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Variable Radii Poisson-Disk Sampling

RS e

ol Te & _To| Felo ] d®

B

[T Tat®

i

Figure 1: Sampling using prior-disks. Right, the first two iterations, showing flat quadtree refinement and active squares (light). Left, the
output disks and samples. The sizing function spans three orders of magnitude over the unit box: r(z,y) = 0.001 + 0.3z.

Abstract

We introduce two natural and well-defined generalizations to the
definition of the Poisson-disk sampling problem. The first is to de-
couple the disk-free (inhibition) radius from the maximality (cov-
erage) radius. By scaling these radii by an abstract parameter (e.g.
time), we may generate hierarchical samples with more random-
ness than if a single radius is used. The radial power of the FFT is
more uniform than for classical MPS: the oscillating ring pattern is
attenuated.

The second generalization is to allow the radii to vary spatially, ac-
cording to a sizing function. Our main contributions there are a
formal characterization of sizing functions (radii) for non-uniform
Poisson-disk samples and a generic algorithm for sample genera-
tion for a wide variety of applications. These results hold in all di-
mensions. We contrast the results to Delaunay refinement. Our defi-
nitions and algorithms do not depend on a maximum and minimum
radii, but rather the rate at which the radii can change. This rate
fundamentally determines the quality of the resulting point cloud.
It provides bounds on the distances to neighboring points: specifi-
cally bounds on the ratio of lengths of edges sharing a sample in a
Delaunay triangulation of the sampling. We provide experimental
results.

CR Categories: 1.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling

Keywords: Poisson-disk, sampling, variable radius, spatial varia-
tion, inhibition radius, hierarchical sampling

1 Classic MPS Definition

A sampling is a set of ordered points taken from a domain at ran-
dom. In Poisson-disk sampling, each point has an associated disk.
No other point may be inside this disk. Points are chosen uni-
formly outside the prior points’ disks. The sampling is maximal
if the entire domain is covered by disks. Together these define
maximal Poisson-disk sampling (MPS), a.k.a. the Matérn second
process [1960].

More formally, a sampling X = (x;)j=1, X; € € satisfies the inhi-
bition or empty disk property if

Vi<j§’l’l,,|Xi—Xj|2’r'. )
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The set of uncovered points is defined to be

SX)={yeQ:|ly—xi| >r,i=1.n} 2)
A sampling X is maximal if S(X) is empty:
S(X) =0. 3)

Given a non-maximal sampling, the next sample is bias-free if the
probability of selecting it from any uncovered subregion is propor-
tional to the subregion’s area, i.e.,

VAC S(X): PXnt1 € A|X) = B

where |-| denotes area. The sampling process is bias-free if all of
its sample points were selected according to a bias free random
process. This criteria is in contrast to measuring the output of one
run of the process, e.g. the FFT spectrum of the pairwise distances
between the points [Schlomer 2011]. Some algorithms are highly
parallel and fast [Wei 2008], but follow an inherently biased pro-
cess. Whether this makes a difference for applications is unclear,
as definitive requirements and measures of whether point sets meet
these requirements are not generally available. Because of this, and
to have a clear frame of reference, we focus on bias-free processes.

4] A
( C))

In the following we will generalize these equations and elucidate
the consequences. For simplicity our figures and language focus
on two dimensional domains, but the definitions and algorithms are
general dimensional. We consider three specific generalizations of
the MPS problem: (la) decoupling the radii in the disk-free and
maximality conditions, (1b) a hierarchical constructions for pro-
gressively denser samples, and (2) sampling with spatially varying
point cloud density based on a variable sizing function. These gen-
eralizations are necessary to utilize the benefits of uniform MPS for
problems in computer graphics and mesh generation.

We define sizing functions over the domain that determine the ra-
dius of the Poisson-disks. A sizing function f is a simple function
(e.g. a local max) of an underlying radius function, r, or (p) to
emphasize its dependence on the position p. We require that r is
L-Lipschitz, i.e., for all x,y € €, |r(x) — r(y)| < L|x —y]| for
some constant L. The field of mesh generation, notably Delaunay
refinement, has a long history of considering sizing functions with
L < 1. In particular, for polygonal domains, the local feature size is
the radius of the smallest ball that contains two disjoint faces of the
boundary, e.g. two edges that do not share a common vertex. The
local feature size has L < 1. Delaunay refinement can be made to
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follow any sizing function less than the local feature size that also
has L < 1.

For clarity and ease of language, we will call the disk-free radius
the inhibition radius Ry; and the maximality radius the coverage
radius R. throughout. As a function of another parameter, we use
Ty and 7c.

2 Motivation and Previous Work

Maximal Poisson-disk sampling (MPS) is a popular topic in com-
puter graphics [Lagae and Dutré 2008]. MPS is used for texture
generation. The random nature of the point cloud avoids visual ar-
tifacts that would arise if the distances between points had repeating
patterns. Given a fixed budget of points, inhibition disks and max-
imality help to use it efficiently: they prevent points from being
too close together while ensuring that sample points lie throughout
the entire domain. Uniform sampling with fixed radius disks are
traditional. However, variable-density samplings have several uses.

In adaptive level-of-detail renderings, we wish to use a finer sample
locally as the camera zooms closer to an object. Often one switches
between a discrete series of prescribed samples as the camera-to-
object distance crosses some thresholds. One must avoiding visible
artifacts at these steps. We suggest that our hierarchical sampling
is well suited to this application, especially the continuous varia-
tion which adds one random point at a time. In real-time applica-
tions such as games or data exploration [Ljung 2006], this approach
avoids scene jumps (frame coherence) due to lengthy computations
or memory fetches [Vanderhaeghe et al. 2007].

Spatially varying samplings are useful for objects with both sharp
curvature and large flat regions, or other non-constant visualization
gradients [Kopf et al. 2006; Bowers et al. 2010].

Because of these potential uses, computer graphics publications
have occasionally extended their MPS methods to spatially vary-
ing inhibition/maximality radii. Often these have been presented as
an extension to a result with a different focus, and there is little de-
scription of the underlying definitions and algorithm requirements:
e.g. how quickly the point density is allowed to vary. Sometimes
only a picture of an example output is given.

