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The Case for Uncertainty Quantification

UQ is needed in:

Assessment of confidence in computational predictions

Validation and comparison of scientific/engineering models

Design optimization

Use of computational predictions for decision-support

Assimilation of observational data and model construction

Multiscale and multiphysics model coupling
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Overview of UQ Methods

Estimation of model/parametric uncertainty

Expert opinion, data collection

Regression analysis, fitting, parameter estimation

Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models

Local sensitivity analysis (SA) and error propagation

Fuzzy logic; Evidence theory — interval math
Probabilistic framework — Global SA / stochastic UQ

Random sampling, statistical methods
Galerkin methods

– Polynomial Chaos (PC) — intrusive/non-intrusive
Collocation, interpolants, regression, fitting ... PC/other
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Polynomial Chaos Methods for UQ

Model uncertain quantities as random variables (RVs)
Given a germ ξ(ω) = {ξ1, · · · , ξn} – a set of i.i.d. RVs

where density of ξ is uniquely determined by its moments

Any RV in L2(Ω,S(ξ),P) can be written as a Polynomial
Chaos Expansion (PCE), thus:

u(x, t, ω) = f (x, t, ξ) ≃
P
∑

k=0

uk(x, t)Ψk(ξ(ω))

– uk(x, t) are mode strengths
– Ψk() are functions orthogonal w.r.t. the density of ξ

with dimension n and order p:

P+ 1 =
(n+ p)!

n!p!
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Orthogonality

By construction, the functions Ψk() are orthogonal with respect
to the density of ξ

uk(x, t) =
〈uΨk〉

〈Ψ2
k〉

=
1

〈Ψ2
k〉

∫

u(x, t;λ(ξ))Ψk(ξ)pξ(ξ)dξ

Examples:

Hermite polynomials with Gaussian basis

Legendre polynomials with Uniform basis, ...
Global versus Local PC methods

Adaptive domain decomposition of the support of ξ
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Essential Use of PC in UQ

Strategy:

Represent model parameters/solution as random variables

Construct PCEs for uncertain parameters

Evaluate PCEs for model outputs

Advantages:

Computational efficiency

Sensitivity information

Requirement:

Random variables in L2, i.e. with finite variance
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Intrusive PC UQ: A direct non-sampling method

Given model equations:
M(u(x, t);λ) = 0

Express uncertain parameters/variables using PCEs

u =
P
∑

k=0

ukΨk; λ =
P
∑

k=0

λkΨk

Substitute in model equations; apply Galerkin projection

New set of equations:
G(U(x, t),Λ) = 0

– with U = [u0, . . . , uP]
T, Λ = [λ0, . . . , λP]

T

Solving this system once provides the full specification of
uncertain model ouputs
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Intrusive Galerkin PC ODE System

du
dt

= f (u;λ)

λ =
P
∑

i=0

λiΨi u(t) =
P
∑

i=0

ui(t)Ψi

dui

dt
=

〈f (u;λ)Ψi〉
〈

Ψ2
i

〉 i = 0, . . . ,P

Say f (u;λ) = λu, then

dui

dt
=

P
∑

p=0

P
∑

q=0

λpuqCpqi, i = 0, · · · ,P

where the tensor Cpqi = 〈ΨpΨqΨi〉/〈Ψ
2
i 〉 is readily evaluated
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Laminar 2D Channel Flow with Uncertain Viscosity

Incompressible flow

Viscosity PCE
– ν = ν0 + ν1ξ

Streamwise velocity

– v =

P
∑

i=0

viΨi

– v0: mean
– vi : i-th order mode

– σ2 =
P
∑

i=1

v2
i

〈

Ψ2
i

〉 v0 v1 v2 v3 sd

v0 v1 v2 v3 σ
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Non-intrusive Spectral Projection (NISP) PC UQ

Sampling-based

Relies on black-box utilization of the computational model

Evaluate projection integrals numerically

For any model output of interest φ(x, t;λ):

φk(x, t) =
1

〈

Ψ2
k

〉

∫

φ(x, t;λ(ξ))Ψk(ξ)pξ(ξ)dξ, k = 0, . . . ,P

Integrals can be evaluated using
– A variety of (Quasi) Monte Carlo methods

Slow convergence; ∼ indep. of dimensionality
– Quadrature/Sparse-Quadrature methods

Fast convergence; depends on dimensionality
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1D H2-O2 SCWO Flame NISP UQ/Chemkin-Premix
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Fast growth in OH uncertainty in the primary reaction zone

Constant uncertainty and mean of OH in post-flame region

Uncertainty in pre-exponential of Rxn.5 (H2O2+OH=H2O+HO2)

has largest contribution to uncertainty in predicted OH
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Other non-intrusive methods

Response surface employing PC or other functional basis
Collocation: Fit interpolant to samples

