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Variable Radii Poisson-Disk Sampling

Figure 1: Sampling using prior-disks. Right, the first two iterations, showing flat quadtree refinement and active squares (light). Left, the
output disks and samples. The sizing function spans three orders of magnitude over the unit box: r(x, y) = 0.001 + 0.3x.

Abstract1

We introduce two natural and well-defined generalizations to the2

definition of the Poisson-disk sampling problem. The first is to de-3

couple the disk-free (inhibition) radius from the maximality (cov-4

erage) radius. By scaling these radii by an abstract parameter (e.g.5

time), we may generate hierarchical samples with more random-6

ness than if a single radius is used. The radial power of the FFT is7

more uniform than for classical MPS: the oscillating ring pattern is8

attenuated.9

The second generalization is to allow the radii to vary spatially, ac-10

cording to a sizing function. Our main contributions there are a11

formal characterization of sizing functions (radii) for non-uniform12

Poisson-disk samples and a generic algorithm for sample genera-13

tion for a wide variety of applications. These results hold in all di-14

mensions. We contrast the results to Delaunay refinement. Our defi-15

nitions and algorithms do not depend on a maximum and minimum16

radii, but rather the rate at which the radii can change. This rate17

fundamentally determines the quality of the resulting point cloud.18

It provides bounds on the distances to neighboring points: specifi-19

cally bounds on the ratio of lengths of edges sharing a sample in a20

Delaunay triangulation of the sampling. We provide experimental21

results.22

CR Categories: I.3.5 [Computing Methodologies]: Computer23
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1 Classic MPS Definition27

A sampling is a set of ordered points taken from a domain at ran-28

dom. In Poisson-disk sampling, each point has an associated disk.29

No other point may be inside this disk. Points are chosen uni-30

formly outside the prior points’ disks. The sampling is maximal31

if the entire domain is covered by disks. Together these define32

maximal Poisson-disk sampling (MPS), a.k.a. the Matérn second33

process [1960].34

More formally, a sampling X = (xi)
n
i=1, xi ∈ Ω satisfies the inhi-

bition or empty disk property if

∀i < j ≤ n, |xi − xj | ≥ r. (1)

The set of uncovered points is defined to be

S(X) = {y ∈ Ω : |y− xi| ≥ r, i = 1..n}. (2)

A sampling X is maximal if S(X) is empty:

S(X) = ∅. (3)

Given a non-maximal sampling, the next sample is bias-free if the
probability of selecting it from any uncovered subregion is propor-
tional to the subregion’s area, i.e.,

∀A ⊂ S(X) : P (xn+1 ∈ A |X) =
|A|
|S(X)| , (4)

where |·| denotes area. The sampling process is bias-free if all of35

its sample points were selected according to a bias free random36

process. This criteria is in contrast to measuring the output of one37

run of the process, e.g. the FFT spectrum of the pairwise distances38

between the points [Schlömer 2011]. Some algorithms are highly39

parallel and fast [Wei 2008], but follow an inherently biased pro-40

cess. Whether this makes a difference for applications is unclear,41

as definitive requirements and measures of whether point sets meet42

these requirements are not generally available. Because of this, and43

to have a clear frame of reference, we focus on bias-free processes.44

In the following we will generalize these equations and elucidate45

the consequences. For simplicity our figures and language focus46

on two dimensional domains, but the definitions and algorithms are47

general dimensional. We consider three specific generalizations of48

the MPS problem: (1a) decoupling the radii in the disk-free and49

maximality conditions, (1b) a hierarchical constructions for pro-50

gressively denser samples, and (2) sampling with spatially varying51

point cloud density based on a variable sizing function. These gen-52

eralizations are necessary to utilize the benefits of uniform MPS for53

problems in computer graphics and mesh generation.54

We define sizing functions over the domain that determine the ra-55

dius of the Poisson-disks. A sizing function f is a simple function56

(e.g. a local max) of an underlying radius function, r, or r(p) to57

emphasize its dependence on the position p. We require that r is58

L-Lipschitz, i.e., for all x, y ∈ Ω, |r(x)− r(y)| ≤ L |x− y| for59

some constant L. The field of mesh generation, notably Delaunay60

refinement, has a long history of considering sizing functions with61

L < 1. In particular, for polygonal domains, the local feature size is62

the radius of the smallest ball that contains two disjoint faces of the63

boundary, e.g. two edges that do not share a common vertex. The64

local feature size has L < 1. Delaunay refinement can be made to65
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follow any sizing function less than the local feature size that also66