Wei [2008] provides adaptive sampling. A quadtree is refined pro-
portional to the local sizing function. A set of distant squares are
sampled from concurrently. Sets are chosen hierarchically and ran-
domly to balance speed with the measurable bias in the output.
The distribution is non-maximal but with some probability approx-
imates the local density. This is extended [Bowers et al. 2010] to
sampling triangulated surfaces. The sampling can be non-uniform,
but the spatial sizing function must stay close to its maximum value.
(These works consider symmetric conflict conditions akin to our
smaller-radius and bigger-radius conditions.)

In relaxation dart throwing [McCool and Fiume 1992], an initial
MPS has the sampling disks radii reduced by a scaling parameter.
The parts of the domain that are no longer maximal are filled in
with samples. (In the original description, the sampling is not actu-
ally maximal, and the scaling occurs when classical dart throwing
has a high miss rate.) A variation [Vanderhaeghe et al. 2007] for
deforming point clouds coarsens to remove points that are too close
together, and refines to re-achieve maximality. For coarsening the
disk-free and maximal criteria hold approximately, subject to a tol-
erance band. Blending and sliding heuristics try to minimize the
visual artifacts that arise from the discrete stages of the deforma-
tion.

A time-evolving sizing function defined at sample points, extended
to a 1-Lipschitz function over the entire domain, can be used to
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both refine and coarsen a mesh of a sphere packing with overlap
tolerances [Li et al. 1998]. The refinement/coarsening can be done
deterministically, for example by Delaunay refinement. It is very
fast to generate importance samplings using deterministic methods.
A hierarchy of refinements based on aperiodic tiling gives point
clouds with reasonable blue-noise properties [Ostromoukhov et al.
2004; Kopf et al. 2006; Ostromoukhov 2007]. Given a non-uniform
sampling, Wei [2011] provides a way to measure it.

In many MPS algorithms, generating a sample in small uncovered
areas to achieve maximality is difficult. Quadtree [Gamito and
Maddock 2009; White et al. 2007; Ebeida et al. 2012] based meth-
ods might have to refine their squares down to numerical precision
to represent them. The coverage radius is often relaxed by an ep-
silon value. This is different than decoupling the radii as we do
here.

Variable-radii samplings also appear in other fields. In physics, in
random sequential absorption [Dickman et al. 1991], the Poisson-
disk radius is the Van der Waals radius, which is different for differ-
ent types of atoms. Physicists have various recipes for generating
point clouds, depending on the desired density. For example, some
recipes produce point clouds that resemble gas, liquid, glass, and
solid states. However, Van der Waals radii vary little compared to
the orders of magnitudes we address here. In environmental sci-
ences, individual organisms can be modeled as sample points, with
disks corresponding to their territory [Renshaw 2010].

In mesh generation, maximal samplings satisfying the empty disk
property are commonly desired since they yield provably good
quality Delaunay triangulations [Chew 1989; Miller et al. 1996;
Ebeida et al. 2011a]. Delaunay refinement algorithms construct a
maximal sample by incrementally adding circumcenters of Delau-
nay triangles [Chew 1989; Ruppert 1995] and without considering
the entire set of uncovered points. When Delauany refinement is ap-
plied to generate quality graded meshes [Ruppert 1995; Shewchuk
2002], a user defined mesh sizing function must satisty a Lipschitz
property and be dominated by the local feature size. Beyond con-
sidering only circumcenters, the set of potential new vertices can
be expanded to produce meshes with larger angles or fewer ver-
tices [Chew 1997; Li 2003; Chernikov and Chrisochoides 2009;
Erten and Ungor 2009]. However, randomly sampling the entire
uncovered set (i.e., producing unbiased samples) has received less
attention due to the difficulty and cost of generating suitable point
sets, and analysis. Random meshes with time and spatially vary-
ing densities are preferred for certain fracture mechanics, because
cracks propagate in more physically realistic directions [Bolander
and Saito 1998; Ebeida and Mitchell 2011].

A hierarchy of meshes has many uses [Miller et al. 1996; Li et al.
1998; Devillers 2002]: point location, multigrid, coarsening and
refinement in adaptivity, and convergence studies.

3 Different inhibition and coverage radii

Here we relax the condition that the coverage and inhibition radii
are equal. We focus on a particular relaxation that proves useful
when generating hierarchical point sets and smoothing the FFT ra-
dial power. Contrast to Equations 1-4. Let Ry < R..

The empty disk property is
Vi < j < n,|x; — x| > Ry ®
The set of free points is defined to be
S(X)={yeQ:|y—xi| >Ry, i=1.n}. (6)
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The set of uncovered points is defined to be

UX)={yeQ:|y—xi| >R, i=1.n}. @)
In order for this variation to be useful and different than the single
radius case, the sampling is maximal if U(X) is empty,

U(X) =0. ®)
We take samples from .S, but restrict to the points that are close
enough to U in order to reduce it.

T(X) = S(X) N {U(X) + R.}. ©)

We call the sampling bias-free if we sample from 7'(X) uniformly.

This process is useful to add randomness to initial and parameter-
ized (hierarchical) samples. This process provides samplings that
are less uniform, with greater variation in inter-sample distances,
than classical MPS. In particular, this process avoids the visible
rings in the FFT spectrum of the output. The radial power does
not have the low frequency oscillations that are so characteristic of
classical MPS. See Figure 7 for an example.

Samplings will likely have points that could be removed and still
meet the coverage condition Equation 8. There are more extra
points the smaller Ry is compared to R..

3.1 Algorithm for Two Radii Sampling,
and Other Variations

Algorithm 1 MPS using generic conflict and coverage tests.

initialize kd-tree 7 =0,i =0,C* = C°
while |C*| > 0 do
{throw darts}
for all A|C’| (constant) dart throws do
select an active cell C: from C’ uniformly at random
throw candidate dart y into C_, uniformly at random
if y does not conflict then
{promote dart to sample}
add y to 7 as an accepted sample x
end if
end for
{coverage}
for all active cells C* do _
if i <bits_of_precision subdivide C? into 2¢ subcells
retain uncovered (sub)cells as C**?
end for
increment ¢
end while

The basic algorithm is simple and a variation of the MPS algo-
rithm in [Ebeida et al. 2012]; see Algorithm 1. A batch of darts are
thrown, and each one checks whether it conflicts with any nearby
sample. We store samples in a kd-tree 7, so that we can retrieve
those that are nearby. A flat quadtree C tracks the uncovered area
where the next sample may arrive. At a given iteration ¢, all the
cells C* have been refined to the same size. After a batch of throws,
squares are refined and discarded if they are covered, i.e., too close
to a prior sample to contain a new one. (Prior works store the sam-
ples in the quadtree, but this is not as efficient for us because of our
variable radii.)

