

Variable Radii Poisson-Disk Sampling

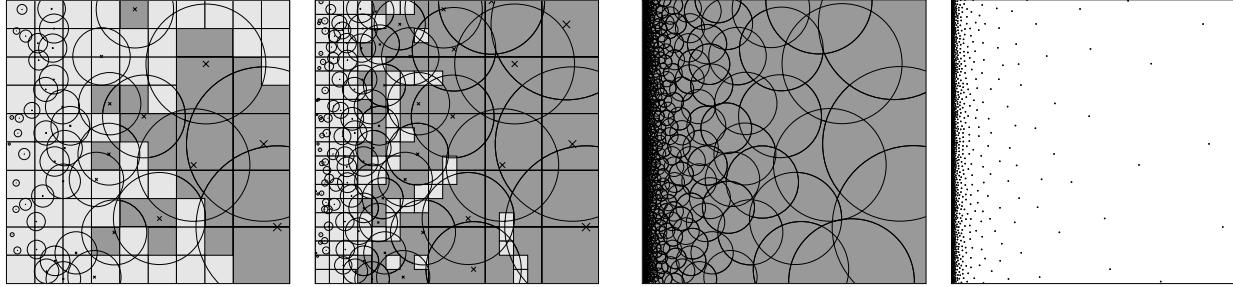


Figure 1: Sampling using prior-disks. Right, the first two iterations, showing flat quadtree refinement and active squares (light). Left, the output disks and samples. The sizing function spans three orders of magnitude over the unit box: $r(x, y) = 0.001 + 0.3x$.

Abstract

We introduce two natural and well-defined generalizations to the definition of the Poisson-disk sampling problem. The first is to decouple the disk-free (inhibition) radius from the maximality (coverage) radius. By scaling these radii by an abstract parameter (e.g. time), we may generate hierarchical samples with more randomness than if a single radius is used. The radial power of the FFT is more uniform than for classical MPS: the oscillating ring pattern is attenuated.

The second generalization is to allow the radii to vary spatially, according to a sizing function. Our main contributions there are a formal characterization of sizing functions (radii) for non-uniform Poisson-disk samples and a generic algorithm for sample generation for a wide variety of applications. These results hold in all dimensions. We contrast the results to Delaunay refinement. Our definitions and algorithms do not depend on a maximum and minimum radii, but rather the rate at which the radii can change. This rate fundamentally determines the quality of the resulting point cloud. It provides bounds on the distances to neighboring points: specifically bounds on the ratio of lengths of edges sharing a sample in a Delaunay triangulation of the sampling. We provide experimental results.

CR Categories: I.3.5 [Computing Methodologies]: Computer Graphics—Computational Geometry and Object Modeling

Keywords: Poisson-disk, sampling, variable radius, spatial variation, inhibition radius, hierarchical sampling

1 Classic MPS Definition

A *sampling* is a set of ordered points taken from a domain at random. In Poisson-disk sampling, each point has an associated disk. No other point may be inside this disk. Points are chosen uniformly outside the prior points' disks. The sampling is maximal if the entire domain is covered by disks. Together these define maximal Poisson-disk sampling (MPS), a.k.a. the Matérn second process [1960].

More formally, a sampling $X = (\mathbf{x}_i)_{i=1}^n$, $\mathbf{x}_i \in \Omega$ satisfies the *inhibition* or *empty disk* property if

$$\forall i < j \leq n, |\mathbf{x}_i - \mathbf{x}_j| \geq r. \quad (1)$$

The set of *uncovered points* is defined to be

$$S(X) = \{\mathbf{y} \in \Omega : |\mathbf{y} - \mathbf{x}_i| \geq r, i = 1..n\}. \quad (2)$$

A sampling X is *maximal* if $S(X)$ is empty:

$$S(X) = \emptyset. \quad (3)$$

Given a non-maximal sampling, the next sample is *bias-free* if the probability of selecting it from any uncovered subregion is proportional to the subregion's area, i.e.,

$$\forall A \subset S(X) : P(\mathbf{x}_{n+1} \in A | X) = \frac{|A|}{|S(X)|}, \quad (4)$$

where $|\cdot|$ denotes area. The sampling *process* is bias-free if all of its sample points were selected according to a bias free random process. This criteria is in contrast to measuring the *output* of one run of the process, e.g. the FFT spectrum of the pairwise distances between the points [Schlömer 2011]. Some algorithms are highly parallel and fast [Wei 2008], but follow an inherently biased process. Whether this makes a difference for applications is unclear, as definitive requirements and measures of whether point sets meet these requirements are not generally available. Because of this, and to have a clear frame of reference, we focus on bias-free processes.

In the following we will generalize these equations and elucidate the consequences. For simplicity our figures and language focus on two dimensional domains, but the definitions and algorithms are general dimensional. We consider three specific generalizations of the MPS problem: (1a) decoupling the radii in the disk-free and maximality conditions, (1b) a hierarchical constructions for progressively denser samples, and (2) sampling with spatially varying point cloud density based on a variable sizing function. These generalizations are necessary to utilize the benefits of uniform MPS for problems in computer graphics and mesh generation.

We define sizing functions over the domain that determine the radius of the Poisson-disks. A sizing function f is a simple function (e.g. a local max) of an underlying radius function, r , or $r(p)$ to emphasize its dependence on the position p . We require that r is L -Lipschitz, i.e., for all $\mathbf{x}, \mathbf{y} \in \Omega$, $|r(\mathbf{x}) - r(\mathbf{y})| \leq L |\mathbf{x} - \mathbf{y}|$ for some constant L . The field of mesh generation, notably Delaunay refinement, has a long history of considering sizing functions with $L < 1$. In particular, for polygonal domains, the *local feature size* is the radius of the smallest ball that contains two disjoint faces of the boundary, e.g. two edges that do not share a common vertex. The local feature size has $L < 1$. Delaunay refinement can be made to

66 follow any sizing function less than the local feature size that also
 67 has $L < 1$.

68 For clarity and ease of language, we will call the disk-free radius
 69 the *inhibition radius* R_f ; and the maximality radius the *coverage*
 70 *radius* R_c throughout. As a function of another parameter, we use
 71 r_f and r_c .

72 2 Motivation and Previous Work

73 Maximal Poisson-disk sampling (MPS) is a popular topic in com-
 74 puter graphics [Lagae and Dutré 2008]. MPS is used for texture
 75 generation. The random nature of the point cloud avoids visual ar-
 76 tifacts that would arise if the distances between points had repeating
 77 patterns. Given a fixed budget of points, inhibition disks and max-
 78 imality help to use it efficiently: they prevent points from being
 79 too close together while ensuring that sample points lie throughout
 80 the entire domain. Uniform sampling with fixed radius disks are
 81 traditional. However, variable-density samplings have several uses.

82 In adaptive level-of-detail renderings, we wish to use a finer sample
 83 locally as the camera zooms closer to an object. Often one switches
 84 between a discrete series of prescribed samples as the camera-to-
 85 object distance crosses some thresholds. One must avoid visible
 86 artifacts at these steps. We suggest that our hierarchical sampling
 87 is well suited to this application, especially the continuous varia-
 88 tion which adds one random point at a time. In real-time applica-
 89 tions such as games or data exploration [Ljung 2006], this approach
 90 avoids scene jumps (frame coherence) due to lengthy computations
 91 or memory fetches [Vanderhaeghe et al. 2007].

92 Spatially varying samplings are useful for objects with both sharp
 93 curvature and large flat regions, or other non-constant visualization
 94 gradients [Kopf et al. 2006; Bowers et al. 2010].

95 Because of these potential uses, computer graphics publications
 96 have occasionally extended their MPS methods to spatially vary-
 97 ing inhibition/maximality radii. Often these have been presented as
 98 an extension to a result with a different focus, and there is little de-
 99 scription of the underlying definitions and algorithm requirements:
 100 e.g. how quickly the point density is allowed to vary. Sometimes
 101 only a picture of an example output is given.

102 Wei [2008] provides adaptive sampling. A quadtree is refined pro-
 103 portional to the local sizing function. A set of distant squares are
 104 sampled from concurrently. Sets are chosen hierarchically and ran-
 105 domly to balance speed with the measurable bias in the output.
 106 The distribution is non-maximal but with some probability approx-
 107 imates the local density. This is extended [Bowers et al. 2010] to
 108 sampling triangulated surfaces. The sampling can be non-uniform,
 109 but the spatial sizing function must stay close to its maximum value.
 110 (These works consider symmetric conflict conditions akin to our
 111 smaller-radius and bigger-radius conditions.)

112 In relaxation dart throwing [McCool and Fiume 1992], an initial
 113 MPS has the sampling disks radii reduced by a scaling parameter.
 114 The parts of the domain that are no longer maximal are filled in
 115 with samples. (In the original description, the sampling is not actu-
 116 ally maximal, and the scaling occurs when classical dart throwing
 117 has a high miss rate.) A variation [Vanderhaeghe et al. 2007] for
 118 deforming point clouds coarsens to remove points that are too close
 119 together, and refines to re-achieve maximality. For coarsening the
 120 disk-free and maximal criteria hold approximately, subject to a tol-
 121 erance band. Blending and sliding heuristics try to minimize the
 122 visual artifacts that arise from the discrete stages of the deforma-
 123 tion.

124 A time-evolving sizing function defined at sample points, extended
 125 to a 1-Lipschitz function over the entire domain, can be used to

126 both refine and coarsen a mesh of a sphere packing with overlap
 127 tolerances [Li et al. 1998]. The refinement/coarsening can be done
 128 deterministically, for example by Delaunay refinement. It is very
 129 fast to generate importance samplings using deterministic methods.
 130 A hierarchy of refinements based on aperiodic tiling gives point
 131 clouds with reasonable blue-noise properties [Ostromoukhov et al.
 132 2004; Kopf et al. 2006; Ostromoukhov 2007]. Given a non-uniform
 133 sampling, Wei [2011] provides a way to measure it.

134 In many MPS algorithms, generating a sample in small uncovered
 135 areas to achieve maximality is difficult. Quadtree [Gamito and
 136 Maddock 2009; White et al. 2007; Ebeida et al. 2012] based meth-
 137 ods might have to refine their squares down to numerical precision
 138 to represent them. The coverage radius is often relaxed by an e-
 139 pension value. This is different than decoupling the radii as we do
 140 here.

141 Variable-radii samplings also appear in other fields. In physics, in
 142 random sequential absorption [Dickman et al. 1991], the Poisson-
 143 disk radius is the Van der Waals radius, which is different for differ-
 144 ent types of atoms. Physicists have various recipes for generating
 145 point clouds, depending on the desired density. For example, some
 146 recipes produce point clouds that resemble gas, liquid, glass, and
 147 solid states. However, Van der Waals radii vary little compared to
 148 the orders of magnitudes we address here. In environmental sci-
 149 ences, individual organisms can be modeled as sample points, with
 150 disks corresponding to their territory [Renshaw 2010].

151 In mesh generation, maximal samplings satisfying the empty disk
 152 property are commonly desired since they yield provably good
 153 quality Delaunay triangulations [Chew 1989; Miller et al. 1996;
 154 Ebeida et al. 2011a]. Delaunay refinement algorithms construct a
 155 maximal sample by incrementally adding circumcenters of Delau-
 156 nay triangles [Chew 1989; Ruppert 1995] and without considering
 157 the entire set of uncovered points. When Delaunay refinement is ap-
 158 plied to generate quality graded meshes [Ruppert 1995; Shewchuk
 159 2002], a user defined mesh sizing function must satisfy a Lipschitz
 160 property and be dominated by the local feature size. Beyond con-
 161 sidering only circumcenters, the set of potential new vertices can
 162 be expanded to produce meshes with larger angles or fewer ver-
 163 tices [Chew 1997; Li 2003; Chernikov and Chrisochoides 2009;
 164 Erten and Üngör 2009]. However, randomly sampling the entire
 165 uncovered set (i.e., producing unbiased samples) has received less
 166 attention due to the difficulty and cost of generating suitable point
 167 sets, and analysis. Random meshes with time and spatially vary-
 168 ing densities are preferred for certain fracture mechanics, because
 169 cracks propagate in more physically realistic directions [Bolander
 170 and Saito 1998; Ebeida and Mitchell 2011].