has L < 1.67

For clarity and ease of language, we will call the disk-free radius68

the inhibition radius Rf ; and the maximality radius the coverage69

radius Rc throughout. As a function of another parameter, we use70

rf and rc.71

2 Motivation and Previous Work72

Maximal Poisson-disk sampling (MPS) is a popular topic in com-73

puter graphics [Lagae and Dutré 2008]. MPS is used for texture74

generation. The random nature of the point cloud avoids visual ar-75

tifacts that would arise if the distances between points had repeating76

patterns. Given a fixed budget of points, inhibition disks and max-77

imality help to use it efficiently: they prevent points from being78

too close together while ensuring that sample points lie throughout79

the entire domain. Uniform sampling with fixed radius disks are80

traditional. However, variable-density samplings have several uses.81

In adaptive level-of-detail renderings, we wish to use a finer sample82

locally as the camera zooms closer to an object. Often one switches83

between a discrete series of prescribed samples as the camera-to-84

object distance crosses some thresholds. One must avoiding visible85

artifacts at these steps. We suggest that our hierarchical sampling86

is well suited to this application, especially the continuous varia-87

tion which adds one random point at a time. In real-time applica-88

tions such as games or data exploration [Ljung 2006], this approach89

avoids scene jumps (frame coherence) due to lengthy computations90

or memory fetches [Vanderhaeghe et al. 2007].91

Spatially varying samplings are useful for objects with both sharp92

curvature and large flat regions, or other non-constant visualization93

gradients [Kopf et al. 2006; Bowers et al. 2010].94

Because of these potential uses, computer graphics publications95

have occasionally extended their MPS methods to spatially vary-96

ing inhibition/maximality radii. Often these have been presented as97

an extension to a result with a different focus, and there is little de-98

scription of the underlying definitions and algorithm requirements:99

e.g. how quickly the point density is allowed to vary. Sometimes100

only a picture of an example output is given.101

Wei [2008] provides adaptive sampling. A quadtree is refined pro-102

portional to the local sizing function. A set of distant squares are103

sampled from concurrently. Sets are chosen hierarchically and ran-104

domly to balance speed with the measurable bias in the output.105

The distribution is non-maximal but with some probability approx-106

imates the local density. This is extended [Bowers et al. 2010] to107

sampling triangulated surfaces. The sampling can be non-uniform,108

but the spatial sizing function must stay close to its maximum value.109

(These works consider symmetric conflict conditions akin to our110

smaller-radius and bigger-radius conditions.)111

In relaxation dart throwing [McCool and Fiume 1992], an initial112

MPS has the sampling disks radii reduced by a scaling parameter.113

The parts of the domain that are no longer maximal are filled in114

with samples. (In the original description, the sampling is not actu-115

ally maximal, and the scaling occurs when classical dart throwing116

has a high miss rate.) A variation [Vanderhaeghe et al. 2007] for117

deforming point clouds coarsens to remove points that are too close118

together, and refines to re-achieve maximality. For coarsening the119

disk-free and maximal criteria hold approximately, subject to a tol-120

erance band. Blending and sliding heuristics try to minimize the121

visual artifacts that arise from the discrete stages of the deforma-122

tion.123

A time-evolving sizing function defined at sample points, extended124

to a 1-Lipschitz function over the entire domain, can be used to125

both refine and coarsen a mesh of a sphere packing with overlap126

tolerances [Li et al. 1998]. The refinement/coarsening can be done127

deterministically, for example by Delaunay refinement. It is very128

fast to generate importance samplings using deterministic methods.129

A hierarchy of refinements based on aperiodic tiling gives point130

clouds with reasonable blue-noise properties [Ostromoukhov et al.131

2004; Kopf et al. 2006; Ostromoukhov 2007]. Given a non-uniform132

sampling, Wei [2011] provides a way to measure it.133

In many MPS algorithms, generating a sample in small uncovered134

areas to achieve maximality is difficult. Quadtree [Gamito and135

Maddock 2009; White et al. 2007; Ebeida et al. 2012] based meth-136

ods might have to refine their squares down to numerical precision137

to represent them. The coverage radius is often relaxed by an ep-138

silon value. This is different than decoupling the radii as we do139

here.140

Variable-radii samplings also appear in other fields. In physics, in141

random sequential absorption [Dickman et al. 1991], the Poisson-142

disk radius is the Van der Waals radius, which is different for differ-143

ent types of atoms. Physicists have various recipes for generating144

point clouds, depending on the desired density. For example, some145

recipes produce point clouds that resemble gas, liquid, glass, and146

solid states. However, Van der Waals radii vary little compared to147

the orders of magnitudes we address here. In environmental sci-148

ences, individual organisms can be modeled as sample points, with149

disks corresponding to their territory [Renshaw 2010].150

In mesh generation, maximal samplings satisfying the empty disk151

property are commonly desired since they yield provably good152

quality Delaunay triangulations [Chew 1989; Miller et al. 1996;153

Ebeida et al. 2011a]. Delaunay refinement algorithms construct a154

maximal sample by incrementally adding circumcenters of Delau-155

nay triangles [Chew 1989; Ruppert 1995] and without considering156

the entire set of uncovered points. When Delauany refinement is ap-157

plied to generate quality graded meshes [Ruppert 1995; Shewchuk158

2002], a user defined mesh sizing function must satisfy a Lipschitz159

property and be dominated by the local feature size. Beyond con-160

sidering only circumcenters, the set of potential new vertices can161

be expanded to produce meshes with larger angles or fewer ver-162

tices [Chew 1997; Li 2003; Chernikov and Chrisochoides 2009;163

Erten and Üngör 2009]. However, randomly sampling the entire164

uncovered set (i.e., producing unbiased samples) has received less165

attention due to the difficulty and cost of generating suitable point166

sets, and analysis. Random meshes with time and spatially vary-167

ing densities are preferred for certain fracture mechanics, because168

cracks propagate in more physically realistic directions [Bolander169

and Saito 1998; Ebeida and Mitchell 2011].170

A hierarchy of meshes has many uses [Miller et al. 1996; Li et al.171

1998; Devillers 2002]: point location, multigrid, coarsening and172

refinement in adaptivity, and convergence studies.173

3 Different inhibition and coverage radii174

Here we relax the condition that the coverage and inhibition radii175

are equal. We focus on a particular relaxation that proves useful176

when generating hierarchical point sets and smoothing the FFT ra-177

dial power. Contrast to Equations 1– 4. Let Rf ≤ Rc.178

The empty disk property is

∀i < j ≤ n, |xi − xj | ≥ Rf . (5)

The set of free points is defined to be

S(X) = {y ∈ Ω : |y− xi| ≥ Rf , i = 1..n}. (6)
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The set of uncovered points is defined to be

U(X) = {y ∈ Ω : |y− xi| ≥ Rc, i = 1..n}. (7)

In order for this variation to be useful and different than the single
radius case, the sampling is maximal if U(X) is empty,

U(X) = ∅. (8)

We take samples from S, but restrict to the points that are close
enough to U in order to reduce it.

T (X) = S(X) ∩ {U(X) +Rc}. (9)

We call the sampling bias-free if we sample from T (X) uniformly.179

This process is useful to add randomness to initial and parameter-180

ized (hierarchical) samples. This process provides samplings that181

are less uniform, with greater variation in inter-sample distances,182

than classical MPS. In particular, this process avoids the visible183

rings in the FFT spectrum of the output. The radial power does184

not have the low frequency oscillations that are so characteristic of185

classical MPS. See Figure 7 for an example.186

Samplings will likely have points that could be removed and still187

meet the coverage condition Equation 8. There are more extra188

points the smaller Rf is compared to Rc.189

3.1 Algorithm for Two Radii Sampling,190

and Other Variations191

Algorithm 1 MPS using generic conflict and coverage tests.

initialize kd-tree T = ∅, i = 0, Ci = Co
while |Ci| > 0 do
{throw darts}
for all A|Ci| (constant) dart throws do

select an active cell Cic from Ci uniformly at random
throw candidate dart y into Cic, uniformly at random
if y does not conflict then
{promote dart to sample}
add y to T as an accepted sample x

end if
end for
{coverage}
for all active cells Ci do

if i <bits of precision subdivide Cic into 2d subcells
retain uncovered (sub)cells as Ci+1

