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Introduction

The Case for Uncertainty Quantification

UQ is needed in:

@ Assessment of confidence in computational predictions

@ Validation and comparison of scientific/engineering models
@ Design optimization

@ Use of computational predictions for decision-support

@ Assimilation of observational data and model construction
@ Multiscale and multiphysics model coupling
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Overview of UQ Methods

Estimation of model/parametric uncertainty
@ Expert opinion, data collection
@ Regression analysis, fitting, parameter estimation
@ Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models
@ Local sensitivity analysis (SA) and error propagation

@ Fuzzy logic; Evidence theory — interval math
@ Probabilistic framework — Global SA / stochastic UQ

@ Random sampling, statistical methods
@ Galerkin methods

— Polynomial Chaos (PC) — intrusive/non-intrusive
@ Collocation, interpolants, regression, fitting ... PC/other
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Polynomial Chaos Methods for UQ

@ Model uncertain quantities as random variables (RVS)
Given agerm &(w) = {&1, -+ ,én} —a setof i.i.d. RVs
@ where density of £ is uniquely determined by its moments
@ Any RV in L2(Q, &(€),P) can be written as a Polynomial
Chaos Expansion (PCE), thus:
P

u(x, tw) =F(X,6,6) ~ Y (X, ) Tk(£(w))

k=0

uk(X, t) are mode strengths
Uy () are functions orthogonal w.r.t. the density of &

@ with dimension n and order p:

(n+p)!

P+1=
nlp!
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Orthogonality

By construction, the functions () are orthogonal with respect
to the density of &

<U\I/k>

1
wOet) = T = g [ Ut A©) Ipe(€)og

Examples:
@ Hermite polynomials with Gaussian basis

@ Legendre polynomials with Uniform basis, ...
@ Global versus Local PC methods
@ Adaptive domain decomposition of the support of £
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Essential Use of PC in UQ

Strategy:
@ Represent model parameters/solution as random variables
@ Construct PCEs for uncertain parameters
@ Evaluate PCEs for model outputs

Advantages:
@ Computational efficiency
@ Sensitivity information

Requirement:
@ Random variables in L?, i.e. with finite variance
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PC Basics

Intrusive PC UQ: A direct non-sampling method

M(u(x,t); A) =0

Given model equations:
Express uncertain parameters/variables using PCEs

P P
u= Z Wy, A= Z AWk
k=0 k=0

Substitute in model equations; apply Galerkin projection
G(U(x,1),A) =0

New set of equations:
— withU = [UQ,...,UP]T, A= [Ao,...,Ap]T

Solving this system once provides the full specification of

uncertain model ouputs
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Intrusive Galerkin PC ODE System

du
o f(u; A)
P P
A= Z A ut) = Z Ui (t) W
=0 i—0
WV o .
&)
Say f(u; A) = Au, then
du P P
a - Zz)‘r)uqcpqi, i:O’...,p

p=0 =0

where the tensor Cpqi = (¥p0q¥)/(T?) is readily evaluated
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PC Basics

Laminar 2D Channel Flow with Uncertain Viscosity

I

@ Incompressible flow

@ Viscosity PCE
—v=19+ 1€

-] Streamwise velocity

—v= ZV,\I/,

Vo: mean
vi: i-th order mode
P

o2 = ;VIZ <\IJ,2> Vo
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PC Basics

Non-intrusive Spectral Projection (NISP) PC UQ

@ Sampling-based

@ Relies on black-box utilization of the computational model
@ Evaluate projection integrals numerically

@ For any model output of interest ¢(x, t; \):

dex.t) = @% / 6%t A(E)) W (€)pe(£)dE, k=0,...,P

@ Integrals can be evaluated using
— A variety of (Quasi) Monte Carlo methods
@ Slow convergence; ~ indep. of dimensionality
— Quadrature/Sparse-Quadrature methods
@ Fast convergence; depends on dimensionality
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@ Fast growth in OH uncertainty in the primary reaction zone
@ Constant uncertainty and mean of OH in post-flame region

@ Uncertainty in pre-exponential of Rxn.5 (H,0,+0OH=H,0+HO,)
has largest contribution to uncertainty in predicted OH

UQ in Computations

NETN




PC Basics

Other non-intrusive methods

@ Response surface employing PC or other functional basis
@ Collocation: Fit interpolant to samples
@ Oscillation concern
@ Regression: Estimate best-fit response surface
o Least-squares
@ Bayesian inference
@ Useful when quadrature methods are infeasible, e.g. when
@ Can't choose sample locations; samples given a priori
@ Can't take enough samples
@ Forward model is noisy
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PC Basics

PCE Construction for Noisy Functions

@ Quadrature formulae presume a degree of smoothness
— No convergence for a noisy function

b= gy [ UAE) WOpele)de k=P
@ Sparse-Quadrature formulae are ill-conditioned and
highly-sensitive to noise
— No convergence with order
— Error grows with increased dimensionality
@ Options in the presence of noise:

@ RMS fitting for PC coefficients
@ Bayesian inference of PC coefficients
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PC Chall