The batch size is the number of quadtree cells times A, an empir-
ically derived constant depending on the dimension of the domain
and algorithm variation. The exact value of A is unimportant as
long as it is above a threshold. A =~ 0.5 for d < 5. Uncovered cells
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are represented by their indices, which are stored in an array; cov-
ered cells have no data whatsoever. This is the key to the memory-
efficiency of the method [Ebeida et al. 2012]. The squares C; are
checked for coverage by prior samples. The algorithm terminates
when no squares are uncovered.

We use this algorithm outline for all variations in this paper. The
differences are the conditions for the conflict and coverage checks.

Specialization for Two Radii The pool of active quadtree
squares C" at iteration ¢ are an outer approximation to our sam-
pling set T'. For determining if a square C; is covered, we check
whether its corners are inside some D(x;, Ry), the d-dimensional
disk (ball) centered at x; of radius 2¢. Such squares have all their
points outside S and are discarded.

Figure 2: The outer perimeter encompasses
the points of T' that a sample in a square might
cover.

In addition, we wish to discard squares Cf; outside U + R.. The
set of points that a sample in a square C! might cover is a larger,
rounded square V' = C; + D(R.) as in Figure 2. If V is already
covered by samples’ disks, the cell may be discarded. Since V is
large it cannot be covered by a single sample’s disk. To check if
it is covered by a collection of disks we subdivide it and check the
sub-pieces. We take its bounding box, and subdivide it as in a flat
quadtree. All boxes at a given level are checked as in the following
paragraph. The checks may decide that C; (likely) contains a point
of T. The checks may discard some boxes. If no boxes remain,
then V' does not contain any point of 7" and C; may be discarded. If
the situation is ambiguous, we subdivide all the boxes and recheck.

If a box has all four corners outside V', we discard it. If a box has
some corners inside V' and outside V/, it is ambiguous. If a box has
all four corners inside V/, then there are three subcases. (1) If any
corner is outside all nearby sample’s disks, then we decide that the
box contains a point of 7"; such points might actually be inside the
Ry disks, but a false positive is acceptable. (2) If all corners are
inside a single sample’s disk, then discard the box. (3) Else it is
ambiguous and the box has to be subdivided to decide.

(Checking V is similar to the BiX box-in-disk check in Section 6.
An alternative that may be faster, but use more memory, is to store a
flat quadtree that represents 7T". Keep this quadtree at the same level
1 as C*, and check its cells as described above.)

We select darts by selecting a square in the pool then selecting a
point in the square.

For a dart y to be conflict free, we require
1. y & D(xi, Ry) V prior sample X;.

2. The dart’s large disk D(y, R.) must cover an uncovered point.

Checking Condition 1 is standard using the kd-tree of the samples.
To check Condition 2 we have two options; their relative efficiency
depends on the ratio of Ry to R., see Figure 3.

First option. Form a local bounding box of D(y, R.). Refine
it as a quadtree: discard squares covered by D(x;, R.) or outside
D(y, R.), otherwise refine them. If any refined square corner is
discovered that is outside all D(x, R.) and inside D(y, R.), accept



257
258

259
260

262

263

265
266
267
268
269

270

272
273
274
275
276

Online Submission ID: 0114

the dart. Reject the dart if all squares are discarded. This test is
accurate up to the roundoff error desired.

Second option. Throw a constant number of random points into
D(y, R.) and accept the dart if any are outside D(x;, R.) Vi. This
works well if Ry < R, but introduces some bias.

4 Hierarchical Sampling

4.1 Parameterized radii

Consider a maximal sampling, from either a single disk radius or
decoupled inhibition and coverage radii. We parameterize these
radii by a scaling parameter t; e.g., £ could be time. For simplic-
ity we consider only linear scaling, so that for any particular value
of ¢ we have r¢(¢t) = tRy and r.(t) = tR.. We now consider
constructing a family of samplings over this parameter.

4.2 Continuous Decrease Refinement

Consider decreasing ¢ continuously from 1 to 0. The sampling be-
comes non-maximal when U(X) # 0; recall Equation 8. A new
sample is needed. Assume for simplicity that the ¢ when this occurs
are distinct, so that U (X') grows by a single point u. This position
v is the circumcenter of a Delaunay sphere through some nearby
samples.

@ re=ry

(b) re L 715

Figure 3: Possible void shapes for two radii. w is the circumcenter
of Ax1x2x3. The circumcircle is green, ry disks are red, r. disks
are blue.

If ry = 7. then there is only one place to put the sample, at u, so
the process is deterministic.

Otherwise, we insert a random point. We have two simple and ef-
ficient solutions, depending on the relative value of r; and r.. if
ry is much less than r., we sample uniformly from the sphere of
radius 7. = tR. centered at u. If the sample point is closer than
Ty to a nearby point, we resample. The sphere of radius r. — ry
centered at u is free and all samples from it will be a hit. Therefore
since 7y < 7. the probability of a hit is high and this scheme is
efficient enough.

If r is close to r¢, then to achieve efficiency the free region may be
(approximately) constructed using polygons [Ebeida et al. 2011b]
or a quadtree [Ebeida et al. 2012; Gamito and Maddock 2009]. See
Figure 3 for examples void shapes.

In 2d, we observe that u will always be either the circumcenter
of a non-obtuse Delaunay triangle or inside a boundary Delaunay
triangle. If w were interior and obtuse, then there is a Delaunay
triangle on the other side of the longest edge, and it will have a
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larger circumsphere, and so its center would be uncovered for a
smaller value of ¢. (The circumcenter of a non-obtuse triangle lies
inside the triangle.)

In any case, our refinement process can be implemented as a dis-
crete event simulation. The circumcenters of Delaunay triangles,
and their associated ¢ values, are the events. When an event oc-
curs, a sample is generated, which creates new triangles and de-
stroys some old ones, so the queue must be updated. This is essen-
tially the generic Delaunay refinement algorithm with a largest-first
queue priority for inserting circumcenters. The main difference is
that when an event occurs, we insert a nearby random point, but
DR inserts the point itself. The usual analysis of Delaunay refine-
ment makes no restrictions on the circumcenter insertion order, and
the Triangle code [Shewchuk 2002] takes the opposite approach:
processing the smallest triangles first.