end for
increment i

end while

The basic algorithm is simple and a variation of the MPS algo-192

rithm in [Ebeida et al. 2012]; see Algorithm 1. A batch of darts are193

thrown, and each one checks whether it conflicts with any nearby194

sample. We store samples in a kd-tree T , so that we can retrieve195

those that are nearby. A flat quadtree C tracks the uncovered area196

where the next sample may arrive. At a given iteration i, all the197

cells Ci have been refined to the same size. After a batch of throws,198

squares are refined and discarded if they are covered, i.e., too close199

to a prior sample to contain a new one. (Prior works store the sam-200

ples in the quadtree, but this is not as efficient for us because of our201

variable radii.)202

The batch size is the number of quadtree cells times A, an empir-203

ically derived constant depending on the dimension of the domain204

and algorithm variation. The exact value of A is unimportant as205

long as it is above a threshold. A ≈ 0.5 for d < 5. Uncovered cells206

are represented by their indices, which are stored in an array; cov-207

ered cells have no data whatsoever. This is the key to the memory-208

efficiency of the method [Ebeida et al. 2012]. The squares Cic are209

checked for coverage by prior samples. The algorithm terminates210

when no squares are uncovered.211

We use this algorithm outline for all variations in this paper. The212

differences are the conditions for the conflict and coverage checks.213

Specialization for Two Radii The pool of active quadtree214

squares Ci at iteration i are an outer approximation to our sam-215

pling set T . For determining if a square Cic is covered, we check216

whether its corners are inside some D(xi, Rf ), the d-dimensional217

disk (ball) centered at xi of radius Rf . Such squares have all their218

points outside S and are discarded.219
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Figure 2: The outer perimeter encompasses
the points of T that a sample in a square might
cover.

In addition, we wish to discard squares Cic outside U + Rc. The220

set of points that a sample in a square Cic might cover is a larger,221

rounded square V = Cic + D(Rc) as in Figure 2. If V is already222

covered by samples’ disks, the cell may be discarded. Since V is223

large it cannot be covered by a single sample’s disk. To check if224

it is covered by a collection of disks we subdivide it and check the225

sub-pieces. We take its bounding box, and subdivide it as in a flat226

quadtree. All boxes at a given level are checked as in the following227

paragraph. The checks may decide that Cic (likely) contains a point228

of T . The checks may discard some boxes. If no boxes remain,229

then V does not contain any point of T and Cic may be discarded. If230

the situation is ambiguous, we subdivide all the boxes and recheck.231

If a box has all four corners outside V , we discard it. If a box has232

some corners inside V and outside V , it is ambiguous. If a box has233

all four corners inside V , then there are three subcases. (1) If any234

corner is outside all nearby sample’s disks, then we decide that the235

box contains a point of T ; such points might actually be inside the236

Rf disks, but a false positive is acceptable. (2) If all corners are237

inside a single sample’s disk, then discard the box. (3) Else it is238

ambiguous and the box has to be subdivided to decide.239

(Checking V is similar to the BiX box-in-disk check in Section 6.240

An alternative that may be faster, but use more memory, is to store a241

flat quadtree that represents T . Keep this quadtree at the same level242

i as Ci, and check its cells as described above.)243

We select darts by selecting a square in the pool then selecting a244

point in the square.245

For a dart y to be conflict free, we require246

1. y 6∈ D(xi, Rf ) ∀ prior sample xi.247

2. The dart’s large diskD(y, Rc) must cover an uncovered point.248

249

Checking Condition 1 is standard using the kd-tree of the samples.250

To check Condition 2 we have two options; their relative efficiency251

depends on the ratio of Rf to Rc, see Figure 3.252

First option. Form a local bounding box of D(y, Rc). Refine253

it as a quadtree: discard squares covered by D(xi, Rc) or outside254

D(y, Rc), otherwise refine them. If any refined square corner is255

discovered that is outside all D(x, Rc) and inside D(y, Rc), accept256
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the dart. Reject the dart if all squares are discarded. This test is257

accurate up to the roundoff error desired.258

Second option. Throw a constant number of random points into259

D(y, Rc) and accept the dart if any are outside D(xi, Rc) ∀i. This260

works well if Rf � Rc, but introduces some bias.261

4 Hierarchical Sampling262

4.1 Parameterized radii263

Consider a maximal sampling, from either a single disk radius or264

decoupled inhibition and coverage radii. We parameterize these265

radii by a scaling parameter t; e.g., t could be time. For simplic-266

ity we consider only linear scaling, so that for any particular value267

of t we have rf (t) = tRf and rc(t) = tRc. We now consider268

constructing a family of samplings over this parameter.269

4.2 Continuous Decrease Refinement270

Consider decreasing t continuously from 1 to 0. The sampling be-271

comes non-maximal when U(X) 6= ∅; recall Equation 8. A new272

sample is needed. Assume for simplicity that the t when this occurs273

are distinct, so that U(X) grows by a single point u. This position274

u is the circumcenter of a Delaunay sphere through some nearby275

samples.276
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(b) rc � rf .

Figure 3: Possible void shapes for two radii. u is the circumcenter
of 4x1x2x3. The circumcircle is green, rf disks are red, rc disks
are blue.

