R)
Xeon(R) CPU E5-2620 2.00GHz with 64 GB of memory and
OS kernel of 2.6.32-5-amd64 on Debian 6.0.6. Each machine
has Mellanox MT27500 infiniband network card.
We ran our micro benchmarks to capture the latency for

different types of communication and synchronization oper-
ations. In order to truly get the latency of each operation,
synchronization latency should be separated from commu-
nication latency. To reach this goal we first calculated syn-
chronization epoch’s overhead without any communication
in between and then we subtracted this timing value from
a synchronization epoch with only one communication call
in the epoch. In our experiments different synchronization
methods didn’t affect the latency of a data transfer opera-
tion. As shown in Figure 4 We did experiment for MPI_-

PUT() and MPI_GET() for one-sided and MPI_SEND()/MPI_-
RECV() for point-to-point operations. In all experiments we
the lowest latency belonged to put operation while two-sided
operations have higher latency.
Figure 3 shows our experiments with communication band-

width for the same MPI methods. To calculate the band-
width we called data transfer function several times in a syn-
chronization epoch. Results shows we can get more band-
width out of one-sided operations compared to point-to-
point operations.
MPI one-sided synchronization overhead is important spe-

cially if we deal with several processes and race over a few
processes’ buffer can lead to high overhead. All synchro-
nization method are benchmarked with up to 8 processes
as shown in Figure 2. MPI_FLUSH() had constant and low
overhead over all tests and the reason is that it just tries
to complete all local tasks. MPI_LOCK() with MPI_LOCK_-

SHARED option and generalized active target synchronization
for have similar overheads and reason is that in the imple-
mentation both try to synchronize with remote node using
Portals’ atomic operations but there is no race condition
involved. MPI_WIN_FENCE() overhead is high because it is
a collective operations on all processes in window’s group.
Racing to acquire the lock of a single target in MPI_LOCK()

with MPI_LOCK_EXCLUSIVE option results in relatively high
overhead when number of processes increases in contrast to
other synchronization operations.
Figure 5 shows the one way latency of MPI_LOCK() when

the number of calls to MPI_PUT() inside a synchronization
epoch changes. In this experiment the overhead effect of
synchronization is omitted.

5. SUMMARY
In this paper, we have demonstrated the ability to perform

MPI 3.0 one-sided operations using the Portals 4.0 interface,
including the mapping of both MPI 3.0 one-sided and point-
to-point operations to Portals 4.0. The implementation is
throughly described and different trade offs for different pro-
tocols are discussed. MPI’s two-sided operations’ implemen-
tation for both short and long transfers are described and we
also briefly mentioned the overflow recovery mechanism im-
plemented. MPI’s one-sided operations are discussed with
both Active and Passive synchronizations. We provided ex-
perimental results on a modern InfiniBand interconnect, and
obtained good results for one-sided operations.
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6. FUTURE WORK
There plans to move one-sided communication over non-

matching addressing structure of portals and give each win-
dow its own PTE. We trying to support non-contiguous data
types in near future. Improvements on performance and pro-
vide support for different types of upper protocols are our
next goals.
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