171 A hierarchy of meshes has many uses [Miller et al. 1996; Li et al.
 172 1998; Devillers 2002]: point location, multigrid, coarsening and
 173 refinement in adaptivity, and convergence studies.

174 3 Different inhibition and coverage radii

175 Here we relax the condition that the coverage and inhibition radii
 176 are equal. We focus on a particular relaxation that proves useful
 177 when generating hierarchical point sets and smoothing the FFT ra-
 178 dial power. Contrast to Equations 1–4. Let $R_f \leq R_c$.

179 The *empty disk* property is

$$180 \quad \forall i < j \leq n, |\mathbf{x}_i - \mathbf{x}_j| \geq R_f. \quad (5)$$

181 The set of *free* points is defined to be

$$182 \quad S(X) = \{\mathbf{y} \in \Omega : |\mathbf{y} - \mathbf{x}_i| \geq R_f, i = 1..n\}. \quad (6)$$

The set of *uncovered* points is defined to be

$$U(X) = \{\mathbf{y} \in \Omega : |\mathbf{y} - \mathbf{x}_i| \geq R_c, i = 1..n\}. \quad (7)$$

In order for this variation to be useful and different than the single radius case, the sampling is *maximal* if $U(X)$ is empty,

$$U(X) = \emptyset. \quad (8)$$

We take samples from S , but restrict to the points that are close enough to U in order to reduce it.

$$T(X) = S(X) \cap \{U(X) + R_c\}. \quad (9)$$

We call the sampling *bias-free* if we sample from $T(X)$ uniformly.

This process is useful to add randomness to initial and parameterized (hierarchical) samples. This process provides samplings that are less uniform, with greater variation in inter-sample distances, than classical MPS. In particular, this process avoids the visible rings in the FFT spectrum of the output. The radial power does not have the low frequency oscillations that are so characteristic of classical MPS. See Figure 7 for an example.

Samplings will likely have points that could be removed and still meet the coverage condition Equation 8. There are more extra points the smaller R_f is compared to R_c .

3.1 Algorithm for Two Radii Sampling, and Other Variations

Algorithm 1 MPS using generic conflict and coverage tests.

```

initialize kd-tree  $\mathcal{T} = \emptyset$ ,  $i = 0$ ,  $\mathcal{C}^i = \mathcal{C}^0$ 
while  $|\mathcal{C}^i| > 0$  do
    {throw darts}
    for all  $A|\mathcal{C}^i|$  (constant) dart throws do
        select an active cell  $\mathcal{C}_c^i$  from  $\mathcal{C}^i$  uniformly at random
        throw candidate dart  $\mathbf{y}$  into  $\mathcal{C}_c^i$ , uniformly at random
        if  $\mathbf{y}$  does not conflict then
            {promote dart to sample}
            add  $\mathbf{y}$  to  $\mathcal{T}$  as an accepted sample  $\mathbf{x}$ 
        end if
    end for
    {coverage}
    for all active cells  $\mathcal{C}^i$  do
        if  $i < \text{bits\_of\_precision}$  subdivide  $\mathcal{C}_c^i$  into  $2^d$  subcells
        retain uncovered (sub)cells as  $\mathcal{C}^{i+1}$ 
    end for
    increment  $i$ 
end while

```

The basic algorithm is simple and a variation of the MPS algorithm in [Ebeida et al. 2012]; see Algorithm 1. A batch of darts are thrown, and each one checks whether it *conflicts* with any nearby sample. We store samples in a kd-tree \mathcal{T} , so that we can retrieve those that are nearby. A flat quadtree \mathcal{C} tracks the uncovered area where the next sample may arrive. At a given iteration i , all the cells \mathcal{C}^i have been refined to the same size. After a batch of throws, squares are refined and discarded if they are *covered*, i.e., too close to a prior sample to contain a new one. (Prior works store the samples in the quadtree, but this is not as efficient for us because of our variable radii.)

The batch size is the number of quadtree cells times A , an empirically derived constant depending on the dimension of the domain and algorithm variation. The exact value of A is unimportant as long as it is above a threshold. $A \approx 0.5$ for $d < 5$. Uncovered cells

are represented by their indices, which are stored in an array; covered cells have no data whatsoever. This is the key to the memory-efficiency of the method [Ebeida et al. 2012]. The squares \mathcal{C}_c^i are checked for coverage by prior samples. The algorithm terminates when no squares are uncovered.

We use this algorithm outline for all variations in this paper. The differences are the conditions for the conflict and coverage checks.

Specialization for Two Radii The pool of active quadtree squares \mathcal{C}^i at iteration i are an outer approximation to our sampling set T . For determining if a square \mathcal{C}_c^i is covered, we check whether its corners are inside some $D(\mathbf{x}_i, R_f)$, the d -dimensional disk (ball) centered at \mathbf{x}_i of radius R_f . Such squares have all their points outside S and are discarded.

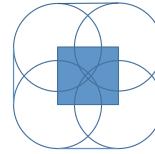


Figure 2: The outer perimeter encompasses the points of T that a sample in a square might cover.

In addition, we wish to discard squares \mathcal{C}_c^i outside $U + R_c$. The set of points that a sample in a square \mathcal{C}_c^i might cover is a larger, rounded square $V = \mathcal{C}_c^i + D(R_c)$ as in Figure 2. If V is already covered by samples' disks, the cell may be discarded. Since V is large it cannot be covered by a single sample's disk. To check if it is covered by a collection of disks we subdivide it and check the sub-pieces. We take its bounding box, and subdivide it as in a flat quadtree. All boxes at a given level are checked as in the following paragraph. The checks may decide that \mathcal{C}_c^i (likely) contains a point of T . The checks may discard some boxes. If no boxes remain, then V does not contain any point of T and \mathcal{C}_c^i may be discarded. If the situation is ambiguous, we subdivide all the boxes and recheck.

If a box has all four corners outside V , we discard it. If a box has some corners inside V and outside V , it is ambiguous. If a box has all four corners inside V , then there are three subcases. (1) If any corner is outside all nearby sample's disks, then we decide that the box contains a point of T ; such points might actually be inside the R_f disks, but a false positive is acceptable. (2) If all corners are inside a single sample's disk, then discard the box. (3) Else it is ambiguous and the box has to be subdivided to decide.

(Checking V is similar to the BiX box-in-disk check in Section 6. An alternative that may be faster, but use more memory, is to store a flat quadtree that represents T . Keep this quadtree at the same level i as \mathcal{C}^i , and check its cells as described above.)

We select darts by selecting a square in the pool then selecting a point in the square.

For a dart \mathbf{y} to be conflict free, we require

1. $\mathbf{y} \notin D(\mathbf{x}_i, R_f) \forall$ prior sample \mathbf{x}_i .
2. The dart's large disk $D(\mathbf{y}, R_c)$ must cover an uncovered point.

Checking Condition 1 is standard using the kd-tree of the samples. To check Condition 2 we have two options; their relative efficiency depends on the ratio of R_f to R_c , see Figure 3.

First option. Form a local bounding box of $D(\mathbf{y}, R_c)$. Refine it as a quadtree: discard squares covered by $D(\mathbf{x}_i, R_c)$ or outside $D(\mathbf{y}, R_c)$, otherwise refine them. If any refined square corner is discovered that is outside all $D(\mathbf{x}, R_c)$ and inside $D(\mathbf{y}, R_c)$, accept

257 the dart. Reject the dart if all squares are discarded. This test is
 258 accurate up to the roundoff error desired.

295 larger circumsphere, and so its center would be uncovered for a
 296 smaller value of t . (The circumcenter of a non-obtuse triangle lies
 297 inside the triangle.)

298 **Second option.** Throw a constant number of random points into
 299 $D(\mathbf{y}, R_c)$ and accept the dart if any are outside $D(\mathbf{x}_i, R_c) \forall i$. This
 300 works well if $R_f \ll R_c$, but introduces some bias.

262 4 Hierarchical Sampling

263 4.1 Parameterized radii

264 Consider a maximal sampling, from either a single disk radius or
 265 decoupled inhibition and coverage radii. We parameterize these
 266 radii by a scaling parameter t ; e.g., t could be time. For simplicity
 267 we consider only linear scaling, so that for any particular value
 268 of t we have $r_f(t) = tR_f$ and $r_c(t) = tR_c$. We now consider
 269 constructing a family of samplings over this parameter.

298 In any case, our refinement process can be implemented as a dis-
 299 crete event simulation. The circumcenters of Delaunay triangles,
 300 and their associated t values, are the events. When an event oc-
 301 curs, a sample is generated, which creates new triangles and de-
 302 stroys some old ones, so the queue must be updated. This is essen-
 303 tially the generic Delaunay refinement algorithm with a largest-first
 304 queue priority for inserting circumcenters. The main difference is
 305 that when an event occurs, we insert a nearby random point, but
 306 DR inserts the point itself. The usual analysis of Delaunay refine-
 307 ment makes no restrictions on the circumcenter insertion order, and the
 308 Triangle code [Shewchuk 2002] takes the opposite approach:
 309 processing the smallest triangles first.

310 4.3 Discrete Decrease Refinement

311 Consider decreasing t in discrete jumps. For a new value of t , the
 312 sample will be non-maximal, and the same algorithm that generated
 313 the initial sampling can be continued to achieve maximality.

314 **Comparison** The prior approaches [McCool and Fiume 1992; Li
 315 et al. 1998] achieve maximality and disk-free up to some wide tol-
 316 erance band. In contrast, if our inhibition and coverage radii are the
 317 same, then we achieve the maximality and disk-free conditions ex-
 318 actly. If two radii are used, then these take the place of the tolerance
 319 band. In a sense the effective tolerance band can be tuned by their
 320 ratio.

321 4.4 Edge Length and DT Angle Bounds

322 We consider a Delaunay triangulation (DT) of our point cloud. Two
 323 samples are Delaunay neighbors if they share an edge e in a DT. The
 324 inhibition radius bounds the shortest edge length. The coverage
 325 radius bounds the largest empty Delaunay circumcircle. The longest
 326 edge length is at most the diameter of that circle. To summarize:

327 **Proposition 4.1.** $|e| \in [R_f, 2R]$ and $R \leq R_c$, where R is the
 328 radius of a Delaunay circumcircle.

329 The Central Angle Theorem provides a relation between the small-
 330 est angle α in a triangle to a lower bound on the shortest edge
 331 length $|e|$ and an upper bound on the circumradius R of the tri-
 332 angle. This relation is fundamental to the inception of Delaunay
 333 refinement [Chew 1989].

334 **Proposition 4.2.** $\sin \alpha \geq |e|/2R$.

335 For example, in a DT of a point set with $R_c = R_f$, we have $\alpha >$
 336 30° . If $R_c = 2R_f$, then $\alpha > 14.4^\circ$.

337 5 Spatially Varying Radii

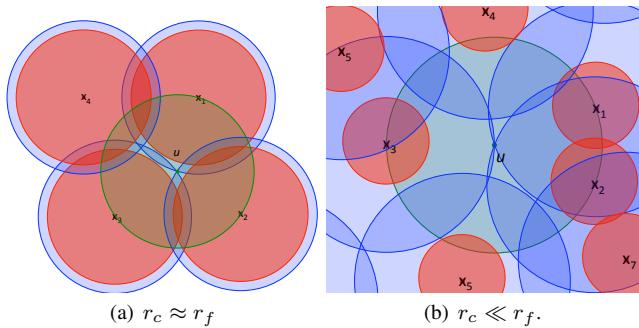
We aim to produce spatially varying point density according to a
 sizing function $r(\mathbf{x}) : \Omega \rightarrow (0, \infty)$. A sample satisfies the *empty
 disk* property (vs. Equation 1) if

$$338 \forall i < j \leq n, |\mathbf{x}_i - \mathbf{x}_j| \geq f(\mathbf{x}_i, \mathbf{x}_j), \quad (10)$$

and the set of *uncovered points* is (vs. Equation 2)

$$339 S(X) = \{\mathbf{y} \in \Omega : |\mathbf{y} - \mathbf{x}_i| > f(\mathbf{x}_i, \mathbf{y}), i = 1..n\}. \quad (11)$$

Here $f(\mathbf{x}_i, \mathbf{y})$ is a function of $r(\cdot)$ evaluated at a previously accepted
 sample and a later sample or candidate. We have four criteria vari-



340 **Figure 3:** Possible void shapes for two radii. u is the circumcenter
 341 of $\triangle x_1 x_2 x_3$. The circumcircle is green, r_f disks are red, r_c disks
 342 are blue.