If rf = rc then there is only one place to put the sample, at u, so277

the process is deterministic.278

Otherwise, we insert a random point. We have two simple and ef-279

ficient solutions, depending on the relative value of rf and rc. if280

rf is much less than rc, we sample uniformly from the sphere of281

radius rc = tRc centered at u. If the sample point is closer than282

rf to a nearby point, we resample. The sphere of radius rc − rf283

centered at u is free and all samples from it will be a hit. Therefore284

since rf � rc the probability of a hit is high and this scheme is285

efficient enough.286

If rf is close to rc, then to achieve efficiency the free region may be287

(approximately) constructed using polygons [Ebeida et al. 2011b]288

or a quadtree [Ebeida et al. 2012; Gamito and Maddock 2009]. See289

Figure 3 for examples void shapes.290

In 2d, we observe that u will always be either the circumcenter291

of a non-obtuse Delaunay triangle or inside a boundary Delaunay292

triangle. If u were interior and obtuse, then there is a Delaunay293

triangle on the other side of the longest edge, and it will have a294

larger circumsphere, and so its center would be uncovered for a295

smaller value of t. (The circumcenter of a non-obtuse triangle lies296

inside the triangle.)297

In any case, our refinement process can be implemented as a dis-298

crete event simulation. The circumcenters of Delaunay triangles,299

and their associated t values, are the events. When an event oc-300

curs, a sample is generated, which creates new triangles and de-301

stroys some old ones, so the queue must be updated. This is essen-302

tially the generic Delaunay refinement algorithm with a largest-first303

queue priority for inserting circumcenters. The main difference is304

that when an event occurs, we insert a nearby random point, but305

DR inserts the point itself. The usual analysis of Delaunay refine-306

ment makes no restrictions on the circumcenter insertion order, and307

the Triangle code [Shewchuk 2002] takes the opposite approach:308

processing the smallest triangles first.309

4.3 Discrete Decrease Refinement310

Consider decreasing t in discrete jumps. For a new value of t, the311

sample will be non-maximal, and the same algorithm that generated312

the initial sampling can be continued to achieve maximality.313

Comparison The prior approaches [McCool and Fiume 1992; Li314

et al. 1998] achieve maximality and disk-free up to some wide tol-315

erance band. In contrast, if our inhibition and coverage radii are the316

same, then we achieve the maximality and disk-free conditions ex-317

actly. If two radii are used, then these take the place of the tolerance318

band. In a sense the effective tolerance band can be tuned by their319

ratio.320

4.4 Edge Length and DT Angle Bounds321

We consider a Delaunay triangulation (DT) of our point cloud. Two322

samples are Delaunay neighbors if they share an edge e in a DT. The323

inhibition radius bounds the shortest edge length. The coverage ra-324

dius bounds the largest empty Delaunay circumcircle. The longest325

edge length is at most the diameter of that circle. To summarize:326

Proposition 4.1. |e| ∈ [Rf , 2R] and R ≤ Rc, where R is the327

radius of a Delaunay circumcircle.328

The Central Angle Theorem provides a relation between the small-329

est angle α in a triangle to a lower bound on the shortest edge330

length |e| and an upper bound on the circumradius R of the tri-331

angle. This relation is fundamental to the inception of Delaunay332

refinement [Chew 1989].333

Proposition 4.2. sinα ≥ |e|/2R.334

For example, in a DT of a point set with Rc = Rf , we have α >335

30◦. If Rc = 2Rf , then α > 14.4◦.336

5 Spatially Varying Radii337

We aim to produce spatially varying point density according to a
sizing function r(x) : Ω → (0,∞). A sample satisfies the empty
disk property (vs. Equation 1) if

∀i < j ≤ n, |xi − xj | ≥ f(xi, xj), (10)

and the set of uncovered points is (vs. Equation 2)

S(X) = {y ∈ Ω : |y− xi| > f(xi, y), i = 1..n}. (11)

Here f(xi, y) is a function of r(·) evaluated at a previously accepted
sample and a later sample or candidate. We have four criteria vari-
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Distance Order Full Conflict Edge Edge Sin Angle Max
Method Function Independent Coverage Free Min Max Min L

Prior r(x) no no no 1/(1 + L) 2/(1− 2L) (1− 2L)/2 1/2
Current r(y) no no no 1/(1 + L) 2/(1− L) (1− L)/2 1
Bigger max (r(x), r(y)) yes no yes 1 2/(1− 2L) (1− 2L)/2 1/2
Smaller min (r(x), r(y)) yes yes no 1/(1 + L) 2/(1− L) (1− L)/2 1

Table 1: Summary of results for spatially varying radii. The distance function f determines conflicts. Order independence
means that if a sampling X satisfies the empty disk property, then so do permutations of X . Full coverage means that every
point of the domain is inside a sample’s disk. Conflict free means that no sample is inside another sample’s disk. Edge max
and min bound the possible lengths of an edge containing sample x in a Delaunay triangulation of X , as a factor of r(x).
Max L is the largest Lipschitz constant for which the algorithm is guaranteed to be robust and produce correct output.

ations:

f(x, y) := r(x) (Prior-disks),
f(x, y) := r(y) (Current-disks),
f(x, y) := max (r(x), r(y)) (Bigger-disks),
f(x, y) := min (r(x), r(y)) (Smaller-disks).

The f are equivalent for a fixed sampling radius r, but are all338

distinct for spatially-varying radii. Each approach has certain ad-339

vantages in terms of edge length ratios, order independence, how340

quickly the sizing function may vary, and simplicity of implemen-341

tation; see Table 1 for a summary.342

There is a limit to how quickly r(·) is allowed to vary. We re-343

quire that r is L-Lipschitz, i.e., for all x, y ∈ Ω, |r(x)− r(y)| ≤344

L |x− y| for some constant L. Some approaches require L < 1;345

for others L < 1/2. In all cases, as L approaches zero, the qual-346

ity guarantees smoothly approach those in the uniform case. Ap-347

pendix A provides the proofs for the different cases.348

For constant radii, edges in a Delaunay triangulation (DT) of the349

sampling are bounded between r and 2r. (If edges are less than350

r, the inhibition distance is violated; if greater than 2r, then the351

sampling is not maximal.) For spatially varying radii, the length of352

edge xixj could be a smaller or larger fraction of r(xi), because353

the strategies also depend on r(xj). How much r(xj) may differ354

depends on L.355

By symmetry the bigger-disk and smaller-disk constructions are or-356

der independent, i.e., any valid sampling with the order of samples357

permuted still satisfies the empty disk property.358

Bias-free The standard bias-free definition can be used for non-
uniform sampling and is the basis of all the algorithms we have
implemented. However, an alternative is to locally weight the un-
covered set based on the sizing function, i.e., the desired output
density. Specifically, the weight of a region can be defined by,

w(S) =

∫
S

1

r(x)d
dx,

where d is the spatial dimension. Discrete approximations are pos-
sible. Then the “weighted-bias-free” property is:

∀A ⊂ S(X) : P (xn+1 ∈ A |X) =
w(A)

w(S(X))
. (12)

6 Spatially Varying Radii Algorithms359

Again we use Algorithm 1, with the following nuances.360

The diagonal-length of the base quadtree level is proportional to361

the maximum sampling radius over the domain, or the bounding362

box of the entire domain if there is no known maximum. Since the363

radii vary spatially, we can not efficiently use a uniform base grid364

for finding nearby samples for checking for conflicts as is com-365

mon [Gamito and Maddock 2009; Ebeida et al. 2011b; Ebeida et al.366

2012]. Instead we use a kd-tree T to store and find nearby sam-367

ples [Mount and Arya 2010]. When searching the tree, the trian-368

gle inequality for Euclidean distance is used to determine if both369

branches could contain conflicting samples or only the near branch370

needs to be plumbed. This same tree and the triangle quality is also371

used when checking if cells are covered.372

A variation would be to use a full quadtree as in [Gamito and Mad-373

dock 2009]. Samples would be stored in the quadtree at a depth374

related to their radii. Finding potentially conflicting samples would375

involve walking the quadtree. We have not implemented this varia-376

tion, as we expect its memory requirements to be larger.377

6.1 Primitives378

The conflict and coverage checks rely on proximity primitives. Let379

D(p, r) be the disk centered at p with radius r. Here D(x) is the380

disk (ball) of radius r(x) centered x.381

• PiX point-in-disk, conflict. Is a point in a sample’s disk?382

Given p, ?∃x : p ∈ D(x)?383

• XiP sample-in-disk, conflict. Does a point’s disk contain a384

sample? Given p, ?∃x : x ∈ D(p)?385

• BiX box-in-disk, coverage. Is a square inside a sample’s386

disk? Given cell Cic, ?∃x : p ∈ D(x) ∀p ∈ Cic?387

• XiB sample-in-box’s-disks, coverage. Do all the disks of a388

square contain a sample? Given cell Cic, ?∃x : x ∈ D(p) ∀p ∈389

Cic?390

6.2 Conflict and Coverage Tests391

Which proximity primitives are relevant to the conflict and coverage392

checks depends on the variation.393

Method Conflict Coverage

Prior-disks PiX BiX
Current-disk XiP XiB
Bigger-disk PiX or XiP BiX or XiB
Smaller-disk PiX and XiP BiX and XiB