Oscillation concern

Regression: Estimate best-fit response surface
Least-squares
Bayesian inference

Useful when quadrature methods are infeasible, e.g. when
Can’t choose sample locations; samples given a priori
Can’t take enough samples
Forward model is noisy
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PCE Construction for Noisy Functions

Quadrature formulae presume a degree of smoothness
– No convergence for a noisy function

uk =
1

〈

Ψ2
k

〉

∫

u(λ(ξ))Ψk(ξ)pξ(ξ)dξ, k = 0, . . . ,P

Sparse-Quadrature formulae are ill-conditioned and
highly-sensitive to noise

– No convergence with order
– Error grows with increased dimensionality

Options in the presence of noise:
RMS fitting for PC coefficients
Bayesian inference of PC coefficients
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Challenges in PC UQ – High-Dimensionality

Dimensionality n of the PC basis: ξ = {ξ1, . . . , ξn}

– number of degrees of freedom
– P+ 1 = (n+ p)!/n!p! grows fast with n

Impacts:
– Size of intrusive system
– # non-intrusive (sparse) quadrature samples

Generally n ≈ number of uncertain parameters

Reduction of n:
– Sensitivity analysis
– Dependencies/correlations among parameters
– Dominant eigenmodes of random fields
– Manifold learning: Isomap, Diffusion maps
– Sparsification: Compressed Sensing, LASSO
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UQ in the Community Land Model (CLM)

Land component of CESM

Spatial heterogeneity of
the land surface

A single-site, 1000-yr
simulation:

10 hr/1 CPU

80 input parameters

Need to eliminate
unimportant parameters

http://www.cesm.ucar.edu/models/clm/
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Bayesian Compressed Sensing (BCS) CLM Analysis
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BCS fit of 80-D Legendre-Uniform PC
– Laplace priors & evidence maximization (Babacan, 2010)

Eliminate unimportant terms; discover sparse PCE

Global sensitivity analysis
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Challenges in PC UQ – Non-Linearity

Bifurcative response at critical parameter values
Rayleigh-Bénard convection
Transition to turbulence
Chemical ignition

Discontinuous u(λ(ξ))
Failure of global PCEs in terms of smooth Ψk()
⇔ failure of Fourier series in representing a step function

Local PC methods
Subdivide support of λ(ξ) into regions of smooth u ◦ λ(ξ)
Employ PC with compact support basis on each region
A spectral-element vs. spectral construction

Domain mapping
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Multi-Block Multiwavelet PC UQ in Ignition
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H2-O2 supercritical water oxidation model

Empirically-based uncertainty in all 7 reactions

Adaptive refinement of MW block decomposition
(Le Maître, 2004, 2007)
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Uncertainty in Discontinuous Climate Response
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Atlantic meridional ocean circulation (AMOC)

Predicted response to increasing CO2 (Webster, 2007)

Circulation ON/OFF response over parameter space
– Rate of CO2 increase
– Climate sensitivity
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Domain Mapping for Discontinuous Response
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Discover uncertain discontinuity with Bayesian inference

Map sub-domains to unit hypercubes; Rosenblatt transform

PC quadrature in mapped domains; map back

Marginalize over uncertain curve (Sargsyan, 2012)
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Challenges in PC UQ – Time Dynamics

Systems with limit-cycle or chaotic dynamics

Large amplification of phase errors over long time horizon

PC order needs to be increased in time to retain accuracy

Time shifting/scaling remedies

Futile to attempt representation of detailed turbulent
velocity field v(x, t;λ(ξ)) as a PCE

– Fast loss of correlation due to energy cascade
– Problem studied in 60’s and 70’s

Focus on flow statistics, e.g. Mean/RMS quantities
Well behaved
Argues for non-intrusive methods with DNS/LES of
turbulent flow
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Bayes formula for Parameter Inference

Data Model (fit model + noise): y = f (λ) + ǫ

Bayes Formula:

p(λ, y) = p(λ|y)p(y) = p(y|λ)p(λ)

p(λ|y)
Posterior

=

Likelihood

p(y|λ)
Prior

p(λ)

p(y)
Evidence

Prior: knowledge of λ prior to data

Likelihood: forward model and measurement noise

Posterior: combines information from prior and data

Evidence: normalizing constant for present context
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Exploring the Posterior

Given any sample λ, the un-normalized posterior
probability can be easily computed

p(λ|y) ∝ p(y|λ)p(λ)

Explore posterior w/ Markov Chain Monte Carlo (MCMC)
– Metropolis-Hastings algorithm:

Random walk with proposal PDF & rejection rules

– Computationally intensive, O(105) samples
– Each sample: evaluation of the forward model

Surrogate models

Evaluate moments/marginals from the MCMC statistics
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Surrogate Models for Bayesian Inference