4.3 Discrete Decrease Refinement

Consider decreasing ¢ in discrete jumps. For a new value of ¢, the
sample will be non-maximal, and the same algorithm that generated
the initial sampling can be continued to achieve maximality.

Comparison The prior approaches [McCool and Fiume 1992; Li
et al. 1998] achieve maximality and disk-free up to some wide tol-
erance band. In contrast, if our inhibition and coverage radii are the
same, then we achieve the maximality and disk-free conditions ex-
actly. If two radii are used, then these take the place of the tolerance
band. In a sense the effective tolerance band can be tuned by their
ratio.

4.4 Edge Length and DT Angle Bounds

We consider a Delaunay triangulation (DT) of our point cloud. Two
samples are Delaunay neighbors if they share an edge e in a DT. The
inhibition radius bounds the shortest edge length. The coverage ra-
dius bounds the largest empty Delaunay circumcircle. The longest
edge length is at most the diameter of that circle. To summarize:
Proposition 4.1. |e| € [Ry,2R] and R < R., where R is the
radius of a Delaunay circumcircle.

The Central Angle Theorem provides a relation between the small-
est angle « in a triangle to a lower bound on the shortest edge
length |e| and an upper bound on the circumradius R of the tri-
angle. This relation is fundamental to the inception of Delaunay
refinement [Chew 1989].

Proposition 4.2. sina > |e|/2R.

For example, in a DT of a point set with R. = Ry, we have a >
30°. If Rc = 2Ry, then o > 14.4°.
5 Spatially Varying Radii

We aim to produce spatially varying point density according to a
sizing function 7(x) : Q@ — (0,00). A sample satisfies the empty
disk property (vs. Equation 1) if

Vi< j<m,|x —x;| > f(xi,X5), (10)
and the set of uncovered points is (vs. Equation 2)
SX)={yeQ:|y—xi| > f(xi,y), i = L.n}. (11

Here f(x;,y) is a function of r(-) evaluated at a previously accepted
sample and a later sample or candidate. We have four criteria vari-
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Distance Order Full Conflict Edge Edge Sin Angle = Max
Method Function Independent  Coverage Free Min Max Min L
Prior r(x) no no no 1/1+L) 2/1—-2L) (1-2L)/2 1/2
Current r(y) no no no 1/1+L) 2/(1-1L) (1-L)/2 1
Bigger max (r(x),7(y)) yes no yes 1 2/(1-2L) (1-2L)/2 1/2
Smaller  min (r(x),7(y)) yes yes no 1/1+L) 2/(1-1L) (1-L)/2 1

Table 1: Summary of results for spatially varying radii. The distance function f determines conflicts. Order independence
means that if a sampling X satisfies the empty disk property, then so do permutations of X. Full coverage means that every
point of the domain is inside a sample’s disk. Conflict free means that no sample is inside another sample’s disk. Edge max
and min bound the possible lengths of an edge containing sample x in a Delaunay triangulation of X, as a factor of r(x).
Max L is the largest Lipschitz constant for which the algorithm is guaranteed to be robust and produce correct output.

ations:
fx,y) :=r(x) (Prior-disks),
fx,y) =r(y) (Current-disks),
f(x,y) := max (r(x),(y)) (Bigger-disks),
f(x,y) :=min (r(x),(y)) (Smaller-disks).

The f are equivalent for a fixed sampling radius r, but are all
distinct for spatially-varying radii. Each approach has certain ad-
vantages in terms of edge length ratios, order independence, how
quickly the sizing function may vary, and simplicity of implemen-
tation; see Table 1 for a summary.

There is a limit to how quickly () is allowed to vary. We re-
quire that r is L-Lipschitz, i.e., for all x,y € €, |r(x) — r(y)| <
L |x —y| for some constant L. Some approaches require L < 1;
for others L < 1/2. In all cases, as L approaches zero, the qual-
ity guarantees smoothly approach those in the uniform case. Ap-
pendix A provides the proofs for the different cases.

For constant radii, edges in a Delaunay triangulation (DT) of the
sampling are bounded between r and 2r. (If edges are less than
r, the inhibition distance is violated; if greater than 2r, then the
sampling is not maximal.) For spatially varying radii, the length of
edge X;x; could be a smaller or larger fraction of r(x;), because
the strategies also depend on r(x;). How much r(x;) may differ
depends on L.

By symmetry the bigger-disk and smaller-disk constructions are or-
der independent, i.e., any valid sampling with the order of samples
permuted still satisfies the empty disk property.

Bias-free The standard bias-free definition can be used for non-
uniform sampling and is the basis of all the algorithms we have
implemented. However, an alternative is to locally weight the un-
covered set based on the sizing function, i.e., the desired output
density. Specifically, the weight of a region can be defined by,

1
w(S):/SWdX7

where d is the spatial dimension. Discrete approximations are pos-
sible. Then the “weighted-bias-free” property is:

VACS(X):P(Xn+1€A|X): (12)

6 Spatially Varying Radii Algorithms

Again we use Algorithm 1, with the following nuances.
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The diagonal-length of the base quadtree level is proportional to
the maximum sampling radius over the domain, or the bounding
box of the entire domain if there is no known maximum. Since the
radii vary spatially, we can not efficiently use a uniform base grid
for finding nearby samples for checking for conflicts as is com-
mon [Gamito and Maddock 2009; Ebeida et al. 2011b; Ebeida et al.
2012]. Instead we use a kd-tree 7 to store and find nearby sam-
ples [Mount and Arya 2010]. When searching the tree, the trian-
gle inequality for Euclidean distance is used to determine if both
branches could contain conflicting samples or only the near branch
needs to be plumbed. This same tree and the triangle quality is also
used when checking if cells are covered.

A variation would be to use a full quadtree as in [Gamito and Mad-
dock 2009]. Samples would be stored in the quadtree at a depth
related to their radii. Finding potentially conflicting samples would
involve walking the quadtree. We have not implemented this varia-
tion, as we expect its memory requirements to be larger.