394
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Primitive “Yes” if ∃x : Prune Branch if

PiX point-in-disk |p− x| ≤ r(x) |p− p⊥|2(1− L2) > r(p⊥)2

XiP sample-in-disk |p− x| ≤ r(p) |p− p⊥| > r(p)
BiX box-in-disk |c− x|+ h/2 ≤ r(x) (|c− c⊥|+ s/2)2(1− L2) > r(c⊥)2

XiB sample-in-square’s-disk |c− x| ≤ r(c)− (1 + L)h/2 |c− c⊥| > r(c)− (1 + L)h/2

Table 2: Conflict and coverage primitive criteria. Answer “yes” if such a sample is found. Prune (do not search) branches of the kd-tree
where the prune branch condition holds. For a square, c is its center, s its side length and h its diagonal length. Here p⊥ is the projection of
p onto the hyperplane subdividing the two branches of the kd-tree.

6.3 Primitive Implementation395

Since the radii vary, it is insufficient to find the nearest sample(s) to396

the query point. Instead, we search the kd-tree, pursuing branches397

depending on whether the triangle inequality and the Lipschitz con-398

dition indicate that the branch may contain a close enough sample.399

We project the point p onto the dividing hyperplane of xi in T ,400

obtaining p⊥. If L and either r(p⊥) or r(p) are sufficiently small401

compared to |p− p⊥|, then the far branch of the kd-tree is pruned.402

For the conflict primitives, we must search any branch that might403

contain a conflicting sample. For the coverage primitives we can404

pursue branches less aggressively, because the algorithm will still405

be correct, albeit less efficient, if we do not detect that a square is406

covered.407

Table 2 summarizes the branching conditions. Appendix B pro-408

vides the proofs.409

7 Experimental Results410

Our first example is for different inhibition and coverage radii, ex-411

tended to a hierarchy, as developed in Sections 3 and 4. Figure 4412

shows a very coarse sampling with two radii. Figure 5 extends it413

to a discrete hierarchy of samplings. Observe that the new samples414

are sometimes inside the covered region, but nonetheless reduce the415

uncovered region.416

Figure 4: Two-radii MPS,
√

2/4 = rf = rc/2.

Here we confirm our theoretical expectations of the output quality417

with experimental results. We generated point clouds in a 2d unit418

box. We analyzed them using the Point Set Analysis [Schlömer419

2011] tool. PSA generates standardized spectral diagrams for 2d420

point distributions, aiding direct comparison. The first panel is the421

point set. The second panel is the FFT spectrum of the point set,422

with the DC component removed. MPS typically generates spectra423

with a dark central disk surrounded by alternating light and dark424

rings rippling out from the center, decreasing in magnitude. The425

third panel is the radial mean power, which measures the average426

variation of the second panel’s rings’ magnitudes. The fourth panel427

(a) t = 0.8 start (b) t = 0.8 end

(c) t = 0.6 start (d) t = 0.6 end

(e) t = 0.4 start (f) t = 0.4 end

Figure 5: A discrete hierarchy of samplings with t = 0.8, t = 0.6,
t = 0.4.

is the anisotropy, which measures the variance along the rings’ cir-428

cumferences.429

Figure 6 contains this analysis for a uniform MPS point cloud with430

r = 0.01. Figure 7 shows the PSA results for a point cloud gener-431

ated using different inhibition and coverage radii after a hierarchical432

construction. The ringing artifacts in the FFT spectrum are dramat-433
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ically reduced in this setting. The smallest angle in the Delaunay434

triangulation of this point cloud is 15.1◦ consistent with the theo-435

retical guarantee of 14.4◦.436

For comparison, Figure 8 contains PSA for two points clouds gen-437

erated using Delaunay refinement (a deterministic method) in the438

software Triangle [Shewchuk 1996-2005]. Refinement with bound-439

ary edge protection was performed on a square of side length three.440

Only points in the middle, in a centered square of side length one,441

are analyzed, to avoid FFT artifacts from the boundary bias. Steiner442

vertices were inserted until no edges longer than 0.02 remained.443

The first example results from traditional circumcenter insertion444

[Chew 1989] and produces an unbiased spectrum. The second ex-445

ample results from off-center vertex insertion using a 30◦ target446

angle [Rand 2011] and leads to a biased point cloud. Biased results447

from Delaunay refinement generally cannot be attributed to a sin-448

gle cause, but several combinations of input symmetry, the types449

of Steiner points used, queue ordering under which the triangles450

are processed and size/quality requirements can yield biased point451

clouds.452

To demonstrate the spatially varying radii method, Section 5 and453

6, Figure 9 shows sampling a simple linear function using all four454

strategies.455

Figure 10 contains PSA for a point cloud generated for a nonuni-456

form sizing function r(x) = rm + (rM − rm) |sin (8πd)| where457

rm = 0.015, rM = 0.00015, and d = ||x− (.5, .5)||. Point clouds458

generated for this sizing function using bigger, smaller, prior, and459

current disks can be found in Appendix D Figure 18. Spectrum460

plots for anisotropic point sets provide limited insight. Figure 11461

compares histograms of angles in the Delaunay triangulations of462

the point clouds for the four different variable radius constructions.463

The experimental results match the theory: the smaller-disk con-464

struction yields a larger minimum angle.465

Figure 12 shows our resampling of a spatially varying image [Kopf466

et al. 2006; Wei 2008]. See Appendix D for a comparison of the467

four strategies.468

8 Conclusions469

We have provided definitions, requirements, and algorithms to per-470

form maximal Poisson-disk sampling with spatially varying radii.471

The key requirement is a limit to the rate at which the radius func-472

tion changes. We provided four variations. We suggest that the473

smaller-disks approach has the weakest requirements and provides474

the best output. The prior-disks method is the easiest to implement,475

especially as it is a minor change to existing algorithms. However,476

it has the most restrictions on the input and provides the weakest477

output guarantees.478

We have provided a definition and algorithm for decoupling the479

Figure 12: Spatially varying radii output. The input was a point
cloud from Wei (originally Kopf et al.) that we scanned, grayscaled,
smoothed for L, then resampled.