343 If $r_f = r_c$ then there is only one place to put the sample, at u , so
 344 the process is deterministic.

345 Otherwise, we insert a random point. We have two simple and ef-
 346 ficient solutions, depending on the relative value of r_f and r_c . If
 347 r_f is much less than r_c , we sample uniformly from the sphere of
 348 radius $r_c = tR_c$ centered at u . If the sample point is closer than
 349 r_f to a nearby point, we resample. The sphere of radius $r_c - r_f$
 350 centered at u is free and all samples from it will be a hit. Therefore
 351 since $r_f \ll r_c$ the probability of a hit is high and this scheme is
 352 efficient enough.

353 If r_f is close to r_c , then to achieve efficiency the free region may be
 354 (approximately) constructed using polygons [Ebeida et al. 2011b]
 355 or a quadtree [Ebeida et al. 2012; Gamito and Maddock 2009]. See
 356 Figure 3 for examples void shapes.

357 In 2d, we observe that u will always be either the circumcenter
 358 of a non-obtuse Delaunay triangle or inside a boundary Delaunay
 359 triangle. If u were interior and obtuse, then there is a Delaunay
 360 triangle on the other side of the longest edge, and it will have a

Method	Distance Function	Order Independent	Full Coverage	Conflict Free	Edge Min	Edge Max	Sin Angle Min	Max L
Prior	$r(\mathbf{x})$	no	no	no	$1/(1+L)$	$2/(1-2L)$	$(1-2L)/2$	$1/2$
Current	$r(\mathbf{y})$	no	no	no	$1/(1+L)$	$2/(1-L)$	$(1-L)/2$	1
Bigger	$\max(r(\mathbf{x}), r(\mathbf{y}))$	yes	no	yes	1	$2/(1-2L)$	$(1-2L)/2$	$1/2$
Smaller	$\min(r(\mathbf{x}), r(\mathbf{y}))$	yes	yes	no	$1/(1+L)$	$2/(1-L)$	$(1-L)/2$	1

Table 1: Summary of results for spatially varying radii. The distance function f determines conflicts. Order independence means that if a sampling X satisfies the empty disk property, then so do permutations of X . Full coverage means that every point of the domain is inside a sample’s disk. Conflict free means that no sample is inside another sample’s disk. Edge max and min bound the possible lengths of an edge containing sample \mathbf{x} in a Delaunay triangulation of X , as a factor of $r(\mathbf{x})$. Max L is the largest Lipschitz constant for which the algorithm is guaranteed to be robust and produce correct output.

ations:

$$\begin{aligned}
 f(\mathbf{x}, \mathbf{y}) &:= r(\mathbf{x}) & \text{(Prior-disks),} \\
 f(\mathbf{x}, \mathbf{y}) &:= r(\mathbf{y}) & \text{(Current-disks),} \\
 f(\mathbf{x}, \mathbf{y}) &:= \max(r(\mathbf{x}), r(\mathbf{y})) & \text{(Bigger-disks),} \\
 f(\mathbf{x}, \mathbf{y}) &:= \min(r(\mathbf{x}), r(\mathbf{y})) & \text{(Smaller-disks).}
 \end{aligned}$$

338 The f are equivalent for a fixed sampling radius r , but are all
 339 distinct for spatially-varying radii. Each approach has certain ad-
 340 vantages in terms of edge length ratios, order independence, how
 341 quickly the sizing function may vary, and simplicity of implemen-
 342 tation; see Table 1 for a summary.

343 There is a limit to how quickly $r(\cdot)$ is allowed to vary. We re-
 344 quire that r is L -Lipschitz, i.e., for all $\mathbf{x}, \mathbf{y} \in \Omega$, $|r(\mathbf{x}) - r(\mathbf{y})| \leq$
 345 $L|\mathbf{x} - \mathbf{y}|$ for some constant L . Some approaches require $L < 1$;
 346 for others $L < 1/2$. In all cases, as L approaches zero, the qual-
 347 ity guarantees smoothly approach those in the uniform case. Ap-
 348 pendix A provides the proofs for the different cases.

349 For constant radii, edges in a Delaunay triangulation (DT) of the
 350 sampling are bounded between r and $2r$. (If edges are less than
 351 r , the inhibition distance is violated; if greater than $2r$, then the
 352 sampling is not maximal.) For spatially varying radii, the length of
 353 edge $\overline{\mathbf{x}_i \mathbf{x}_j}$ could be a smaller or larger fraction of $r(\mathbf{x}_i)$, because
 354 the strategies also depend on $r(\mathbf{x}_j)$. How much $r(\mathbf{x}_j)$ may differ
 355 depends on L .

356 By symmetry the bigger-disk and smaller-disk constructions are or-
 357 der independent, i.e., any valid sampling with the order of samples
 358 permuted still satisfies the empty disk property.

Bias-free The standard bias-free definition can be used for non-
 uniform sampling and is the basis of all the algorithms we have
 implemented. However, an alternative is to locally weight the un-
 covered set based on the sizing function, i.e., the desired output
 density. Specifically, the weight of a region can be defined by,

$$w(S) = \int_S \frac{1}{r(\mathbf{x})^d} d\mathbf{x},$$

where d is the spatial dimension. Discrete approximations are pos-
 sible. Then the “weighted-bias-free” property is:

$$\forall A \subset S(X) : P(\mathbf{x}_{n+1} \in A | X) = \frac{w(A)}{w(S(X))}. \quad (12)$$

6 Spatially Varying Radii Algorithms

Again we use Algorithm 1, with the following nuances.

361 The diagonal-length of the base quadtree level is proportional to
 362 the maximum sampling radius over the domain, or the bounding
 363 box of the entire domain if there is no known maximum. Since the
 364 radii vary spatially, we can not efficiently use a uniform base grid
 365 for finding nearby samples for checking for conflicts as is com-
 366 mon [Gamito and Maddock 2009; Ebeida et al. 2011b; Ebeida et al.
 367 2012]. Instead we use a kd-tree \mathcal{T} to store and find nearby sam-
 368 ples [Mount and Arya 2010]. When searching the tree, the trian-
 369 gle inequality for Euclidean distance is used to determine if both
 370 branches could contain conflicting samples or only the near branch
 371 needs to be plumbed. This same tree and the triangle quality is also
 372 used when checking if cells are covered.

373 A variation would be to use a full quadtree as in [Gamito and Mad-
 374 dock 2009]. Samples would be stored in the quadtree at a depth
 375 related to their radii. Finding potentially conflicting samples would
 376 involve walking the quadtree. We have not implemented this varia-
 377 tion, as we expect its memory requirements to be larger.

6.1 Primitives

379 The conflict and coverage checks rely on proximity primitives. Let
 380 $D(p, r)$ be the disk centered at p with radius r . Here $D(\mathbf{x})$ is the
 381 disk (ball) of radius $r(\mathbf{x})$ centered \mathbf{x} .

- **PiX point-in-disk, conflict.** Is a point in a sample’s disk? Given p , $\exists \mathbf{x} : p \in D(\mathbf{x})$?
- **XiP sample-in-disk, conflict.** Does a point’s disk contain a sample? Given p , $\exists \mathbf{x} : \mathbf{x} \in D(p)$?
- **BiX box-in-disk, coverage.** Is a square inside a sample’s disk? Given cell \mathcal{C}_c^i , $\exists \mathbf{x} : p \in D(\mathbf{x}) \forall p \in \mathcal{C}_c^i$?
- **XiB sample-in-box’s-disks, coverage.** Do all the disks of a square contain a sample? Given cell \mathcal{C}_c^i , $\exists \mathbf{x} : \mathbf{x} \in D(p) \forall p \in \mathcal{C}_c^i$?

6.2 Conflict and Coverage Tests

392 Which proximity primitives are relevant to the conflict and coverage
 393 checks depends on the variation.

Method	Conflict	Coverage
Prior-disks	PiX	BiX
Current-disk	XiP	XiB
Bigger-disk	PiX or XiP	BiX or XiB
Smaller-disk	PiX and XiP	BiX and XiB

Primitive	“Yes” if $\exists \mathbf{x} :$	Prune Branch if
PiX point-in-disk	$ \mathbf{p} - \mathbf{x} \leq r(\mathbf{x})$	$ \mathbf{p} - \mathbf{p}_\perp ^2(1 - L^2) > r(p_\perp)^2$
XiP sample-in-disk	$ \mathbf{p} - \mathbf{x} \leq r(p)$	$ \mathbf{p} - \mathbf{p}_\perp > r(p)$
BiX box-in-disk	$ c - \mathbf{x} + h/2 \leq r(\mathbf{x})$	$(c - c_\perp + s/2)^2(1 - L^2) > r(c_\perp)^2$
XiB sample-in-square's-disk	$ c - \mathbf{x} \leq r(c) - (1 + L)h/2$	$ c - c_\perp > r(c) - (1 + L)h/2$

Table 2: Conflict and coverage primitive criteria. Answer “yes” if such a sample is found. Prune (do not search) branches of the kd-tree where the prune branch condition holds. For a square, c is its center, s its side length and h its diagonal length. Here p_\perp is the projection of

395 6.3 Primitive Implementation

396 Since the radii vary, it is insufficient to find the nearest sample(s) to
 397 the query point. Instead, we search the kd-tree, pursuing branches
 398 depending on whether the triangle inequality and the Lipschitz condition
 399 indicate that the branch may contain a close enough sample.
 400 We project the point p onto the dividing hyperplane of \mathbf{x}_i in \mathcal{T} ,
 401 obtaining p_\perp . If L and either $r(p_\perp)$ or $r(p)$ are sufficiently small
 402 compared to $|\mathbf{p} - \mathbf{p}_\perp|$, then the far branch of the kd-tree is pruned.
 403 For the conflict primitives, we must search any branch that might
 404 contain a conflicting sample. For the coverage primitives we can
 405 pursue branches less aggressively, because the algorithm will still
 406 be correct, albeit less efficient, if we do not detect that a square is
 407 covered.

408 Table 2 summarizes the branching conditions. Appendix B pro-
 409 vides the proofs.

410 7 Experimental Results

411 Our first example is for different inhibition and coverage radii, ex-
 412 tended to a hierarchy, as developed in Sections 3 and 4. Figure 4
 413 shows a very coarse sampling with two radii. Figure 5 extends it
 414 to a discrete hierarchy of samplings. Observe that the new samples
 415 are sometimes inside the covered region, but nonetheless reduce the
 416 uncovered region.

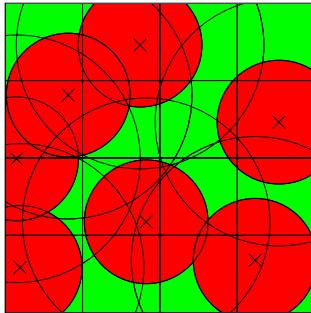


Figure 4: Two-radii MPS, $\sqrt{2}/4 = r_f = r_c/2$.