6.1 Primitives

The conflict and coverage checks rely on proximity primitives. Let
D(p, ) be the disk centered at p with radius r. Here D(x) is the
disk (ball) of radius r(x) centered x.

e PiX point-in-disk, conflict. Is a point in a sample’s disk?
Given p, 73x : p € D(x)?

e XiP sample-in-disk, conflict. Does a point’s disk contain a
sample? Given p, 73x : x € D(p)?

e BiX box-in-disk, coverage. Is a square inside a sample’s
disk? Given cell C, ?73x : p € D(x) Vp € C.?

e XiB sample-in-box’s-disks, coverage. Do all the disks of a

square contain a sample? Given cell C2, ?3x : x € D(p) Vp €
Cl?

6.2 Conflict and Coverage Tests

Which proximity primitives are relevant to the conflict and coverage
checks depends on the variation.

Method Conflict Coverage
Prior-disks PiX BiX
Current-disk XiP XiB
Bigger-disk PiX or XiP BiX or XiB

Smaller-disk  PiX and XiP  BiX and XiB
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Primitive “Yes” if Ix : Prune Branch if

PiX point-in-disk lp — x| < r(x) Ip —piL (1 — L?) > r(pL)?

XiP sample-in-disk Ip—x| < r(p) Ip —pi| > r(p)

BiX box-in-disk lc — x|+ h/2 < r(x) (le —ci|+5/2)*(1 — L?) > r(cL)?

XiB sample-in-square’s-disk ¢ — x| < r(c) — (1 4+ L)h/2 |c—ci| > r(c) — (1 + L)h/2

Table 2: Conflict and coverage primitive criteria. Answer “yes” if such a sample is found. Prune (do not search) branches of the kd-tree
where the prune branch condition holds. For a square, c is its center, s its side length and h its diagonal length. Here p | is the projection of
p onto the hyperplane subdividing the two branches of the kd-tree.

6.3 Primitive Implementation

Since the radii vary, it is insufficient to find the nearest sample(s) to
the query point. Instead, we search the kd-tree, pursuing branches
depending on whether the triangle inequality and the Lipschitz con-
dition indicate that the branch may contain a close enough sample.
We project the point p onto the dividing hyperplane of x; in 7T,
obtaining p, . If L and either 7(p) or r(p) are sufficiently small
compared to |p — p. |, then the far branch of the kd-tree is pruned.
For the conflict primitives, we must search any branch that might
contain a conflicting sample. For the coverage primitives we can
pursue branches less aggressively, because the algorithm will still L
be correct, albeit less efficient, if we do not detect that a square is (a) t = 0.8 start (b) t = 0.8 end
covered.

Table 2 summarizes the branching conditions. Appendix B pro-
vides the proofs.

7 Experimental Results

Our first example is for different inhibition and coverage radii, ex-
tended to a hierarchy, as developed in Sections 3 and 4. Figure 4
shows a very coarse sampling with two radii. Figure 5 extends it
to a discrete hierarchy of samplings. Observe that the new samples
are sometimes inside the covered region, but nonetheless reduce the
uncovered region.

(d) t =0.6end

(e) t = 0.4 start () t =0.4end

Figure 4: Two-radii MPS, \/2/4 = 1 = 1./2.

. . . Figure 5: A discrete hierarchy of samplings witht = 0.8, t = 0.6,
Here we confirm our theoretical expectations of the output quality t— 0.4

with experimental results. We generated point clouds in a 2d unit

box. We analyzed them using the Point Set Analysis [Schlomer

2011] tool. PSA generates standardized spectral diagrams for 2d

point distributions, aiding direct comparison. The first panel is the s is the anisotropy, which measures the variance along the rings’ cir-
point set. The second panel is the FFT spectrum of the point set, 49 cumferences.

with the DC component removed. MPS typically generates spectra

with a dark central disk surrounded by alternating light and dark 40 Figure 6 contains this analysis for a uniform MPS point cloud with
rings rippling out from the center, decreasing in magnitude. The 1 r = 0.01. Figure 7 shows the PSA results for a point cloud gener-
third panel is the radial mean power, which measures the average 42 ated using different inhibition and coverage radii after a hierarchical
variation of the second panel’s rings’ magnitudes. The fourth panel 433 construction. The ringing artifacts in the FFT spectrum are dramat-
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ically reduced in this setting. The smallest angle in the Delaunay
triangulation of this point cloud is 15.1° consistent with the theo-
retical guarantee of 14.4°.

For comparison, Figure 8 contains PSA for two points clouds gen-
erated using Delaunay refinement (a deterministic method) in the
software Triangle [Shewchuk 1996-2005]. Refinement with bound-
ary edge protection was performed on a square of side length three.
Only points in the middle, in a centered square of side length one,
are analyzed, to avoid FFT artifacts from the boundary bias. Steiner
vertices were inserted until no edges longer than 0.02 remained.
The first example results from traditional circumcenter insertion
[Chew 1989] and produces an unbiased spectrum. The second ex-
ample results from off-center vertex insertion using a 30° target
angle [Rand 2011] and leads to a biased point cloud. Biased results
from Delaunay refinement generally cannot be attributed to a sin-
gle cause, but several combinations of input symmetry, the types
of Steiner points used, queue ordering under which the triangles
are processed and size/quality requirements can yield biased point
clouds.

To demonstrate the spatially varying radii method, Section 5 and
6, Figure 9 shows sampling a simple linear function using all four
strategies.

Figure 10 contains PSA for a point cloud generated for a nonuni-
form sizing function r(X) = 7, + (rar — Tm) |sin (87d)| where
rm = 0.015, rar = 0.00015, and d = ||x — (.5, .5)]|. Point clouds
generated for this sizing function using bigger, smaller, prior, and
current disks can be found in Appendix D Figure 18. Spectrum
plots for anisotropic point sets provide limited insight. Figure 11
compares histograms of angles in the Delaunay triangulations of
the point clouds for the four different variable radius constructions.
The experimental results match the theory: the smaller-disk con-
struction yields a larger minimum angle.

Figure 12 shows our resampling of a spatially varying image [Kopf
et al. 2006; Wei 2008]. See Appendix D for a comparison of the
four strategies.