Need an inexpensive response surface for
Observables of interest y
as functions of parameters of interest x

Gaussian Process (GP) surrogate
GP goes through all data points with probability 1.0
Uncertainty between the points

Fit a convenient polynomial to y = f (x)

– over the range of uncertainty in x

Employ a number of samples (xi , yi)
Fit with interpolants, regression, ... global/local
With uncertain x :

– Construct Polynomial Chaos response surface

Marzouk et al. 2007; Marzouk & Najm, 2009
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Uncertainty in Model Inputs

Probabilistic UQ requires specification of uncertain inputs

Require joint PDF on input space

PDF can be found given data
Typically such PDFs are not available from the literature

Summary information, e.g. nominals and bounds, is usually
available

Uncertainty in computational predictions can depend
strongly on detailed structure of the missing parametric
PDF
Need a procedure to reconstruct a PDF consistent with
available information in the absence of the raw data

“Data Free" Inference (DFI) (Berry et al., JCP 2012)

SNL Najm UQ in Computations 27 / 41



Introduction PC Basics PC Chall Bayes Chem Closure

The strong role of detailed input PDF structure

Simple nonlinear algebraic model (u, v) = (x2 − y2, 2xy)
Two input PDFs, p(x, y)

same nominals/bounds
different correlation structure

Drastically different output PDFs
different nominals and bounds

SNL Najm UQ in Computations 28 / 41



Introduction PC Basics PC Chall Bayes Chem Closure

Generate ignition "data" using a detailed model+noise

Ignition using a detailed
chemical model for
methane-air chemistry

Ignition time versus Initial
Temperature

Multiplicative noise error
model

11 data points:
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Fitting with a simple chemical model

Fit a global single-step
irreversible chemical
model

CH4 + 2O2 → CO2 + 2H2O

R = [CH4][O2]kf

kf = Aexp(−E/RoT)

Infer 3-D parameter
vector (ln A, ln E, lnσ)

Good mixing with
adaptive MCMC when
start at MLE
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Bayesian Inference Posterior and Nominal Prediction
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Marginal joint posterior on
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correlation

Nominal fit model is con-
sistent with the true model
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Central Challenge for UQ in Chemical Kinetic Models

Need joint PDF on model parameters for forward UQ

Joint PDF structure is crucial

Joint PDF not available for chemical kinetic parameters
At best, have

Nominal parameter values
Bounds, e.g. marginal 5%, 95% quantiles

PDF can be constructed by repeating experiments
or access to original raw data

– Neither is feasible

Is there a way to construct an approximate PDF without
access to raw data?

– Yes!
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Data Free Inference (DFI) (Berry et al., JCP 2012)

Intuition: In the absence of data, the structure of the fit
model, combined with the nominals and bounds, implicitly
inform the correlation between the parameters

Goal: Make this information explicit in the joint PDF

DFI: discover a consensus joint PDF on the parameters
consistent with given information

Method construction is closely related to
Maximum entropy
Imputation and Bayesian missing data problems
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Data Free Inference Challenge

Discarding initial data, reconstruct marginal (ln A, ln E) posterior
using the following information

Form of fit model

Range of initial temperature

Nominal fit parameter values of ln A and ln E

Marginal 5% and 95% quantiles on ln A and ln E

Further, for now, presume

Multiplicative Gaussian errors

N = 8 data points
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DFI Algorithm Structure

Basic idea:

Explore the space of hypothetical data sets
– MCMC chain on the data
– Each state defines a data set

For each data set:
– MCMC chain on the parameters
– Evaluate statistics on resulting posterior
– Accept data set if posterior is consistent with

given information

Evaluate pooled posterior from all acceptable posteriors
Logarithmic pooling:

p(λ|y) =

[

K
∏

i=1

p(λ|yi)

]1/K
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DFI Uses two nested MCMC chains

An outer chain on the data, (2N + 1)–dimensional
– N data points (xi , yi) + σ
– Likelihood function captures constraints on

parameter nominals+bounds

An inner chain on the model parameters
– Conventional MCMC for parameter estimation
– Likelihood based on fit-model

Computationally challenging
– Single-site update on outer chain
– Adaptive MCMC on inner chain
– Run multiple outer chains in parallel, and

aggregate resulting acceptable data sets
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Short sample from outer/data chain
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Reference Posterior – based on actual data
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Ref + DFI posterior based on a 1000-long data chain
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Ref + DFI posterior based on a 5000-long data chain
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Closure

Probabilistic UQ framework
PC representation of random variables
Utility in forward UQ

– Intrusive PC methods
– Non-intrusive methods

Challenges
High Dimensionality
Non-linearity
Long term dynamics

Need for probabilistic characterization of uncertain inputs
Correlations important for uncertainty in predictions
Discover joint PDF consistent with available information
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