disk-free radius from the coverage radius. The algorithm may be480

used to create a hierarchy of refined meshes, either adding one point481

at a time or a batch of points based on a scaling parameter. Two482

radii provides additional randomness over classical MPS; the FFT483

spectrum of the output does not have the alternating ring pattern,484

and the radial power is almost uniform beyond the minimum radius485

threshold. The continuous approach may be viewed as a way to486

randomize deterministic Delaunay refinement to avoid artifacts and487

bias.488

The requirements of the Lipschitz constant, L < 1, for the algo-489

rithm to be correct are quite mild in the sense that without it, any490

algorithm using the same conflict and coverage conditions might491

produce output with unbounded jumps in the spacing of points.492

In the future, spatially varying radii may be combined with two-493

radii and hierarchical sampling.494

Predictive tools for the output of Poisson-disk sampling over495

spatially-varying functions would be very useful, because they496

could be used to verify the output of an algorithm. (Wei [2011]497

can measure output, but currently it is difficult to say whether the498

measure is what one would predict from the input, and whether499

other inputs would produce the same output.) Verification would500

be especially useful, because it would allow the community to ac-501

cept faster and less memory intensive algorithms that deviate from502

the pure MPS process.503
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Figure 6: Unbiased uniform MPS output using the PSA tool. r = 0.01.
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Figure 7: Final sampling in a hierarchy of different inhibition and coverage radii, with rc = r from Figure 6. The initial sampling used
Rf = 0.025 and Rc = 0.05. Discrete decrease refinement (Section 4.3) was performed using t = 0.8, 0.6, 0.4, 0.2. Analysis of the final
point set (t = 0.2, rf = 0.005, rc = 0.01) is shown.
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Figure 8: Two example of Delaunay refinement (DR) output, one with little bias and one with a lot of bias, as measured by PSA. We do not
know how to ensure or predict the output bias.
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A Theoretical Guarantees for Spatially Vary-631

ing MPS632

A.1 Prior-disk633

Proposition A.1. Suppose that sample X satisfies the empty disk634

property. Then for all i,j, |xi − xj | ≥ r(xi)
1+L

.635

Proof. If i < j, the empty-disk definition implies |xi − xj | ≥
r(xi). Otherwise we apply the Lipschitz property and the fact that
xi satisfies the empty-disk property when it is inserted:

r(xi) ≤ r(xj) + L |xi − xj | ≤ |xi − xj |+ L |xi − xj | .

Proposition A.2. Suppose that sampleX is maximal and T is a re-636

sulting Delaunay triangle. Then RT ≤ min
(

r(y)
1−L

, r(x)
1−2L

)
where637

RT is the circumradius, y is the circumcenter and x is any triangle638

vertex.639

Proof. Since X is maximal, |z− y| ≤ r(z) for some vertex z ∈
X which is not necessarily a vertex of T ; see Figure 13(a). Now
applying the Lipschitz property gives

|z− y| ≤ r(z) ≤ r(y) + L |z− y| .

Rearranging gives RT ≤ |z− y| ≤ r(y)
1−L

. Now we apply the Lips-
chitz property again:

RT = |x− y| ≤ |z− y| ≤ r(y)

1− L ≤
1

1− L (r(x) + L |x− y|) .

Again rearranging completes the proof.640

Corollary A.3. Suppose that sample X is maximal. Then641

|xi − xj | ≤ 2r(xi)
1−2L

.642

Lemma A.4. Suppose X is a maximal sample satisfying the empty643

dist property. Then all the angles in the Delaunay triangulation are644

at least arcsin
(
1−2L

2

)
.645

Proof. Let α be an angle in the Delaunay triangulation ofX and let
x be the vertex on the edge opposite of α which was inserted first.
Then this opposite edge has length at least r(x). Then applying
Propositions 4.2 and A.2 for a vertex opposite angle angle α in the
triangulation

sinα ≥ r(x)

2r(x)/(1− 2L)
=

1− 2L

2
.

Proposition A.5. Suppose that sample X is maximal. Then for all646

y ∈ Ω, mini |xi − y| ≤ r(y)
1−L

.647

Proof. The maximal definition requires the existence of a vertex xk

such that |xk − y| ≤ r(xk). Then using the Lipschitz property:

|xk − y| ≤ r(xk) ≤ r(y) + L |xk − y| .

Rearranging terms completes the proof.648
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Figure 13: Notation for proofs of estimates of circumradii in the
Delaunay triangulation of maximal samples.

A.2 Current-disk649

Proposition A.6. Suppose that sample X satisfies the empty disk650

property. The for all i,j, |xi − xj | ≥ r(xi)
1+L

.651

Proof. If i > j, the empty-disk definition implies |xi − xj | ≥
r(xi). Otherwise we apply the Lipschitz property and the fact that
xj satisfies the empty-disk property when it is inserted:

r(xi) ≤ r(xj) + L |xi − xj | ≤ |xi − xj |+ L |xi − xj | .

Proposition A.7. Suppose that sample X is maximal and T is a652

resulting Delaunay triangle. Then RT ≤ min
(
r(y), r(x)

1−L

)
where653

RT is the circumradius, y is the circumcenter and x is any triangle654

vertex.655

Proof. SinceX is maximal, RT = |x− y| ≤ r(y) for any vertex x656

of T ; see Figure 13(b). Now applying the Lipschitz property gives657

RT ≤ r(y) ≤ r(x) + L |x− y|.658

Corollary A.8. Suppose that sampleX is maximal and xi, xj ∈ X659

are Delaunay neighbors. Then |xi − xj | ≤ 2r(xi)
1−L

.660

Lemma A.9. Suppose X is a maximal sample satisfying the empty661

dist property. Then all the angles in the Delaunay triangulation are662

at least arcsin
(
1−L
2

)
.663

Proof. Let α be an angle in the Delaunay triangulation ofX and let
x be the vertex on the edge opposite of α which was inserted last.
Then this opposite edge has length at least r(x). Then applying
Propositions 4.2 and A.7 for a vertex opposite angle angle α in the
triangulation

sinα ≥ r(x)

2r(x)/(1− L)
=

1− L
2

.

Proposition A.10. Suppose that sample X is maximal. Then for664

all y ∈ Ω, mini |xi − y| ≤ r(y).665

Proof. This is exactly the definition of maximal sample that we are666

using.667

A.3 Bigger-disk668

Proposition A.11. Suppose that sample X satisfies the empty disk669

property. Then for all i, j, |xi − xj | ≥ r(xi).670

Proof. Immediate from the empty disk definition.671

Proposition A.12. Suppose that sample X is maximal and T is672

a resulting Delaunay triangle. Then RT ≤ min
(

r(y)
1−L

, r(x)
1−2L

)
673

where RT is the circumradius, y is the circumcenter and x is any674

triangle vertex.675

Proof. Since X is maximal, |z− y| ≤ max(r(z), r(y)) for some
vertex z ∈ X which is not necessarily a vertex of T ; see Fig-
ure 13(a). So if |z− y| > r(y) then |z− y| ≤ r(z). Now applying
the Lipschitz property gives

|z− y| ≤ r(z) ≤ r(y) + L |z− y| .