8 Conclusions

We have provided definitions, requirements, and algorithms to per-
form maximal Poisson-disk sampling with spatially varying radii.
The key requirement is a limit to the rate at which the radius func-
tion changes. We provided four variations. We suggest that the
smaller-disks approach has the weakest requirements and provides
the best output. The prior-disks method is the easiest to implement,
especially as it is a minor change to existing algorithms. However,
it has the most restrictions on the input and provides the weakest
output guarantees.

We have provided a definition and algorithm for decoupling the
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Figure 12: Spatially varying radii output. The input was a point
cloud from Wei (originally Kopf et al.) that we scanned, grayscaled,
smoothed for L, then resampled.

disk-free radius from the coverage radius. The algorithm may be
used to create a hierarchy of refined meshes, either adding one point
at a time or a batch of points based on a scaling parameter. Two
radii provides additional randomness over classical MPS; the FFT
spectrum of the output does not have the alternating ring pattern,
and the radial power is almost uniform beyond the minimum radius
threshold. The continuous approach may be viewed as a way to
randomize deterministic Delaunay refinement to avoid artifacts and
bias.

The requirements of the Lipschitz constant, L < 1, for the algo-
rithm to be correct are quite mild in the sense that without it, any
algorithm using the same conflict and coverage conditions might
produce output with unbounded jumps in the spacing of points.

In the future, spatially varying radii may be combined with two-
radii and hierarchical sampling.

Predictive tools for the output of Poisson-disk sampling over
spatially-varying functions would be very useful, because they
could be used to verify the output of an algorithm. (Wei [2011]
can measure output, but currently it is difficult to say whether the
measure is what one would predict from the input, and whether
other inputs would produce the same output.) Verification would
be especially useful, because it would allow the community to ac-
cept faster and less memory intensive algorithms that deviate from
the pure MPS process.
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10

A Theoretical Guarantees for Spatially Vary-
ing MPS

A.1 Prior-disk
Proposition A.1. Suppose that sample X satisfies the empty disk
property. Then for all i,j, |x; — x;| > Tl(fL)

Proof. If i < j, the empty-disk definition implies |x; — x;| >
r(x;). Otherwise we apply the Lipschitz property and the fact that
X, satisfies the empty-disk property when it is inserted:

r(xi) < 7(x;) + L|xi =X < % — x| + L|xi —x;]. O

Proposition A.2. Suppose that sample X is maximal and T is a re-

) wher

R is the circumradius, y is the circumcenter and x is any triangle
vertex.

sulting Delaunay triangle. Then Rt < min (

Proof. Since X is maximal, |z —y| < r(z) for some vertex z €
X which is not necessarily a vertex of 7'; see Figure 13(a). Now
applying the Lipschitz property gives

lz—y| <r(z) <r(y)+Llz—yl.

r(y)

Rearranging gives Rt < |z —y| < {2%;. Now we apply the Lips-
chitz property again:
r(y) 1
Rr=lx—-y|<|lz—-y| < < L|x— .
r=x-y|<lz-y| < 7 S 77 )+ Lix—y)
Again rearranging completes the proof. O

Corollary A.3. Suppose that sample X is maximal. Then

e — x5 | < 352
Lemma A.4. Suppose X is a maximal sample satisfying the empty
dist property. Then all the angles in the Delaunay triangulation are

at least arcsin (%)

Proof. Let o be an angle in the Delaunay triangulation of X and let
x be the vertex on the edge opposite of o which was inserted first.
Then this opposite edge has length at least r(x). Then applying
Propositions 4.2 and A.2 for a vertex opposite angle angle « in the
triangulation

. r(x) _1-2L
sme 2 o /0 —20) ~ 2 =

Proposition A.5. Suppose that sample X is maximal. Then for all

Sy r(y)
y € Q min; |x; —y| < 2

Proof. The maximal definition requires the existence of a vertex X
such that [x; — y| < r(xx). Then using the Lipschitz property:

xe —y| <r(xk) <7(y) + L|xk —y]-

Rearranging terms completes the proof. O


http://code.google.com/p/psa/
http://www.cs.cmu.edu/~quake/triangle.html
http://www.cs.cmu.edu/~quake/triangle.html
http://www.cs.cmu.edu/~quake/triangle.html

649

650

651

652

653

654
655

656
657
658

659

660

661

662
663

664
665

666
667

Online Submission ID: 0114

7 ©®

(a) Propositions A.2 and A.12 (b) Propositions A.7 and A.17

Figure 13: Notation for proofs of estimates of circumradii in the
Delaunay triangulation of maximal samples.

A.2 Current-disk

Proposition A.6. Suppose that sample X satisfies the empty disk
property. The for all i,j, |x; — x;| > T&i)

1+L-

Proof. If i > j, the empty-disk definition implies |x; — x;| >
r(x;). Otherwise we apply the Lipschitz property and the fact that
X; satisfies the empty-disk property when it is inserted:

r(xi) <v(x5) + Lixi —x5] < % — x5 + Lxi —x;]. O

Proposition A.7. Suppose that sample X is maximal and T is a
r(x) ) where

»1-L
R is the circumradius, y is the circumcenter and x is any triangle
vertex.

resulting Delaunay triangle. Then Rr < min (r(y)

Proof. Since X is maximal, Ry = |x —y| < r(y) for any vertex x
of T'; see Figure 13(b). Now applying the Lipschitz property gives
Ry <r(y) <r(x)+ Llx—yl. =

Corollary A.8. Suppose that sample X is maximal and x;,x; € X
are Delaunay neighbors. Then |x; — x| < 2{9}).

Lemma A.9. Suppose X is a maximal sample satisfying the empty
dist property. Then all the angles in the Delaunay triangulation are

at least arcsin (% ) .

Proof. Let o be an angle in the Delaunay triangulation of X and let
x be the vertex on the edge opposite of o which was inserted last.
Then this opposite edge has length at least 7(x). Then applying
Propositions 4.2 and A.7 for a vertex opposite angle angle « in the
triangulation

. r(x) _1-L
e 2 /0 -1) - 2 =

Proposition A.10. Suppose that sample X is maximal. Then for
ally € Q, min; |x; —y| < r(y).

Proof. This is exactly the definition of maximal sample that we are
using. O
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A.3 Bigger-disk

Proposition A.11. Suppose that sample X satisfies the empty disk
property. Then for all i, 7, |x; — x| > r(x;).