417 Here we confirm our theoretical expectations of the output quality
 418 with experimental results. We generated point clouds in a 2d unit
 419 box. We analyzed them using the Point Set Analysis [Schlömer
 420 2011] tool. PSA generates standardized spectral diagrams for 2d
 421 point distributions, aiding direct comparison. The first panel is the
 422 point set. The second panel is the FFT spectrum of the point set,
 423 with the DC component removed. MPS typically generates spectra
 424 with a dark central disk surrounded by alternating light and dark
 425 rings rippling out from the center, decreasing in magnitude. The
 426 third panel is the radial mean power, which measures the average
 427 variation of the second panel's rings' magnitudes. The fourth panel

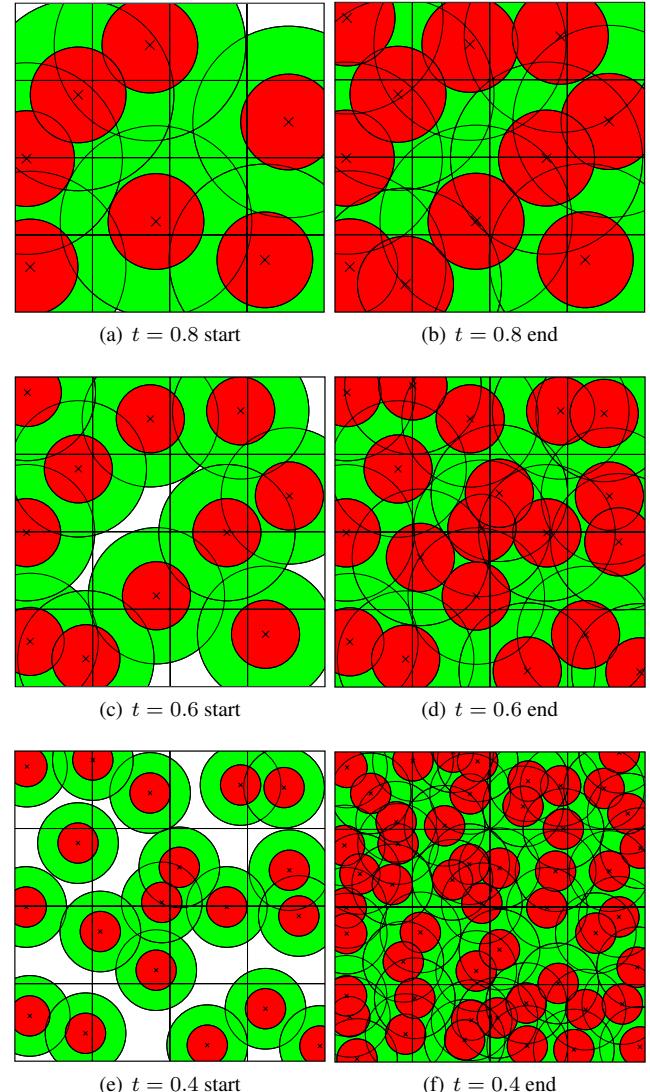


Figure 5: A discrete hierarchy of samplings with $t = 0.8$, $t = 0.6$, $t = 0.4$.

428 is the anisotropy, which measures the variance along the rings' cir-
 429 cumferences.

430 Figure 6 contains this analysis for a uniform MPS point cloud with
 431 $r = 0.01$. Figure 7 shows the PSA results for a point cloud gener-
 432 ated using different inhibition and coverage radii after a hierarchical
 433 construction. The ringing artifacts in the FFT spectrum are dramat-

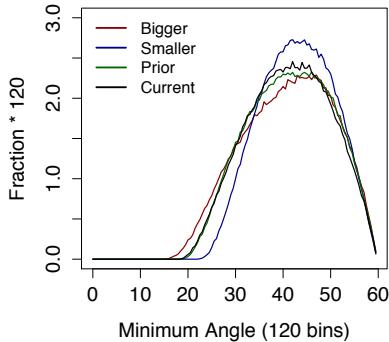


Figure 11: Angle histograms for samplings using the four spatially varying radii strategies, over the radial sizing function (as in Figure 10).

Figure 12: Spatially varying radii output. The input was a point cloud from Wei (originally Kopf et al.) that we scanned, grayscaled, smoothed for L , then resampled.

434 ically reduced in this setting. The smallest angle in the Delaunay
 435 triangulation of this point cloud is 15.1° consistent with the theo-
 436 retical guarantee of 14.4° .

437 For comparison, Figure 8 contains PSA for two points clouds gen-
 438 erated using Delaunay refinement (a deterministic method) in the
 439 software Triangle [Shewchuk 1996-2005]. Refinement with bound-
 440 ary edge protection was performed on a square of side length three.
 441 Only points in the middle, in a centered square of side length one,
 442 are analyzed, to avoid FFT artifacts from the boundary bias. Steiner
 443 vertices were inserted until no edges longer than 0.02 remained.
 444 The first example results from traditional circumcenter insertion
 445 [Chew 1989] and produces an unbiased spectrum. The second ex-
 446 ample results from off-center vertex insertion using a 30° target
 447 angle [Rand 2011] and leads to a biased point cloud. Biased results
 448 from Delaunay refinement generally cannot be attributed to a sin-
 449 gle cause, but several combinations of input symmetry, the types
 450 of Steiner points used, queue ordering under which the triangles
 451 are processed and size/quality requirements can yield biased point
 452 clouds.

453 To demonstrate the spatially varying radii method, Section 5 and
 454 6, Figure 9 shows sampling a simple linear function using all four
 455 strategies.

456 Figure 10 contains PSA for a point cloud generated for a nonuni-
 457 form sizing function $r(\mathbf{x}) = r_m + (r_M - r_m) |\sin(8\pi d)|$ where
 458 $r_m = 0.015$, $r_M = 0.00015$, and $d = \|\mathbf{x} - (.5, .5)\|$. Point clouds
 459 generated for this sizing function using bigger, smaller, prior, and
 460 current disks can be found in Appendix D Figure 18. Spectrum
 461 plots for anisotropic point sets provide limited insight. Figure 11
 462 compares histograms of angles in the Delaunay triangulations of
 463 the point clouds for the four different variable radius constructions.
 464 The experimental results match the theory: the smaller-disk con-
 465 struction yields a larger minimum angle.

466 Figure 12 shows our resampling of a spatially varying image [Kopf
 467 et al. 2006; Wei 2008]. See Appendix D for a comparison of the
 468 four strategies.

469 **8 Conclusions**

470 We have provided definitions, requirements, and algorithms to per-
 471 form maximal Poisson-disk sampling with spatially varying radii.
 472 The key requirement is a limit to the rate at which the radius func-
 473 tion changes. We provided four variations. We suggest that the
 474 smaller-disks approach has the weakest requirements and provides
 475 the best output. The prior-disks method is the easiest to implement,
 476 especially as it is a minor change to existing algorithms. However,
 477 it has the most restrictions on the input and provides the weakest
 478 output guarantees.

479 We have provided a definition and algorithm for decoupling the

480 disk-free radius from the coverage radius. The algorithm may be
 481 used to create a hierarchy of refined meshes, either adding one point
 482 at a time or a batch of points based on a scaling parameter. Two
 483 radii provides additional randomness over classical MPS; the FFT
 484 spectrum of the output does not have the alternating ring pattern,
 485 and the radial power is almost uniform beyond the minimum radius
 486 threshold. The continuous approach may be viewed as a way to
 487 randomize deterministic Delaunay refinement to avoid artifacts and
 488 bias.

489 The requirements of the Lipschitz constant, $L < 1$, for the algo-
 490 rithm to be correct are quite mild in the sense that without it, any
 491 algorithm using the same conflict and coverage conditions might
 492 produce output with unbounded jumps in the spacing of points.

493 In the future, spatially varying radii may be combined with two-
 494 radii and hierarchical sampling.

495 Predictive tools for the output of Poisson-disk sampling over
 496 spatially-varying functions would be very useful, because they
 497 could be used to verify the output of an algorithm. (Wei [2011]
 498 can measure output, but currently it is difficult to say whether the
 499 measure is what one would predict from the input, and whether
 500 other inputs would produce the same output.) Verification would
 501 be especially useful, because it would allow the community to ac-
 502 cept faster and less memory intensive algorithms that deviate from
 503 the pure MPS process.

504 **References**

505 BOLANDER, J. E., AND SAITO, S. 1998. Fracture analyses using
 506 spring networks with random geometry. *Engineering Fracture
 507 Mechanics* 61, 5-6, 569 – 591.

508 BOWERS, J., WANG, R., WEI, L.-Y., AND MALETZ, D. 2010.
 509 Parallel Poisson disk sampling with spectrum analysis on sur-
 510 faces. *ACM Transactions on Graphics* 29 (Dec.), 166:1–166:10.

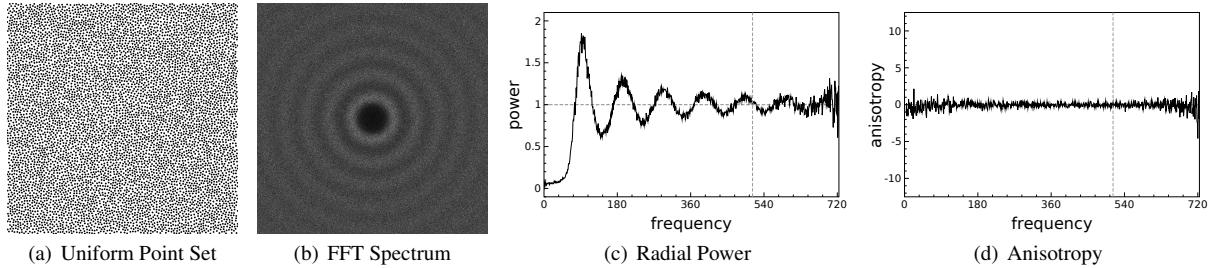
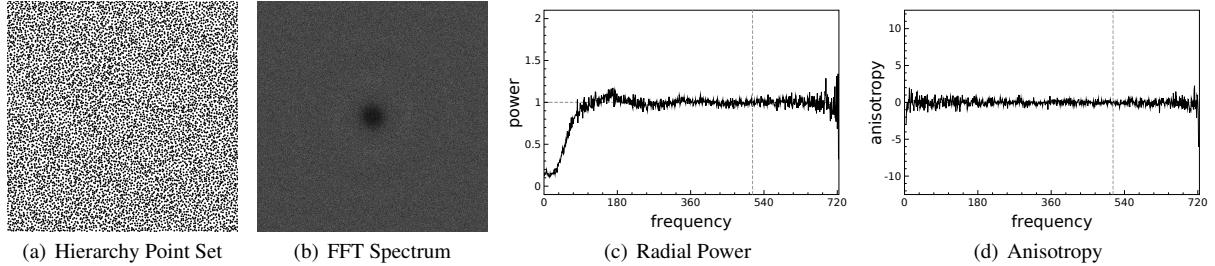
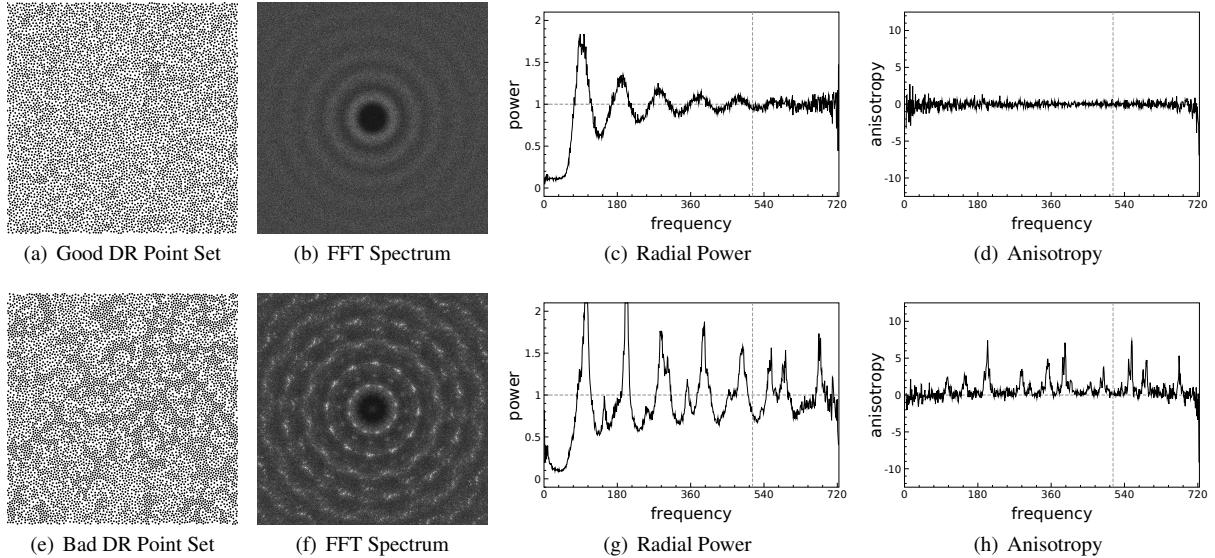
Figure 6: Unbiased uniform MPS output using the PSA tool. $r = 0.01$.Figure 7: Final sampling in a hierarchy of different inhibition and coverage radii, with $r_c = r$ from Figure 6. The initial sampling used $R_f = 0.025$ and $R_c = 0.05$. Discrete decrease refinement (Section 4.3) was performed using $t = 0.8, 0.6, 0.4, 0.2$. Analysis of the final point set ($t = 0.2, r_f = 0.005, r_c = 0.01$) is shown.