Rearranging gives RT ≤ |z− y| ≤ r(y)
1−L

. Now we apply the Lips-
chitz property again:

RT = |x− y| ≤ |z− y| ≤ r(y)

1− L ≤
1

1− L (r(x) + L |x− y|) .

Again rearranging completes the proof.676

Corollary A.13. Suppose that sample X is maximal and xi, xj ∈677

X are Delaunay neighbors. Then |xi − xj | ≤ 2r(xi)
1−2L

.678

Lemma A.14. Suppose X is a maximal sample satisfying the679

empty dist property. Then all the angles in the Delaunay trian-680

gulation are at least arcsin
(
1−2L

2

)
.681

Proof is nearly identical to Lemma A.4.682

Proposition A.15. Suppose that sample X is maximal. Then for683

all y ∈ Ω, mini |xi − y| ≤ r(y)
1−L

.684

Proof. The maximal definition requires the existence of a ver-
tex xk such that |xk − y| ≤ max (r(xk), r(y)). Thus either
mini |xi − y| ≤ r(y) or mini |xi − y| ≤ r(xk). In the latter case
the Lipschitz property gives

|xk − y| ≤ r(xk) ≤ r(y) + L |xk − y| .

Rearranging terms completes the proof.685

A.4 Smaller-disk686

Proposition A.16. Suppose that sample X satisfies the empty disk687

property. Then forall i, j, |xi − xj | ≥ r(xi)
1+L

.688

Proof. The empty disk requirement immediately implies that
|xi − xj | ≥ min(r(xi), r(xj)). If r(xi) > r(xj), then we can
apply the Lipschitz property:

r(xi) ≤ r(xj) + L |xi − xj | ≤ |xi − xj |+ L |xi − xj | .

Proposition A.17. Suppose that sample X is maximal and T is a689

resulting Delaunay triangle. Then RT ≤ min
(
r(y), r(x)

1−L

)
where690

RT is the circumradius, y is the circumcenter and x is any triangle691

vertex.692
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p 

xi 

p 

y 
y 

u 

t 

r(p) 

r(p)+Lt 

Figure 14: Possible disks for samples y on the far side of the kd-tree
branch for xi. Based solely on L, the samples that might overlap
pp⊥ the most lie on the branching hyperplane, i.e. y = y⊥. If p is
far enough away, we know it can not lie in any of these disks. In this
figure L = 0.8. The supporting line to the family of hypothetical
disks is more vertical for smaller L, leading to less overlap.

Proof. Since X is maximal, |z− y| ≤ min(r(z), r(y)) ≤ r(y)
for some vertex z ∈ X which is not necessarily a vertex of T ; see
Figure 13(b). Then applying the Lipschitz property completes the
proof:

RT = |x− y| ≤ |z− y| ≤ r(y) ≤ r(x) + L |x− y| .

Corollary A.18. Suppose that sample X is maximal and xi, xj ∈693

X are Delaunay neighbors. Then |xi − xj | ≤ 2r(xi)
1−L

.694

Lemma A.19. Suppose X is a maximal sample satisfying the695

empty dist property. Then all the angles in the Delaunay trian-696

gulation are at least arcsin
(
1−L
2

)
.697

Proof is identical to Lemma A.9.698

Proposition A.20. Suppose that sample X is maximal. Then for699

all y ∈ Ω, mini |xi − y| ≤ r(y).700

Proof. The maximal definition requires the existence of a vertex xk

such that |xk − y| ≤ min (r(xk), r(y)). Thus

min
i
|xi − y| ≤ |xk − y| ≤ min (r(xk), r(y)) ≤ r(y).

B Primitive Implementation Proofs701

PiX point-in-disk. Search the kd-tree for x with p ∈ D(x) ⇔702

|p−x| < r(x). If such a sample is found, then answer “yes.” Prune703

a branch of the kd-tree if the following holds:704

• |p− p⊥|2(1− L2) > r(p⊥)2.705

If rmax is available and either L is close to 1 or there are not good706

estimates for L, the following conditions may be more convenient.707

• r(p⊥) > rmax(1 − L2) and |p − p⊥|2 ≥ r2max − (rmax −708

r(p⊥))2/L2; the latter holds if |p− p⊥|2 ≥ r(p⊥)(2rmax −709

r(p⊥)).710

• r(p⊥) ≤ rmax(1− L2) and |p− p⊥|2 ≥ r(p⊥)rmax.711

We provide the proof that the branching condition is sufficient.
Consider Figure 14. To show that p 6∈ D(y) for any sample on the
far side of the branch, it is sufficient to show that |p − y| > r(y).
Let u = |p− p⊥| and t = |p⊥− y|. Since y is on the far side of the
kd-tree branch, by the law of cosines we have |p−y|2 ≥ u2+t2. By
the Lipschitz condition r(y) ≤ r(p⊥)+Lt. Thus a sufficient condi-
tion for pruning the branch is r(y)2 < |p−y|2 ⇐ (r(p⊥)+Lt)2 <
u2 + t2. Or

u2 − r(p⊥)2 ≥ t(2Lr(p⊥)− (1− L2)t)∀t ≥ 0 (13)