Proof. Immediate from the empty disk definition. O

Proposition A.12. Suppose that sample X is maximal and T is

a resulting Delaunay triangle. Then Rt < min ({Eyz, 11(;)11)

where R is the circumradius, y is the circumcenter and x is any
triangle vertex.

Proof. Since X is maximal, |z — y| < max(r(z),r(y)) for some
vertex z € X which is not necessarily a vertex of 7'; see Fig-
ure 13(a). Soif |z — y| > r(y) then |z — y| < r(z). Now applying
the Lipschitz property gives

lz—y| <r(z)<r(y)+Llz—y|.

Rearranging gives Ry < |z —y| < fiyz Now we apply the Lips-
chitz property again:
r(y) 1
=lx—-yl<lz—-yl < < L|x— .
Rr=x—y|<lz—y| < {20 € 1= (r®) + Lix~y)
Again rearranging completes the proof. O

Corollary A.13. Suppose that sample X is maximal and x;,x; €
X are Delaunay neighbors. Then |x; — x;| < 212(’2"2

Lemma A.14. Suppose X is a maximal sample satisfying the
empty dist property. Then all the angles in the Delaunay trian-

gulation are at least arcsin (%)

Proof is nearly identical to Lemma A.4.
Proposition A.15. Suppose that sample X is maximal. Then for
ally € Q, min; |x; —y| < Tiyz

1

Proof. The maximal definition requires the existence of a ver-
tex x; such that |x; —y| < max (r(xx),r(y)). Thus either
min; [x; — y| < r(y) or min; |x; — y| < r(xx). In the latter case
the Lipschitz property gives

Ixp —y| < r(xx) <7r(y)+ Lxkx —y]|.

Rearranging terms completes the proof. O

A.4 Smaller-disk

Proposition A.16. Suppose that sample X satisfies the empty disk
- r(x:)
property. Then forall i, j,

1+L*

X ij| 2

Proof. The empty disk requirement immediately implies that
[x; —x;| > min(r(x;),r(x;)). If 7(x;) > r(x;), then we can
apply the Lipschitz property:

T(Xl)ST(XJ)+L|XZ—X]|§|X1—Xj‘+L‘X1—X]| O

Proposition A.17. Suppose that sample X is maximal and T is a
r(x) ) where

) 1I—L
R is the circumradius, y is the circumcenter and x is any triangle
vertex.

resulting Delaunay triangle. Then Rt < min (r(y)
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Figure 14: Possible disks for samplesy on the far side of the kd-tree
branch for x;. Based solely on L, the samples that might overlap
ppL the most lie on the branching hyperplane, i.e.y =y . Ifpis
far enough away, we know it can not lie in any of these disks. In this
figure L = 0.8. The supporting line to the family of hypothetical
disks is more vertical for smaller L, leading to less overlap.

y| < min(r(z),7(y)) < 7(y)
for some vertex z € X which is not necessarily a vertex of T'; see
Figure 13(b). Then applying the Lipschitz property completes the
proof:

r=x-y/<|lz—yl <r(y) <r(x)+Lix—y[. O

Corollary A.18. Suppose that sample X is maximal and x;,x; €
X are Delaunay neighbors. Then |x; — x| < %

Lemma A.19. Suppose X is a maximal sample satisfying the
empty dist property. Then all the angles in the Delaunay trian-

gulation are at least arcsin (1_T

Proof is identical to Lemma A.9.
Proposition A.20. Suppose that sample X is maximal. Then for
ally € Q, min; |x; —y| < r(y).

Proof. The maximal definition requires the existence of a vertex xj,
such that [x; — y| < min (7(Xx), r(y)). Thus

¥ < i —y| < min (r(xk), 7(y)) < r(y). O

min |x; —
1

B Primitive Implementation Proofs

PiX point-in-disk. Search the kd-tree for x with p € D(x) <
|p —x| < 7(x). If such a sample is found, then answer “yes.” Prune
a branch of the kd-tree if the following holds:

o lp—piP(1 =L >r(pL)*

If rmax 1s available and either L is close to 1 or there are not good
estimates for L, the following conditions may be more convenient.

L4 T(pJ_) > Tmax(l - ) and ‘p pJ—|2 > Tmax - (Tmax -
r(p.1))?/L?; the latter holds if |p — p.|*> > 7(pL) (2 max —
r(p1))-

° T(pi) S Tmax(l - L2) and |p - pL|2 Z T(pl)/rmax-

We provide the proof that the branching condition is sufficient.
Consider Figure 14. To show that p ¢ D(y) for any sample on the
far side of the branch, it is sufficient to show that |p — y| > r(y).
Letu = |p—p.i|andt = |p1 —y|. Sincey is on the far side of the
kd-tree branch, by the law of cosines we have |[p—y|* > u?4t>. By
the Lipschitz condition r(y) < r(p. )+ Lt. Thus a sufficient condi-

tion for pruning the branch is 7(y)> < [p—y|? < (r(p.)+Lt)?
u? +#%. Or
uw? —r(pL)® > t(2Lr(pL) — (1= LHOYE>0  (13)

712
713
714

715
716
717
718
719
720
721

722
723
724

725
726

727
728
729

730
731
732
733
734
735
736
737
738

739
740
741
742
743
744
745

746
747
748

749
750
751
752
753

754

755
756
757
758
759

760

761
762
763
764
765
766

12

Using basic calculus, the maximum of the right hand side is
L?r(p1)?/(1 — L?), achieved for t. = Lr(pJ_)Z(l — L?). At
that value Equation 13 is equivalent to u® > r(p1)*/(1 — L?).

If the maximum value of 7(-) = rmax is known, we need only con-
sider t up to 7(pL) + Lt < rmax or to = (Tmax — r(p1))/L.
Now t, < t. is equivalent to (rmax — r(p1))(1 — L*) <
L*r(pL) & r(pL) > Tmax(1 — L?). If this holds then sub-
stituting t = t, into Equation 13 yields the sufficient condition
ur >l — (Pmax — r(pJ_))z/LQ. Using L < 1 a weaker suffi-
cient condition is u? > 7(p1 )(2rmax — 7(p1)).

Now if ¢, > t. we get the third condition. A sufficient condition
is u? — 7(pL)? > to(2Lr(pL) — (1 — L*)t.) which reduces to
’LL2 2 T(pJ_)Tmax-

The proofs for the other tests use the same principles, and are less
involved.