Figure 8: Two examples of Delaunay refinement (DR) output, one with little bias and one with a lot of bias, as measured by PSA. We do not know how to ensure or predict the output bias.

511 CHENG, S.-W., DEY, T. K., EDELSBRUNNER, H., FACELLO, 523
 512 M. A., AND TENG, S.-H. 1999. Sliver exudation. In *Pro- 524
 513 ceedings of the Fifteenth Annual Symposium on Computational 525
 514 Geometry, SCG '99*, 1–13. 526
 525 DEVILLERS, O. 2002. The delaunay hierarchy. *International Jour- 526
 526 nal of Foundations of Computer Science* 13, 163–180.
 527 CHERNIKOV, A., AND CHRISOCHOIDES, N. 2009. Generalized 527
 528 two-dimensional Delaunay mesh refinement. *SIAM Journal on 528
 529 Scientific Computing* 31, 3387–3403.
 530 CHEW, L. P. 1989. Guaranteed-quality triangular meshes. Tech. 530
 531 Rep. 89-983, Department of Computer Science, Cornell University.
 532 CHEW, L. P. 1997. Guaranteed-quality delaunay meshing in 3d 532
 533 (short version). In *Proceedings of the Thirteenth Annual Symposi- 533
 um on Computational Geometry*, ACM, New York, NY, USA,
 534 SCG '97, 391–393.
 535 DICKMAN, R., WANG, J.-S., AND JENSEN, I. 1991. Random 535
 536 sequential adsorption: Series and virial expansions. *Journal of 536
 537 Chemical Physics* 94, 8252–8257.
 538 EBEIDA, M. S., AND MITCHELL, S. A. 2011. Uniform random 538
 539 Voronoi meshes. In *Proceedings of the 20th International Mesh- 539
 540 ing Roundtable*, 258–275.
 541 EBEIDA, M. S., MITCHELL, S. A., DAVIDSON, A. A., PATNEY,

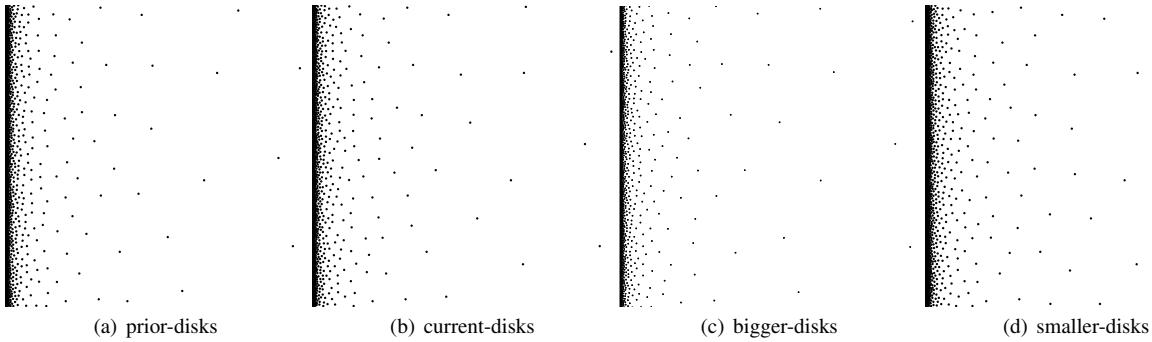


Figure 9: Variable radii samplings with linear-ramp function, $r(x, y) = 0.001 + 0.3 * x$, using the same random number seed.

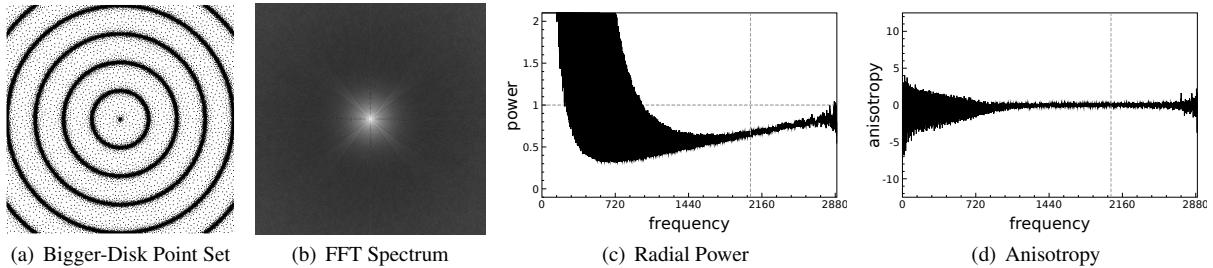


Figure 10: Bigger-disk sampling for a non-uniform sizing function, $r(\mathbf{x}) = r_m + (r_M - r_m) |\sin(8\pi d)|$ where $r_m = 0.015$, $r_M = 0.00015$, and $d = \|\mathbf{x} - (.5, .5)\|$.

534 A., KNUPP, P. M., AND OWENS, J. D. 2011. Efficient and good 562
 535 Delaunay meshes from random points. *Computer-Aided Design* 563
 536 43, 11, 1506 – 1515. Solid and Physical Modeling. 564
 537 EBEIDA, M. S., PATNEY, A., MITCHELL, S. A., DAVIDSON, A., 565
 538 KNUPP, P. M., AND OWENS, J. D. 2011. Efficient maximal 566
 539 Poisson-disk sampling. *ACM Transactions on Graphics* 30, 4 567
 540 (July), 49:1–49:12. 568
 541 EBEIDA, M. S., MITCHELL, S. A., PATNEY, A., DAVIDSON, 569
 542 A. A., AND OWENS, J. D. 2012. A simple algorithm for 570
 543 maximal Poisson-disk sampling in high dimensions. *Computer 571
 544 Graphics Forum, Proc. Eurographics* 31, 2, tbd. 572
 545 EDELSBRUNNER, H., LI, X.-Y., MILLER, G., STATHOPOULOS, 573
 546 A., TALMOR, D., TENG, S.-H., ÜNGÖR, A., AND WALKING- 574
 547 TON, N. 2000. Smoothing and cleaning up slivers. In *Proceed- 575
 548 ings of the Thirty-Second Annual ACM Symposium on Theory of 576
 549 Computing*, STOC '00, 273–277. 577
 550 ERDEN, H., AND ÜNGÖR, A. 2009. Quality triangulations with 578
 551 locally optimal Steiner points. *SIAM Journal on Scientific Com- 579
 552 puting* 31, 2103. 580
 553 GAMITO, M. N., AND MADDOCK, S. C. 2009. Accurate multi- 581
 554 dimensional Poisson-disk sampling. *ACM Transactions on Graph- 582
 555 ics* 29, 1 (Dec.), 8:1–8:19. 583
 556 JONES, T. R., AND KARGER, D. R. 2011. Linear-time Poisson- 584
 557 disk patterns. *Journal of Graphics, GPU, & Game Tools* (to 585
 558 appear). arXiv:1107.3013v1. 586
 559 KOPF, J., COHEN-OR, D., DEUSSEN, O., AND LISCHINSKI, D. 587
 560 2006. Recursive Wang tiles for real-time blue noise. *ACM Trans- 588
 561 actions on Graphics* 25, 3, 509–518. 589
 562 LAGAE, A., AND DUTRÉ, P. 2008. A comparison of methods 563
 564 for generating Poisson disk distributions. *Computer Graphics Forum* 27, 1 (Mar.), 114–129. 565
 566 LI, X., AND TENG, S. 2001. Generating well-shaped Delaunay 567
 568 meshed in 3d. In *Proceedings of the Twelfth Annual ACM-SIAM 569
 567 Symposium on Discrete Algorithms*, Society for Industrial and 570
 568 Applied Mathematics, 28–37. 571
 572 LI, X.-Y., TENG, S.-H., AND ÜNGÖR, A. 1998. Simulta- 573
 573 neous refinement and coarsening: Adaptive meshing with moving 574
 574 boundaries. In *Proceedings of the 7th International Meshing Roundtable*, 201–210. 575
 575 LI, X. 2003. Generating well-shaped d-dimensional delaunay 576
 576 meshes. *Theoretical Computer Science* 296, 1, 145–165. 577
 577 LJUNG, P. 2006. Adaptive sampling in single pass, GPU-based 578
 578 raycasting of multiresolution volumes. Eurographics Associa- 579
 579 tion, Boston, Massachusetts, USA, R. Machiraju and T. Möller, 580
 580 Eds., 39–46. 581
 581 MÄTÉRN, B. 1960. Spatial variation. *Meddelanden från Statens 582
 582 Skogsforskningsinstitut* 49, 1–140. 583
 583 MCCOOL, M., AND FIUME, E. 1992. Hierarchical Poisson disk 584
 584 sampling distributions. In *Graphics Interface '92*, 94–105. 585
 585 MILLER, G. L., TALMOR, D., TENG, S.-H., WALKINGTON, 586
 586 N. J., AND WANG, H. 1996. Control volume meshes using 587
 587 sphere packing: Generation, refinement and coarsening. In *Pro- 588
 588 ceedings of the Fifth International Meshing Roundtable*, 47–61. 589
 589 MOUNT, D. M., AND ARYA, S., 2010. ANN: A library for ap- 590
 590 proximate nearest neighbor searching. Version 1.1.2, <http://www.cs.umd.edu/~mount/ANN/>. 591

590 OSTROMOUKHOV, V., DONOHUE, C., AND JODOIN, P.-M. 2004. 631
 591 Fast hierarchical importance sampling with blue noise proper- 632
 592 ties. *ACM Transactions on Graphics* 23, 3 (Aug.), 488–495.

593 OSTROMOUKHOV, V. 2007. Sampling with polyominoes. *ACM 633*
 594 *Transactions on Graphics* 26, 3 (July), 78:1–78:6.

595 RAND, A. 2011. Where and how Chew’s second Delaunay 634
 596 refinement algorithm works. In *Proceedings of the 23rd Canadian 635*
 597 Conference on Computational Geometry, 157–162.

598 RENSHAW, E. 2010. Spatial-temporal marked point processes: a 599 spectrum of stochastic models. *Environmetrics* 21, 3-4, 253–269.

600 RUPPERT, J. 1995. A Delaunay refinement algorithm for quality 601 2-dimensional mesh generation. *Journal of Algorithms* 18, 3, 602 548–585.

603 SCHLÖMER, T., 2011. PSA point set analysis. Version 0.2.2, 604
<http://code.google.com/p/psa/>.

605 SHEWCHUK, J. R., 1996-2005. Triangle: a two-dimensional quality 606 2005. mesh generator and Delaunay triangulator. <http://www.cs.cmu.edu/~quake/triangle.html>.

608 SHEWCHUK, J. R. 2002. Delaunay refinement algorithms for tri- 609 angular mesh generation. *Computational Geometry* 22, 1–3, 86– 610 95.

611 TALMOR, D. 1997. *Well-Spaced Points for Numerical Methods*. 612 PhD thesis, Carnegie Mellon University, Pittsburgh. CMU CS 613 Tech Report CMU-CS-97-164.

614 ÜNGÖR, A. 2009. Off-centers: A new type of Steiner points for 615 computing size-optimal quality-guaranteed Delaunay triangula- 616 tions. *Computational Geometry: Theory and Applications* 42 617 (February), 109–118.

618 VANDERHAEGHE, D., BARLA, P., THOLLOT, J., AND SILLION, 619 F. 2007. Dynamic point distribution for stroke-based rendering. 620 In *Rendering Techniques 2007 (Proceedings of the Eurographics 621 Symposium on Rendering)*, 139–146.

622 WEI, L.-Y., AND WANG, R. 2011. Differential domain analysis 623 for non-uniform sampling. *ACM Transactions on Graphics* 30 624 (Aug.), 50:1–50:10.

625 WEI, L.-Y. 2008. Parallel Poisson disk sampling. *ACM Transac- 626 tions on Graphics* 27, 3 (Aug.), 20:1–20:9.

627 WHITE, K. B., CLINE, D., AND EGBERT, P. K. 2007. Poisson 628 disk point sets by hierarchical dart throwing. In *RT ’07: Pro- 629 ceedings of the 2007 IEEE Symposium on Interactive Ray Trac- 630 ing*, 129–132.