Using basic calculus, the maximum of the right hand side is712

L2r(p⊥)2/(1 − L2), achieved for t∗ = Lr(p⊥)/(1 − L2). At713

that value Equation 13 is equivalent to u2 ≥ r(p⊥)2/(1− L2).714

If the maximum value of r(·) = rmax is known, we need only con-715

sider t up to r(p⊥) + Lt ≤ rmax or to = (rmax − r(p⊥))/L.716

Now to < t∗ is equivalent to (rmax − r(p⊥))(1 − L2) <717

L2r(p⊥) ⇔ r(p⊥) ≥ rmax(1 − L2). If this holds then sub-718

stituting t = to into Equation 13 yields the sufficient condition719

u2 > r2max − (rmax − r(p⊥))2/L2. Using L ≤ 1 a weaker suffi-720

cient condition is u2 > r(p⊥)(2rmax − r(p⊥)).721

Now if to ≥ t∗ we get the third condition. A sufficient condition722

is u2 − r(p⊥)2 ≥ to(2Lr(p⊥) − (1 − L2)t∗) which reduces to723

u2 ≥ r(p⊥)rmax.724

The proofs for the other tests use the same principles, and are less725

involved.726

XiP sample-in-disk. Given a query point p, we search the kd-727

tree for a sample x with |p − x| < r(p), pursuing branches with728

|p− p⊥| < r(p).729

BiX square-in-disk. We seek a sample whose disk contains the730

square. One solution is to apply the point-in-disk primitive for all731

the corners of a square. This is easy to describe but not particularly732

efficient. A faster solution is to apply the point-in-disk primitive to733

the cell center, and prune if the disk radius is not large enough to734

possibly encompass the entire square. For a cell, c is its center, h735

its diagonal. Apply the point-in-disk pruning criteria, with p = c736

and |p− p⊥| replaced by |p− p⊥|+ s/2 where s is the side length737

of a cell.738

The following shows these criteria are correct. A sample’s disk can739

only cover the cell if r(x) ≥ |c−x|+s/2 because squares and disks740

are convex, and the point exterior to the square nearest to its center741

is at distance s/2 of the center. We prune kd-tree branches if we742

can show any sample on the branch has r(x) < |c−x|+ s/2. Thus743

we prune if (r(p⊥) + Lt)2 < (u+ s/2)2 + t2. This is equivalent744

to point-in-disk with u replaced by u+ s/2.745

For any unpruned sample, we may either check if the disk covers all746

2d corners, or a sufficient condition for coverage is |c−c⊥|+h/2 <747

r(x).748

XiB sample-in-square’s-disk. Search the kd-tree for a sample749

with |c − x| ≤ r(c) − (1 + L)h/2, pursuing branches with with750

half-spaces closer than that to c. If any such sample is found, answer751

“yes.”752

Proposition B.1. If r(c)− |c− xi| ≥ (1 +L)h/2 then the disk of753

every candidate dart in c’s cell contains xi.754

Proof. Let p be any other point in the cell, then we wish to show755

r(p) ≥ |p− xi|. By the Lipschitz condition r(p) ≥ r(c)− L|p−756

c| ≥ r(p) − Lh/2. By the triangle inequality, |p − xi| ≤ |c −757

xi|+ |p− c| ≤ |c− xi|+ h/2. Therefore a sufficient condition for758

r(p) ≥ |p− xi| is r(c)− Lh/2 ≥ |c− xi|+ h/2.759

C DR and MPS contrasted760

Delaunay refinement (DR) [Chew 1989; Ruppert 1995; Shewchuk761

2002] can be viewed as a deterministic variant of disk packing.762

MPS places the next point at random in any disk-free region. DR763

places points exactly at the centers of large empty circumspheres.764

These are the Voronoi vertices of the sample-so-far, and are thus765

a subset of the points that disk-free. Variants of DR use random766
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selection regions, small spheres around circumcenters, which tar-767

gets more of the domain. Offcenters [Üngör 2009] is a technique768

for selects points nearer to short edges than the circumcenter. This769

improves mesh grading and uses fewer points than circumradii. A770

sliver is a flat tetrahedra that has a good edge lengths and circum-771

radii, but small dihedral angles. Given three points, in order to form772

a sliver the fourth point must lie in a particular region near the cir-773

cumcircle of the first three points. The restrictive nature of this774

configuration means that slivers can be removed by perturbing ver-775

tices [Edelsbrunner et al. 2000] or Delaunay weights [Cheng et al.776

1999] or randomly sampling during Delaunay refinement [Chew777

1997; Li and Teng 2001]. Despite practical success, the guarantees778

of these results are quite limited: the theoretical lower bound on779

dihedral angles in the triangulation is much smaller than 1◦ in each780

case.781

DR and MPS produce point clouds that have similar properties [Tal-782

mor 1997; Miller et al. 1996; Ebeida and Mitchell 2011]. Both DR783

and MPS point clouds satisfy the empty-disk Equation 1 and max-784

imal Equation 3 properties; only MPS points are unbiased Equa-785

tion 4. (Some methods relax these conditions for points near the786

boundary, or to remove slivers.)787

DR tracks uncovered regions using Voronoi vertices, whereas MPS788

tracks voids using uniform grids plus either quadtrees or polyg-789

onal approximations [Ebeida et al. 2011b]. (A third category of790

MPS methods models the arrival time of points within a uniform791

grid [Jones and Karger 2011].) In the limit that a void is single792

point, MPS and DR will add the same point. If DR selects a point793

at random from a small sphere around an empty circumcenter, the794

inhibition condition may have to be relaxed. This variant is simi-795

lar to what we present in Section 3 and Section 4 [Chernikov and796

Chrisochoides 2009].797

While DR produces point clouds that share many features with MPS798

point clouds, there are a few key statistical differences. Since DR799

is a family of algorithms and methods, variants can often be de-800

vised that duplicate certain properties of the MPS point clouds, but801

no known variant has been shown to produce unbiased output. To802

study uniform point clouds, we consider two DR variants: Chew’s803

first DR algorithm which inserts the circumcenter of any triangle804

with circumradius larger than the target size and a second variant805

that inserts the circumcenter of any triangle with maximum edge806

longer than twice the target size. In both cases, point clouds are807

taken from a subset of the domain meshes so that the artificial808

boundaries used do not directly impact the placement.809

While DR point clouds often appear to satisfy the blue noise cri-810

teria, other statistics do not match the MPS output. Specifically,811

we consider histograms of each triangle’s smallest angle and edge812

lengths for the Delaunay triangulation in the point clouds using813

r = 0.001 in the unit square as shown in Figure 15. In each case,814

the resulting distributions are different. While the edge-length his-815

togram for Chew’s first DR algorithm is quite similar to that of816

MPS, a large enough sample has been used that the differences,817

especially near length ratio 1.0, are meaningful. Specifically, the818

MPS point clouds contains 697,529 vertices while those for Chew’s819

first DR algorithm and the second DR variant we consider have820

700, 093 and 642, 173 vertices, respectively.821

D More Experimental Results822

Figure 16 shows our resampling of a spatially varying image [Kopf823

et al. 2006; Wei 2008] using all four strategies. The input824

image [Wei 2008] (originally [Kopf et al. 2006]) was scanned,825

grayscaled, smoothed for L, then resampled.826

Figure 17 shows PSA analysis of the output of all four variations,827
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Figure 15: Comparison of minimum angle and edge-length his-
tograms resulting from uniform triangulation using maximal Pois-
son disk sampling and Delaunay refinement.

over a linear sizing function. The limitations of FFT analysis for828

non-uniform samples is apparent.829
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(a) prior-disks (b) current-disks

(c) bigger-disks (d) smaller-disks

Figure 16: Resampling a cartoon face with varying radii.
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Figure 17: Linear Ramp Example. PSA for a non-uniform sizing function r(x, y) = 0.001 + .3x over the unit square using the four
approaches with the same random number seed.
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Figure 18: Samplings for a non-uniform sizing function, r(x) = rm + (rM − rm) |sin (8πd)| where rm = 0.015, rM = 0.00015, and
d = ||x− (.5, .5)||.
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