XiP sample-in-disk. Given a query point p, we search the kd-
tree for a sample x with |[p — x| < 7(p), pursuing branches with

lp—pi| <r(p).

BiX square-in-disk. We seek a sample whose disk contains the
square. One solution is to apply the point-in-disk primitive for all
the corners of a square. This is easy to describe but not particularly
efficient. A faster solution is to apply the point-in-disk primitive to
the cell center, and prune if the disk radius is not large enough to
possibly encompass the entire square. For a cell, c is its center, h
its diagonal. Apply the point-in-disk pruning criteria, with p = ¢
and |p — p | replaced by |p — p.1 | + s/2 where s is the side length
of a cell.

The following shows these criteria are correct. A sample’s disk can
only cover the cell if 7(x) > |c—x|+s/2 because squares and disks
are convex, and the point exterior to the square nearest to its center
is at distance s/2 of the center. We prune kd-tree branches if we
can show any sample on the branch has T(ZX < |c —x|+s/2. Thus
we prune if (r(pL) + Lt)® < (u 4 s5/2)? + t>. This is equivalent
to point-in-disk with u replaced by u + s/2.

For any unpruned sample, we may either check if the disk covers all
2% corners, or a sufficient condition for coverage is [c—c |[+h/2 <

r(x).

XiB sample-in-square’s-disk. Search the kd-tree for a sample
with |¢ — x| < r(¢) — (1 + L)h/2, pursuing branches with with
half-spaces closer than that to c. If any such sample is found, answer
“yes.”

Proposition B.1. [fr(c) — |c —x;| > (1 4+ L)h/2 then the disk of
every candidate dart in c’s cell contains x;.

Proof. Let p be any other point in the cell, then we wish to show
r(p) > |p — X;|. By the Lipschitz condition r(p) > r(c) — L|p —
c| > r(p) — Lh/2. By the triangle inequality, |[p — x;| < |¢ —
xi| + |p — ¢| < |¢ — x| + h/2. Therefore a sufficient condition for
r(p) > |p—xilisr(c) — Lh/2 > |c — x;| + h/2. O

C DR and MPS contrasted

Delaunay refinement (DR) [Chew 1989; Ruppert 1995; Shewchuk
2002] can be viewed as a deterministic variant of disk packing.
MPS places the next point at random in any disk-free region. DR
places points exactly at the centers of large empty circumspheres.
These are the Voronoi vertices of the sample-so-far, and are thus
a subset of the points that disk-free. Variants of DR use random
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selection regions, small spheres around circumcenters, which tar-
gets more of the domain. Offcenters [Ungor 2009] is a technique
for selects points nearer to short edges than the circumcenter. This
improves mesh grading and uses fewer points than circumradii. A
sliver is a flat tetrahedra that has a good edge lengths and circum-
radii, but small dihedral angles. Given three points, in order to form
a sliver the fourth point must lie in a particular region near the cir-
cumcircle of the first three points. The restrictive nature of this
configuration means that slivers can be removed by perturbing ver-
tices [Edelsbrunner et al. 2000] or Delaunay weights [Cheng et al.
1999] or randomly sampling during Delaunay refinement [Chew
1997; Li and Teng 2001]. Despite practical success, the guarantees
of these results are quite limited: the theoretical lower bound on
dihedral angles in the triangulation is much smaller than 1° in each
case.

DR and MPS produce point clouds that have similar properties [Tal-
mor 1997; Miller et al. 1996; Ebeida and Mitchell 2011]. Both DR
and MPS point clouds satisfy the empty-disk Equation 1 and max-
imal Equation 3 properties; only MPS points are unbiased Equa-
tion 4. (Some methods relax these conditions for points near the
boundary, or to remove slivers.)

DR tracks uncovered regions using Voronoi vertices, whereas MPS
tracks voids using uniform grids plus either quadtrees or polyg-
onal approximations [Ebeida et al. 2011b]. (A third category of
MPS methods models the arrival time of points within a uniform
grid [Jones and Karger 2011].) In the limit that a void is single
point, MPS and DR will add the same point. If DR selects a point
at random from a small sphere around an empty circumcenter, the
inhibition condition may have to be relaxed. This variant is simi-
lar to what we present in Section 3 and Section 4 [Chernikov and
Chrisochoides 2009].

While DR produces point clouds that share many features with MPS
point clouds, there are a few key statistical differences. Since DR
is a family of algorithms and methods, variants can often be de-
vised that duplicate certain properties of the MPS point clouds, but
no known variant has been shown to produce unbiased output. To
study uniform point clouds, we consider two DR variants: Chew’s
first DR algorithm which inserts the circumcenter of any triangle
with circumradius larger than the target size and a second variant
that inserts the circumcenter of any triangle with maximum edge
longer than twice the target size. In both cases, point clouds are
taken from a subset of the domain meshes so that the artificial
boundaries used do not directly impact the placement.

While DR point clouds often appear to satisfy the blue noise cri-
teria, other statistics do not match the MPS output. Specifically,
we consider histograms of each triangle’s smallest angle and edge
lengths for the Delaunay triangulation in the point clouds using
r = 0.001 in the unit square as shown in Figure 15. In each case,
the resulting distributions are different. While the edge-length his-
togram for Chew’s first DR algorithm is quite similar to that of
MPS, a large enough sample has been used that the differences,
especially near length ratio 1.0, are meaningful. Specifically, the
MPS point clouds contains 697,529 vertices while those for Chew’s
first DR algorithm and the second DR variant we consider have
700, 093 and 642, 173 vertices, respectively.

D More Experimental Results

Figure 16 shows our resampling of a spatially varying image [Kopf
et al. 2006; Wei 2008] using all four strategies. The input
image [Wei 2008] (originally [Kopf et al. 2006]) was scanned,
grayscaled, smoothed for L, then resampled.

Figure 17 shows PSA analysis of the output of all four variations,

828
829
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Figure 15: Comparison of minimum angle and edge-length his-
tograms resulting from uniform triangulation using maximal Pois-
son disk sampling and Delaunay refinement.

over a linear sizing function. The limitations of FFT analysis for
non-uniform samples is apparent.
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(a) prior-disks (b) current-disks

(c) bigger-disks (d) smaller-disks

Figure 16: Resampling a cartoon face with varying radii.
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approaches with the same random number seed.
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