Challenges in PC UQ — High-Dimensionality

@ Dimensionality n of the PC basis: & = {&1,...,&n}

— number of degrees of freedom

— P+ 1= (n+p)!/nlp! grows fast with n
@ Impacts:

— Size of intrusive system

— # non-intrusive (sparse) quadrature samples
@ Generally n = number of uncertain parameters
@ Reduction of n:

— Sensitivity analysis
Dependencies/correlations among parameters
Dominant eigenmodes of random fields
Manifold learning: Isomap, Diffusion maps
Sparsification: Compressed Sensing, LASSO
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PC Chall

UQ in the Community Land Model (CLM)

@ Land component of CESM

@ Spatial heterogeneity of
the land surface
@ A single-site, 1000yr
simulation:
10 hr/1 CPU
@ 80input parameters

@ Need to eliminate
unimportant parameters

http://iwww.cesm.ucar.edu/models/cim/
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Bayesian Compressed Sensing (BCS) CLM Analysis

R MORT

TOTVEGC

LEAFCN

LEAF_LONG RC NPOOL

BRMR FLNR

QILOMR FROOT LEAF

@ 10* random sample model runs
@ BCS fit of 80-D Legendre-Uniform PC
— Laplace priors & evidence maximization (avacan, 2010)
@ Eliminate unimportant terms; discover sparse PCE
@ Global sensitivity analysis
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Challenges in PC UQ — Non-Linearity

@ Bifurcative response at critical parameter values
@ Rayleigh-Bénard convection
o Transition to turbulence
@ Chemical ignition

@ Discontinuous u(A(&))

@ Failure of global PCEs in terms of smooth ¥y ()
@ & failure of Fourier series in representing a step function

@ Local PC methods

@ Subdivide support of A(&) into regions of smooth uo A\(£)
@ Employ PC with compact support basis on each region
@ A spectral-element vs. spectral construction

@ Domain mapping
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Multi-Block Multiwavelet PC UQ in Ignition
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@ H»-O, supercritical water oxidation model
@ Empirically-based uncertainty in all 7 reactions

@ Adaptive refinement of MW block decomposition
(Le Maitre, 2004, 2007)
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PC Chall

Uncertainty in Discontinuous Climate Response
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@ Atlantic meridional ocean circulation (AMOC)
@ Predicted response to increasing CO»  (webster, 2007)
@ Circulation ON/OFF response over parameter space

— Rate of CO5 increase
— Climate sensitivity
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PC Chall

Domain Mapping for Discontinuous Response

Computational Model
8 PC Expansion

pdf(z)

@ Initial set of computational samples

@ Discover uncertain discontinuity with Bayesian inference

@ Map sub-domains to unit hypercubes; Rosenblatt transform
@ PC quadrature in mapped domains; map back

@ Marginalize over uncertain curve (sargsyan, 2012)
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Challenges in PC UQ — Time Dynamics

@ Systems with limit-cycle or chaotic dynamics

@ Large amplification of phase errors over long time horizon
@ PC order needs to be increased in time to retain accuracy
@ Time shifting/scaling remedies

@ Futile to attempt representation of detailed turbulent
velocity field v(x,t; \(§)) as a PCE
— Fast loss of correlation due to energy cascade
— Problem studied in 60’s and 70’s
@ Focus on flow statistics, e.g. Mean/RMS quantities

@ Well behaved
@ Argues for non-intrusive methods with DNS/LES of
turbulent flow

Najm UQ in Computations



Bayes

Bayes formula for Parameter Inference

Data Model (fit model + noise): y=1f(\)+e
Bayes Formula:

P(AY) = pAY)PY) = p(y|A)p(A)

Likelihood Prior

p(ylA)  p(A)

p(Aly) _
Posterior
p(y)

Evidence
Prior: knowledge of \ prior to data
Likelihood: forward model and measurement noise
Posterior: combines information from prior and data

Evidence: normalizing constant for present context
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Exploring the Posterior

@ Given any sample A, the un-normalized posterior
probability can be easily computed

P(AlY) o< p(YIA)p(A)

@ Explore posterior w/ Markov Chain Monte Carlo (MCMC)
— Metropolis-Hastings algorithm:
@ Random walk with proposal PDF & rejection rules

— Computationally intensive, ©O(10°) samples
— Each sample: evaluation of the forward model

@ Surrogate models
@ Evaluate moments/marginals from the MCMC statistics
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Bayes
Surrogate Models for Bayesian Inference

@ Need an inexpensive response surface for
@ Observables of interest y
@ as functions of parameters of interest x

@ Gaussian Process (GP) surrogate

@ GP goes through all data points with probability 1.0
@ Uncertainty between the points

@ Fit a convenient polynomial to y = f(x)
over the range of uncertainty in x

©

Employ a number of samples (X, Vi)
Fit with interpolants, regression, ... global/local
With uncertain x :

— Construct Polynomial Chaos response surface

¢ ©

Marzouk et al. 2007; Marzouk & Najm, 2009
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Uncertainty in Model Inputs