A Theoretical Guarantees for Spatially Varying MPS

A.1 Prior-disk

Proposition A.1. Suppose that sample X satisfies the empty disk property. Then for all i, j , $|\mathbf{x}_i - \mathbf{x}_j| \geq \frac{r(x_i)}{1+L}$.

Proof. If $i < j$, the empty-disk definition implies $|\mathbf{x}_i - \mathbf{x}_j| \geq r(\mathbf{x}_i)$. Otherwise we apply the Lipschitz property and the fact that \mathbf{x}_i satisfies the empty-disk property when it is inserted:

$$r(\mathbf{x}_i) \leq r(\mathbf{x}_j) + L |\mathbf{x}_i - \mathbf{x}_j| \leq |\mathbf{x}_i - \mathbf{x}_j| + L |\mathbf{x}_i - \mathbf{x}_j|. \quad \square$$

Proposition A.2. Suppose that sample X is maximal and T is a resulting Delaunay triangle. Then $R_T \leq \min\left(\frac{r(y)}{1-L}, \frac{r(x)}{1-2L}\right)$ where R_T is the circumradius, y is the circumcenter and x is any triangle vertex.

Proof. Since X is maximal, $|\mathbf{z} - \mathbf{y}| \leq r(\mathbf{z})$ for some vertex $\mathbf{z} \in X$ which is not necessarily a vertex of T ; see Figure 13(a). Now applying the Lipschitz property gives

$$|\mathbf{z} - \mathbf{y}| \leq r(\mathbf{z}) \leq r(\mathbf{y}) + L |\mathbf{z} - \mathbf{y}|.$$

Rearranging gives $R_T \leq |\mathbf{z} - \mathbf{y}| \leq \frac{r(\mathbf{y})}{1-L}$. Now we apply the Lipschitz property again:

$$R_T = |\mathbf{x} - \mathbf{y}| \leq |\mathbf{z} - \mathbf{y}| \leq \frac{r(\mathbf{y})}{1-L} \leq \frac{1}{1-L} (r(\mathbf{x}) + L |\mathbf{x} - \mathbf{y}|).$$

Again rearranging completes the proof. \square

Corollary A.3. Suppose that sample X is maximal. Then $|\mathbf{x}_i - \mathbf{x}_j| \leq \frac{2r(x_i)}{1-2L}$.

Lemma A.4. Suppose X is a maximal sample satisfying the empty dist property. Then all the angles in the Delaunay triangulation are at least $\arcsin\left(\frac{1-2L}{2}\right)$.

Proof. Let α be an angle in the Delaunay triangulation of X and let \mathbf{x} be the vertex on the edge opposite of α which was inserted first. Then this opposite edge has length at least $r(\mathbf{x})$. Then applying Propositions 4.2 and A.2 for a vertex opposite angle angle α in the triangulation

$$\sin \alpha \geq \frac{r(\mathbf{x})}{2r(\mathbf{x})/(1-2L)} = \frac{1-2L}{2}. \quad \square$$

Proposition A.5. Suppose that sample X is maximal. Then for all $\mathbf{y} \in \Omega$, $\min_i |\mathbf{x}_i - \mathbf{y}| \leq \frac{r(\mathbf{y})}{1-L}$.

Proof. The maximal definition requires the existence of a vertex \mathbf{x}_k such that $|\mathbf{x}_k - \mathbf{y}| \leq r(\mathbf{x}_k)$. Then using the Lipschitz property:

$$|\mathbf{x}_k - \mathbf{y}| \leq r(\mathbf{x}_k) \leq r(\mathbf{y}) + L |\mathbf{x}_k - \mathbf{y}|.$$

Rearranging terms completes the proof. \square

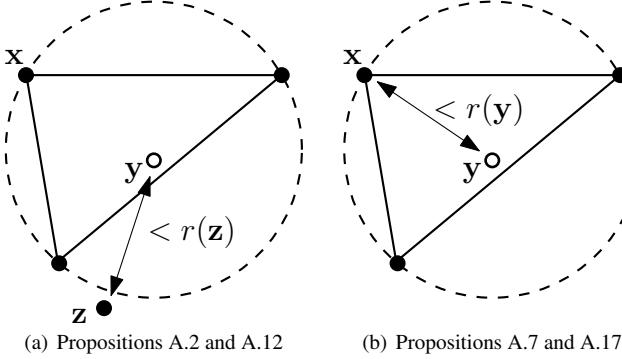


Figure 13: Notation for proofs of estimates of circumradii in the Delaunay triangulation of maximal samples.

649 A.2 Current-disk

650 Proposition A.6. Suppose that sample X satisfies the empty disk
 651 property. Then for all i, j , $|\mathbf{x}_i - \mathbf{x}_j| \geq \frac{r(\mathbf{x}_i)}{1+L}$.

Proof. If $i > j$, the empty-disk definition implies $|\mathbf{x}_i - \mathbf{x}_j| \geq r(\mathbf{x}_i)$. Otherwise we apply the Lipschitz property and the fact that \mathbf{x}_j satisfies the empty-disk property when it is inserted:

$$r(\mathbf{x}_i) \leq r(\mathbf{x}_j) + L |\mathbf{x}_i - \mathbf{x}_j| \leq |\mathbf{x}_i - \mathbf{x}_j| + L |\mathbf{x}_i - \mathbf{x}_j|. \quad \square$$

652 Proposition A.7. Suppose that sample X is maximal and T is a
 653 resulting Delaunay triangle. Then $R_T \leq \min\left(r(\mathbf{y}), \frac{r(\mathbf{x})}{1-L}\right)$ where
 654 R_T is the circumradius, \mathbf{y} is the circumcenter and \mathbf{x} is any triangle
 655 vertex.

656 Proof. Since X is maximal, $R_T = |\mathbf{x} - \mathbf{y}| \leq r(\mathbf{y})$ for any vertex \mathbf{x}
 657 of T ; see Figure 13(b). Now applying the Lipschitz property gives
 658 $R_T \leq r(\mathbf{y}) \leq r(\mathbf{x}) + L |\mathbf{x} - \mathbf{y}|$. \square

659 Corollary A.8. Suppose that sample X is maximal and $\mathbf{x}_i, \mathbf{x}_j \in X$
 660 are Delaunay neighbors. Then $|\mathbf{x}_i - \mathbf{x}_j| \leq \frac{2r(\mathbf{x}_i)}{1-L}$.

661 Lemma A.9. Suppose X is a maximal sample satisfying the empty
 662 dist property. Then all the angles in the Delaunay triangulation are
 663 at least $\arcsin\left(\frac{1-L}{2}\right)$.

Proof. Let α be an angle in the Delaunay triangulation of X and let \mathbf{x} be the vertex on the edge opposite of α which was inserted *last*. Then this opposite edge has length at least $r(\mathbf{x})$. Then applying Propositions 4.2 and A.7 for a vertex opposite angle angle α in the triangulation

$$\sin \alpha \geq \frac{r(\mathbf{x})}{2r(\mathbf{x})/(1-L)} = \frac{1-L}{2}. \quad \square$$

664 Proposition A.10. Suppose that sample X is maximal. Then for
 665 all $\mathbf{y} \in \Omega$, $\min_i |\mathbf{x}_i - \mathbf{y}| \leq r(\mathbf{y})$.

666 Proof. This is exactly the definition of maximal sample that we are
 667 using. \square

668 A.3 Bigger-disk

669 Proposition A.11. Suppose that sample X satisfies the empty disk
 670 property. Then for all i, j , $|\mathbf{x}_i - \mathbf{x}_j| \geq r(\mathbf{x}_i)$.

Proof. Immediate from the empty disk definition. \square

672 Proposition A.12. Suppose that sample X is maximal and T is
 673 a resulting Delaunay triangle. Then $R_T \leq \min\left(\frac{r(\mathbf{y})}{1-L}, \frac{r(\mathbf{x})}{1-2L}\right)$
 674 where R_T is the circumradius, \mathbf{y} is the circumcenter and \mathbf{x} is any
 675 triangle vertex.

Proof. Since X is maximal, $|\mathbf{z} - \mathbf{y}| \leq \max(r(\mathbf{z}), r(\mathbf{y}))$ for some vertex $\mathbf{z} \in X$ which is not necessarily a vertex of T ; see Figure 13(a). So if $|\mathbf{z} - \mathbf{y}| > r(\mathbf{y})$ then $|\mathbf{z} - \mathbf{y}| \leq r(\mathbf{z})$. Now applying the Lipschitz property gives

$$|\mathbf{z} - \mathbf{y}| \leq r(\mathbf{z}) \leq r(\mathbf{y}) + L |\mathbf{z} - \mathbf{y}|.$$

Rearranging gives $R_T \leq |\mathbf{z} - \mathbf{y}| \leq \frac{r(\mathbf{y})}{1-L}$. Now we apply the Lipschitz property again:

$$R_T = |\mathbf{x} - \mathbf{y}| \leq |\mathbf{z} - \mathbf{y}| \leq \frac{r(\mathbf{y})}{1-L} \leq \frac{1}{1-L} (r(\mathbf{x}) + L |\mathbf{x} - \mathbf{y}|).$$

Again rearranging completes the proof. \square

677 Corollary A.13. Suppose that sample X is maximal and $\mathbf{x}_i, \mathbf{x}_j \in X$ are Delaunay neighbors. Then $|\mathbf{x}_i - \mathbf{x}_j| \leq \frac{2r(\mathbf{x}_i)}{1-2L}$.

678 Lemma A.14. Suppose X is a maximal sample satisfying the
 679 empty dist property. Then all the angles in the Delaunay trian-
 680 gulation are at least $\arcsin\left(\frac{1-2L}{2}\right)$.

Proof is nearly identical to Lemma A.4.

681 Proposition A.15. Suppose that sample X is maximal. Then for
 682 all $\mathbf{y} \in \Omega$, $\min_i |\mathbf{x}_i - \mathbf{y}| \leq \frac{r(\mathbf{y})}{1-L}$.

Proof. The maximal definition requires the existence of a vertex \mathbf{x}_k such that $|\mathbf{x}_k - \mathbf{y}| \leq \max(r(\mathbf{x}_k), r(\mathbf{y}))$. Thus either $\min_i |\mathbf{x}_i - \mathbf{y}| \leq r(\mathbf{y})$ or $\min_i |\mathbf{x}_i - \mathbf{y}| \leq r(\mathbf{x}_k)$. In the latter case the Lipschitz property gives

$$|\mathbf{x}_k - \mathbf{y}| \leq r(\mathbf{x}_k) \leq r(\mathbf{y}) + L |\mathbf{x}_k - \mathbf{y}|.$$

Rearranging terms completes the proof. \square

686 A.4 Smaller-disk

687 Proposition A.16. Suppose that sample X satisfies the empty disk
 688 property. Then for all i, j , $|\mathbf{x}_i - \mathbf{x}_j| \geq \frac{r(\mathbf{x}_i)}{1+L}$.

Proof. The empty disk requirement immediately implies that $|\mathbf{x}_i - \mathbf{x}_j| \geq \min(r(\mathbf{x}_i), r(\mathbf{x}_j))$. If $r(\mathbf{x}_i) > r(\mathbf{x}_j)$, then we can apply the Lipschitz property:

$$r(\mathbf{x}_i) \leq r(\mathbf{x}_j) + L |\mathbf{x}_i - \mathbf{x}_j| \leq |\mathbf{x}_i - \mathbf{x}_j| + L |\mathbf{x}_i - \mathbf{x}_j|. \quad \square$$

689 Proposition A.17. Suppose that sample X is maximal and T is a
 690 resulting Delaunay triangle. Then $R_T \leq \min\left(r(\mathbf{y}), \frac{r(\mathbf{x})}{1-L}\right)$ where
 691 R_T is the circumradius, \mathbf{y} is the circumcenter and \mathbf{x} is any triangle
 692 vertex.