@ Probabilistic UQ requires specification of uncertain inputs
@ Require joint PDF on input space
@ PDF can be found given data
@ Typically such PDFs are not available from the literature
@ Summary information, e.g. nominals and bounds, is usually
available
@ Uncertainty in computational predictions can depend
strongly on detailed structure of the missing parametric
PDF

@ Need a procedure to reconstruct a PDF consistent with
available information in the absence of the raw data

@ “Data Free" Inference (DFI) (Berry et al., JCP 2012)
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The strong role of detailed input PDF structure

@ Simple nonlinear algebraic model (u,Vv) = (X2 — y2, 2xy)
@ Two input PDFs, p(x,y)

@ same nominals/bounds
@ different correlation structure

@ Drastically different output PDFs
o different nominals and bounds
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Chem

Generate ignition "data" using a detailed model+noise

@ Ignition using a detailed

chemical model for ‘

methane-air chemistry 1 E
@ Ignition time versus Initial o CGRI

Temperature = | =

T . . £ GRI+noise

@ Multiplicative noise error = .| |

model s

R=

@ 11 data points:

d = tgﬁzl(l—i- O'Gi) 0.0l ‘ ‘ ‘ ‘ ‘ H

1000 1100 1200 1300
€ ~ N(0> l) Initial Temperature (K)
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Fitting with a simple chemical model

@ Fit a global single-step 26
irreversible chemical 34l ]
model <32p

CHs +20, — CO, + 2H,0

M = [CH4l[O2k
k = Aexp—E/RT)

@ Infer 3-D parameter
vector (INA,InE,Ino)

@ Good mixing with
adaptive MCMC when
start at MLE

P S B SR R
2000 4000 6000 8000 10000
Chain Step
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Chem

Bayesian Inference Posterior and Nominal Prediction

< GRI
. GRI |*=GRI+noiss
\; Fit Model

I GRI+nois; . i
0.1:* % E
0.01

. ! . | . =
* o % # 3‘ % 1000 1100 1200 1300
Initial Temperature (K)

Ignition time (sec)

Marginal joint posterior on

(INAINE) exhibits strong Nominal fit model is con-
correlation sistent with the true model
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Chem

Central Challenge for UQ in Chemical Kinetic Models

Need joint PDF on model parameters for forward UQ
Joint PDF structure is crucial
Joint PDF not available for chemical kinetic parameters

At best, have

@ Nominal parameter values
@ Bounds, e.g. marginal 5%, 95% quantiles

@ PDF can be constructed by repeating experiments
or access to original raw data

— Neither is feasible

@ Is there a way to construct an approximate PDF without
access to raw data?

— Yes!
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Chem

Data Free Inference (DFI) (Berry et al., JCP 2012)

Intuition: In the absence of data, the structure of the fit
model, combined with the hominals and bounds, implicitly
inform the correlation between the parameters

Goal: Make this information explicit in the joint PDF

DFI: discover a consensus joint PDF on the parameters
consistent with given information

Method construction is closely related to

@ Maximum entropy
@ Imputation and Bayesian missing data problems
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Chem
Data Free Inference Challenge

Discarding initial data, reconstruct marginal (In A, In E) posterior
using the following information

@ Form of fit model

@ Range of initial temperature

@ Nominal fit parameter values of InAand InE

@ Marginal 5% and 95% quantiles on InAand InE

Further, for now, presume
@ Multiplicative Gaussian errors
@ N = 8 data points
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DFI Algorithm Structure

Basic idea:
@ Explore the space of hypothetical data sets
— MCMC chain on the data
— Each state defines a data set
@ For each data set:

— MCMC chain on the parameters

— Evaluate statistics on resulting posterior

— Accept data set if posterior is consistent with
given information

@ Evaluate pooled posterior from all acceptable posteriors
Logarithmic pooling:

p(Aly) = [Hp Alyi) r/K
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DFI Uses two nested MCMC chains

@ An outer chain on the data, (2N + 1)-dimensional
— N data points (x,yi) + o
— Likelihood function captures constraints on
parameter nominals+bounds
@ An inner chain on the model parameters
— Conventional MCMC for parameter estimation
— Likelihood based on fit-model
@ Computationally challenging
— Single-site update on outer chain
— Adaptive MCMC on inner chain
— Run multiple outer chains in parallel, and
aggregate resulting acceptable data sets
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Chem

Short sample from outer/data chain
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Chem
Reference Posterior — based on actual data
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Chem

Ref + DFI posterior based on a 1000-long data chain
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Chem

Ref + DFI posterior based on a 5000-long data chain
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Closure
Closure

@ Probabilistic UQ framework

@ PC representation of random variables
@ Ultility in forward UQ

— Intrusive PC methods
— Non-intrusive methods

@ Challenges

@ High Dimensionality
@ Non-linearity
@ Long term dynamics

@ Need for probabilistic characterization of uncertain inputs

@ Correlations important for uncertainty in predictions
@ Discover joint PDF consistent with available information
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