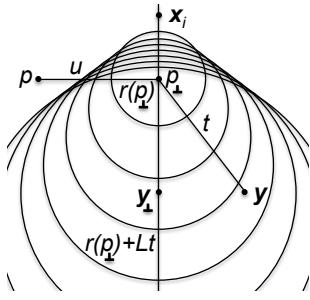


Figure 14: Possible disks for samples \mathbf{y} on the far side of the kd-tree branch for \mathbf{x}_i . Based solely on L , the samples that might overlap $\overline{p\mathbf{p}_\perp}$ the most lie on the branching hyperplane, i.e. $\mathbf{y} = \mathbf{y}_\perp$. If p is far enough away, we know it can not lie in any of these disks. In this figure $L = 0.8$. The supporting line to the family of hypothetical disks is more vertical for smaller L , leading to less overlap.

Proof. Since X is maximal, $|\mathbf{z} - \mathbf{y}| \leq \min(r(\mathbf{z}), r(\mathbf{y})) \leq r(\mathbf{y})$ for some vertex $\mathbf{z} \in X$ which is not necessarily a vertex of T ; see Figure 13(b). Then applying the Lipschitz property completes the proof:

$$R_T = |\mathbf{x} - \mathbf{y}| \leq |\mathbf{z} - \mathbf{y}| \leq r(\mathbf{y}) \leq r(\mathbf{x}) + L|\mathbf{x} - \mathbf{y}|. \quad \square$$

Corollary A.18. Suppose that sample X is maximal and $\mathbf{x}_i, \mathbf{x}_j \in X$ are Delaunay neighbors. Then $|\mathbf{x}_i - \mathbf{x}_j| \leq \frac{2r(\mathbf{x}_i)}{1-L}$.

Lemma A.19. Suppose X is a maximal sample satisfying the empty dist property. Then all the angles in the Delaunay triangulation are at least $\arcsin(\frac{1-L}{2})$.

Proof is identical to Lemma A.9.

Proposition A.20. Suppose that sample X is maximal. Then for all $\mathbf{y} \in \Omega$, $\min_i |\mathbf{x}_i - \mathbf{y}| \leq r(\mathbf{y})$.

Proof. The maximal definition requires the existence of a vertex \mathbf{x}_k such that $|\mathbf{x}_k - \mathbf{y}| \leq \min(r(\mathbf{x}_k), r(\mathbf{y}))$. Thus

$$\min_i |\mathbf{x}_i - \mathbf{y}| \leq |\mathbf{x}_k - \mathbf{y}| \leq \min(r(\mathbf{x}_k), r(\mathbf{y})) \leq r(\mathbf{y}). \quad \square$$

B Primitive Implementation Proofs

PiX point-in-disk. Search the kd-tree for \mathbf{x} with $p \in D(\mathbf{x}) \Leftrightarrow |p - \mathbf{x}| < r(\mathbf{x})$. If such a sample is found, then answer “yes.” Prune a branch of the kd-tree if the following holds:

- $|p - p_\perp|^2(1 - L^2) > r(p_\perp)^2$.

If r_{\max} is available and either L is close to 1 or there are not good estimates for L , the following conditions may be more convenient.

- $r(p_\perp) > r_{\max}(1 - L^2)$ and $|p - p_\perp|^2 \geq r_{\max}^2 - (r_{\max} - r(p_\perp))^2/L^2$; the latter holds if $|p - p_\perp|^2 \geq r(p_\perp)(2r_{\max} - r(p_\perp))$.

- $r(p_\perp) \leq r_{\max}(1 - L^2)$ and $|p - p_\perp|^2 \geq r(p_\perp)r_{\max}$.

We provide the proof that the branching condition is sufficient. Consider Figure 14. To show that $p \notin D(\mathbf{y})$ for any sample on the far side of the branch, it is sufficient to show that $|p - \mathbf{y}| > r(\mathbf{y})$. Let $u = |p - p_\perp|$ and $t = |p_\perp - \mathbf{y}|$. Since \mathbf{y} is on the far side of the kd-tree branch, by the law of cosines we have $|p - \mathbf{y}|^2 \geq u^2 + t^2$. By the Lipschitz condition $r(\mathbf{y}) \leq r(p_\perp) + Lt$. Thus a sufficient condition for pruning the branch is $r(\mathbf{y})^2 < |p - \mathbf{y}|^2 \Leftrightarrow (r(p_\perp) + Lt)^2 < u^2 + t^2$. Or

$$u^2 - r(p_\perp)^2 \geq t(2Lr(p_\perp) - (1 - L^2)t) \forall t \geq 0 \quad (13)$$

Using basic calculus, the maximum of the right hand side is $L^2r(p_\perp)^2/(1 - L^2)$, achieved for $t_* = Lr(p_\perp)/(1 - L^2)$. At that value Equation 13 is equivalent to $u^2 \geq r(p_\perp)^2/(1 - L^2)$.

If the maximum value of $r(\cdot) = r_{\max}$ is known, we need only consider t up to $r(p_\perp) + Lt \leq r_{\max}$ or $t_o = (r_{\max} - r(p_\perp))/L$. Now $t_o < t_*$ is equivalent to $(r_{\max} - r(p_\perp))(1 - L^2) < L^2r(p_\perp) \Leftrightarrow r(p_\perp) \geq r_{\max}(1 - L^2)$. If this holds then substituting $t = t_o$ into Equation 13 yields the sufficient condition $u^2 > r_{\max}^2 - (r_{\max} - r(p_\perp))^2/L^2$. Using $L \leq 1$ a weaker sufficient condition is $u^2 > r(p_\perp)(2r_{\max} - r(p_\perp))$.

Now if $t_o \geq t_*$ we get the third condition. A sufficient condition is $u^2 - r(p_\perp)^2 \geq t_o(2Lr(p_\perp) - (1 - L^2)t_*)$ which reduces to $u^2 \geq r(p_\perp)r_{\max}$.

The proofs for the other tests use the same principles, and are less involved.

XiP sample-in-disk. Given a query point p , we search the kd-tree for a sample \mathbf{x} with $|p - \mathbf{x}| < r(p)$, pursuing branches with $|p - p_\perp| < r(p)$.

BiX square-in-disk. We seek a sample whose disk contains the square. One solution is to apply the point-in-disk primitive for all the corners of a square. This is easy to describe but not particularly efficient. A faster solution is to apply the point-in-disk primitive to the cell center, and prune if the disk radius is not large enough to possibly encompass the entire square. For a cell, c is its center, h its diagonal. Apply the point-in-disk pruning criteria, with $p = c$ and $|p - p_\perp|$ replaced by $|p - p_\perp| + s/2$ where s is the side length of a cell.

The following shows these criteria are correct. A sample’s disk can only cover the cell if $r(\mathbf{x}) \geq |c - \mathbf{x}| + s/2$ because squares and disks are convex, and the point exterior to the square nearest to its center is at distance $s/2$ of the center. We prune kd-tree branches if we can show any sample on the branch has $r(\mathbf{x}) < |c - \mathbf{x}| + s/2$. Thus we prune if $(r(p_\perp) + Lt)^2 < (u + s/2)^2 + t^2$. This is equivalent to point-in-disk with u replaced by $u + s/2$.

For any unpruned sample, we may either check if the disk covers all 2^d corners, or a sufficient condition for coverage is $|c - c_\perp| + h/2 < r(\mathbf{x})$.

XiB sample-in-square’s-disk. Search the kd-tree for a sample with $|c - \mathbf{x}| \leq r(c) - (1 + L)h/2$, pursuing branches with with half-spaces closer than that to c . If any such sample is found, answer “yes.”

Proposition B.1. If $r(c) - |c - \mathbf{x}_i| \geq (1 + L)h/2$ then the disk of every candidate dart in c ’s cell contains \mathbf{x}_i .

Proof. Let p be any other point in the cell, then we wish to show $r(p) \geq |p - \mathbf{x}_i|$. By the Lipschitz condition $r(p) \geq r(c) - L|p - c| \geq r(p) - Lh/2$. By the triangle inequality, $|p - \mathbf{x}_i| \leq |c - \mathbf{x}_i| + |p - c| \leq |c - \mathbf{x}_i| + h/2$. Therefore a sufficient condition for $r(p) \geq |p - \mathbf{x}_i|$ is $r(c) - Lh/2 \geq |c - \mathbf{x}_i| + h/2$. \square

C DR and MPS contrasted

Delaunay refinement (DR) [Chew 1989; Ruppert 1995; Shewchuk 2002] can be viewed as a deterministic variant of disk packing. MPS places the next point at random in any disk-free region. DR places points exactly at the centers of large empty circumspheres. These are the Voronoi vertices of the sample-so-far, and are thus a subset of the points that disk-free. Variants of DR use random

selection regions, small spheres around circumcenters, which targets more of the domain. Offcenters [Üngör 2009] is a technique for selects points nearer to short edges than the circumcenter. This improves mesh grading and uses fewer points than circumradii. A *sliver* is a flat tetrahedra that has a good edge lengths and circumradii, but small dihedral angles. Given three points, in order to form a sliver the fourth point must lie in a particular region near the circumcircle of the first three points. The restrictive nature of this configuration means that slivers can be removed by perturbing vertices [Edelsbrunner et al. 2000] or Delaunay weights [Cheng et al. 1999] or randomly sampling during Delaunay refinement [Chew 1997; Li and Teng 2001]. Despite practical success, the guarantees of these results are quite limited: the theoretical lower bound on dihedral angles in the triangulation is much smaller than 1° in each case.

DR and MPS produce point clouds that have similar properties [Talmor 1997; Miller et al. 1996; Ebeida and Mitchell 2011]. Both DR and MPS point clouds satisfy the empty-disk Equation 1 and maximal Equation 3 properties; only MPS points are unbiased Equation 4. (Some methods relax these conditions for points near the boundary, or to remove slivers.)

DR tracks uncovered regions using Voronoi vertices, whereas MPS tracks voids using uniform grids plus either quadtrees or polygonal approximations [Ebeida et al. 2011b]. (A third category of MPS methods models the arrival time of points within a uniform grid [Jones and Karger 2011].) In the limit that a void is single point, MPS and DR will add the same point. If DR selects a point at random from a small sphere around an empty circumcenter, the inhibition condition may have to be relaxed. This variant is similar to what we present in Section 3 and Section 4 [Chernikov and Chrisochoides 2009].

While DR produces point clouds that share many features with MPS point clouds, there are a few key statistical differences. Since DR is a family of algorithms and methods, variants can often be devised that duplicate certain properties of the MPS point clouds, but no known variant has been shown to produce unbiased output. To study uniform point clouds, we consider two DR variants: Chew's first DR algorithm which inserts the circumcenter of any triangle with circumradius larger than the target size and a second variant that inserts the circumcenter of any triangle with maximum edge longer than twice the target size. In both cases, point clouds are taken from a subset of the domain meshes so that the artificial boundaries used do not directly impact the placement.

While DR point clouds often appear to satisfy the blue noise criteria, other statistics do not match the MPS output. Specifically, we consider histograms of each triangle's smallest angle and edge lengths for the Delaunay triangulation in the point clouds using $r = 0.001$ in the unit square as shown in Figure 15. In each case, the resulting distributions are different. While the edge-length histogram for Chew's first DR algorithm is quite similar to that of MPS, a large enough sample has been used that the differences, especially near length ratio 1.0, are meaningful. Specifically, the MPS point clouds contains 697,529 vertices while those for Chew's first DR algorithm and the second DR variant we consider have 700,093 and 642,173 vertices, respectively.

D More Experimental Results

Figure 16 shows our resampling of a spatially varying image [Kopf et al. 2006; Wei 2008] using all four strategies. The input image [Wei 2008] (originally [Kopf et al. 2006]) was scanned, grayscaled, smoothed for L , then resampled.

Figure 17 shows PSA analysis of the output of all four variations,

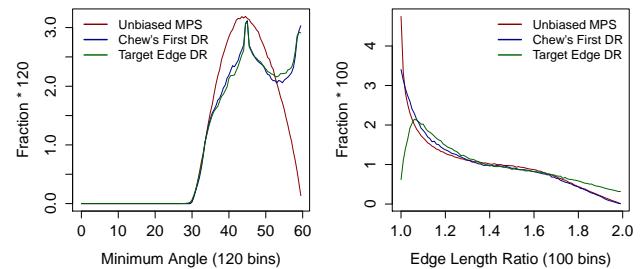


Figure 15: Comparison of minimum angle and edge-length histograms resulting from uniform triangulation using maximal Poisson disk sampling and Delaunay refinement.

over a linear sizing function. The limitations of FFT analysis for non-uniform samples is apparent.

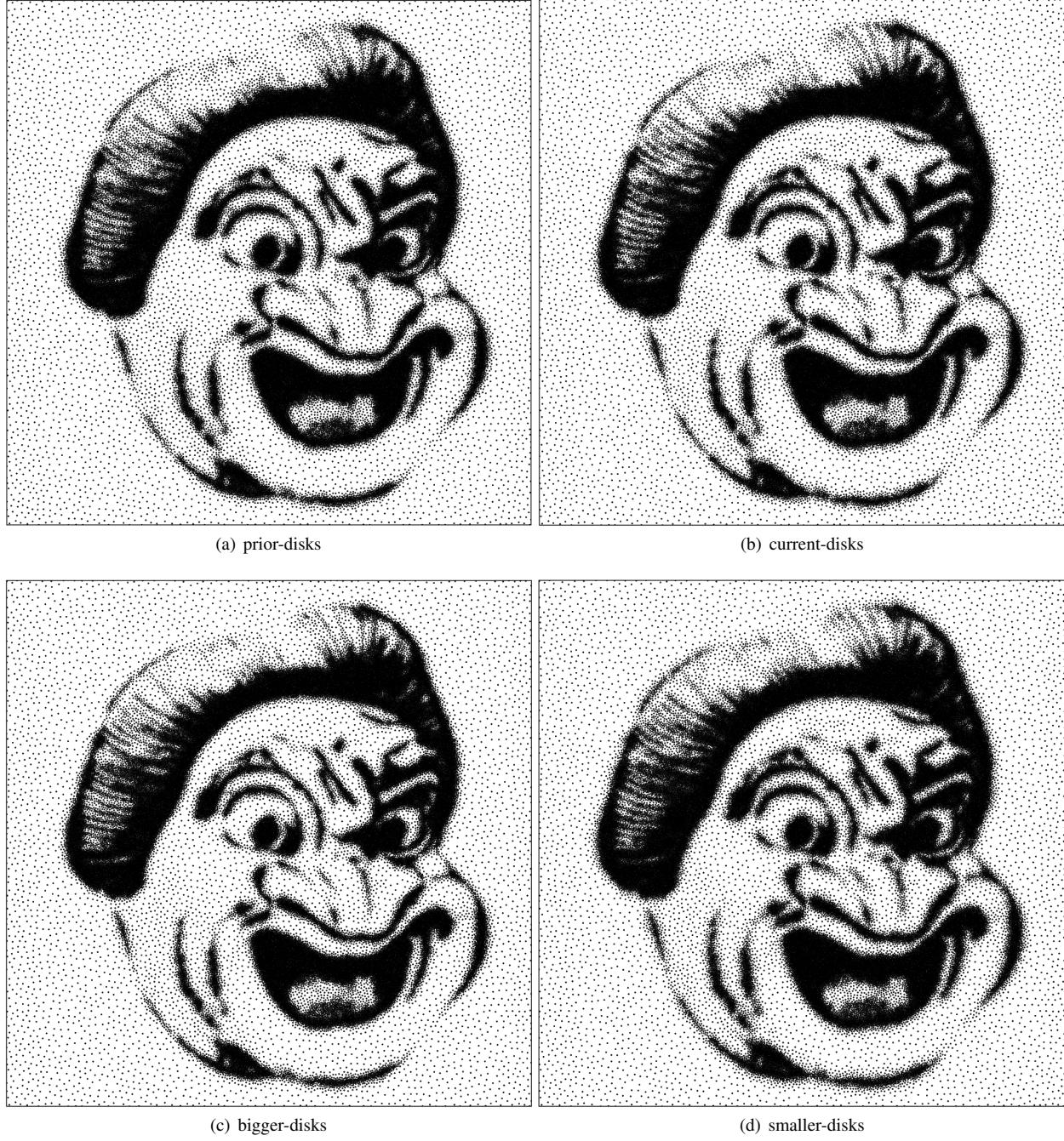


Figure 16: Resampling a cartoon face with varying radii.

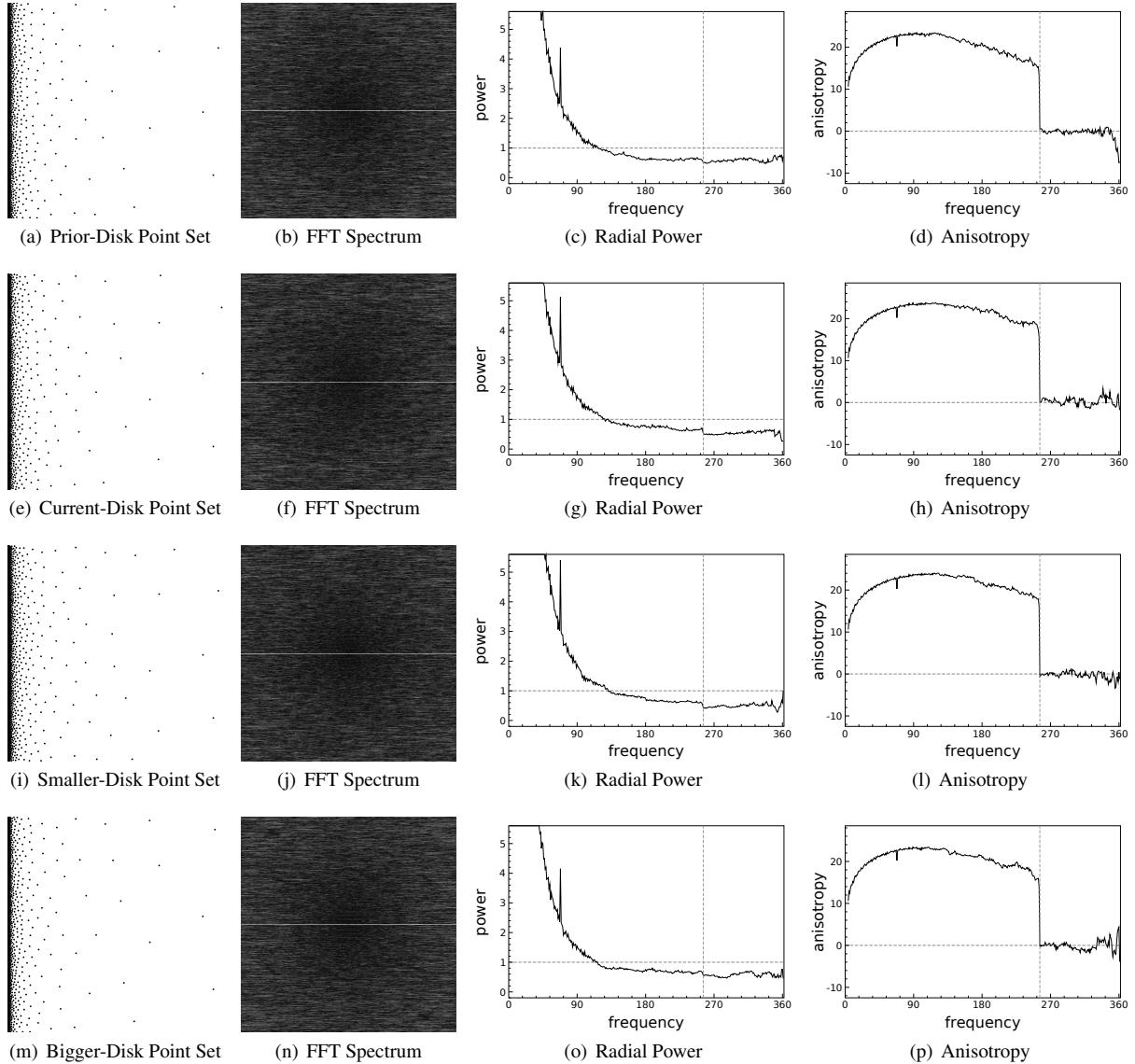


Figure 17: Linear Ramp Example. PSA for a non-uniform sizing function $r(x,y) = 0.001 + .3x$ over the unit square using the four approaches with the same random number seed.

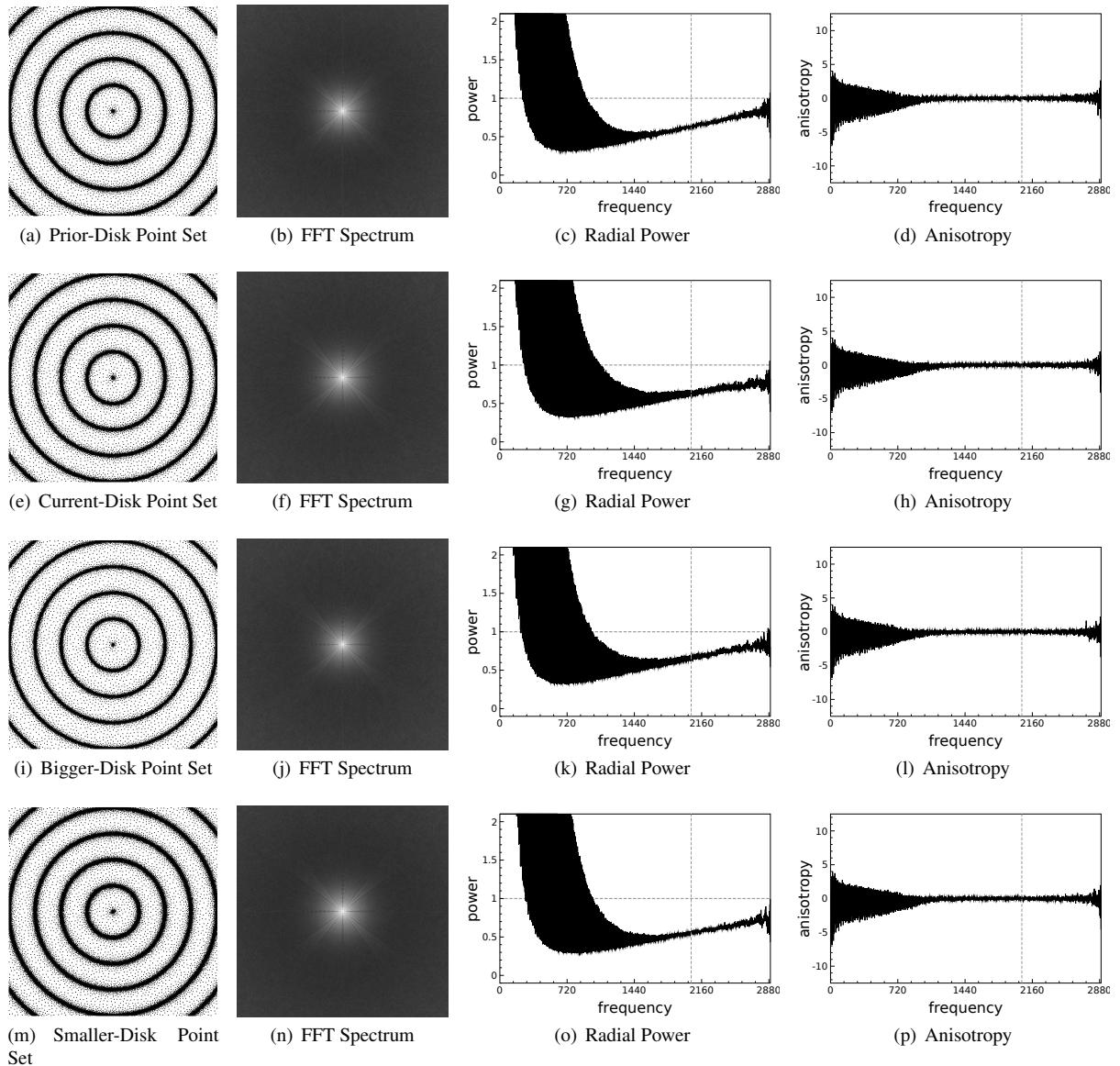


Figure 18: Samplings for a non-uniform sizing function, $r(\mathbf{x}) = r_m + (r_M - r_m) |\sin(8\pi d)|$ where $r_m = 0.015$, $r_M = 0.00015$, and $d = \|\mathbf{x} - (.5, .5)\|$.