

SAND2012-2191C

*Uncertainty Quantification  
in  
Computational Models*

Habib N. Najm

**[hnnajm@sandia.gov](mailto:hnnajm@sandia.gov)**

Sandia National Laboratories,  
Livermore, CA

PNNL seminar, Mar. 2012

# Acknowledgement

B.J. Debusschere, R.D. Berry, K. Sargsyan, C. Safta  
— Sandia National Laboratories, Livermore, CA  
R.G. Ghanem — U. South. California, Los Angeles, CA  
O.M. Knio — Duke Univ., Durham, NC  
O.P. Le Maître — CNRS, Paris, France  
Y.M. Marzouk — Mass. Inst. of Tech., Cambridge, MA

This work was supported by:

- US Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR), Scientific Discovery through Advanced Computing (SciDAC)
- DOE Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences, and Biosciences.
- DOE ASCR Applied Mathematics program.
- DOE Office of Biological and Environmental Research, Climate and Environmental Sciences Division.

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000.



# Outline

- 1 Introduction
- 2 Forward UQ - Polynomial Chaos – Basics
- 3 Forward UQ - PC - Challenges
- 4 Inverse Problem - Bayesian Inference
- 5 Bayesian Parameter Estimation in Chemical Models
- 6 Closure

# The Case for Uncertainty Quantification

UQ is needed in:

- Assessment of confidence in computational predictions
- Validation and comparison of scientific/engineering models
- Design optimization
- Use of computational predictions for decision-support
- Assimilation of observational data and model construction
- Multiscale and multiphysics model coupling

# Overview of UQ Methods

## Estimation of model/parametric uncertainty

- Expert opinion, data collection
- Regression analysis, fitting, parameter estimation
- Bayesian inference of uncertain models/parameters

## Forward propagation of uncertainty in models

- Local sensitivity analysis (SA) and error propagation
- Fuzzy logic; Evidence theory — interval math
- Probabilistic framework — Global SA / stochastic UQ
  - Random sampling, statistical methods
  - Galerkin methods
    - Polynomial Chaos (PC) — intrusive/non-intrusive
  - Collocation, interpolants, regression, fitting ... PC/other

# Polynomial Chaos Methods for UQ

- Model uncertain quantities as random variables (RVs)
- Given a *germ*  $\xi(\omega) = \{\xi_1, \dots, \xi_n\}$  – a set of *i.i.d.* RVs
  - where density of  $\xi$  is uniquely determined by its moments
- Any RV in  $L^2(\Omega, \mathfrak{S}(\xi), P)$  can be written as a Polynomial Chaos Expansion (PCE), thus:

$$u(\mathbf{x}, t, \omega) = f(\mathbf{x}, t, \xi) \simeq \sum_{k=0}^P u_k(\mathbf{x}, t) \Psi_k(\xi(\omega))$$

- $u_k(\mathbf{x}, t)$  are mode strengths
- $\Psi_k()$  are functions orthogonal w.r.t. the density of  $\xi$
- with dimension  $n$  and order  $p$ :

$$P + 1 = \frac{(n + p)!}{n! p!}$$

# Orthogonality

By construction, the functions  $\Psi_k()$  are orthogonal with respect to the density of  $\xi$

$$u_k(\mathbf{x}, t) = \frac{\langle u \Psi_k \rangle}{\langle \Psi_k^2 \rangle} = \frac{1}{\langle \Psi_k^2 \rangle} \int u(\mathbf{x}, t; \lambda(\xi)) \Psi_k(\xi) p_\xi(\xi) d\xi$$

Examples:

- Hermite polynomials with Gaussian basis
- Legendre polynomials with Uniform basis, ...
- Global versus Local PC methods
  - Adaptive domain decomposition of the support of  $\xi$

# Essential Use of PC in UQ

Strategy:

- Represent model parameters/solution as random variables
- Construct PCEs for uncertain parameters
- Evaluate PCEs for model outputs

Advantages:

- Computational efficiency
- Sensitivity information

Requirement:

- Random variables in  $L^2$ , i.e. with finite variance

# Intrusive PC UQ: A direct *non-sampling* method

- Given model equations:  $\mathcal{M}(u(\mathbf{x}, t); \lambda) = 0$
- Express uncertain parameters/variables using PCEs

$$u = \sum_{k=0}^P u_k \Psi_k; \quad \lambda = \sum_{k=0}^P \lambda_k \Psi_k$$

- Substitute in model equations; apply Galerkin projection
- New set of equations:  $\mathcal{G}(U(\mathbf{x}, t), \Lambda) = 0$ 
  - with  $U = [u_0, \dots, u_P]^T$ ,  $\Lambda = [\lambda_0, \dots, \lambda_P]^T$
- Solving this system *once* provides the full specification of uncertain model outputs

# Intrusive Galerkin PC ODE System

$$\frac{du}{dt} = f(u; \lambda)$$

$$\lambda = \sum_{i=0}^P \lambda_i \Psi_i \quad u(t) = \sum_{i=0}^P u_i(t) \Psi_i$$

$$\frac{du_i}{dt} = \frac{\langle f(u; \lambda) \Psi_i \rangle}{\langle \Psi_i^2 \rangle} \quad i = 0, \dots, P$$

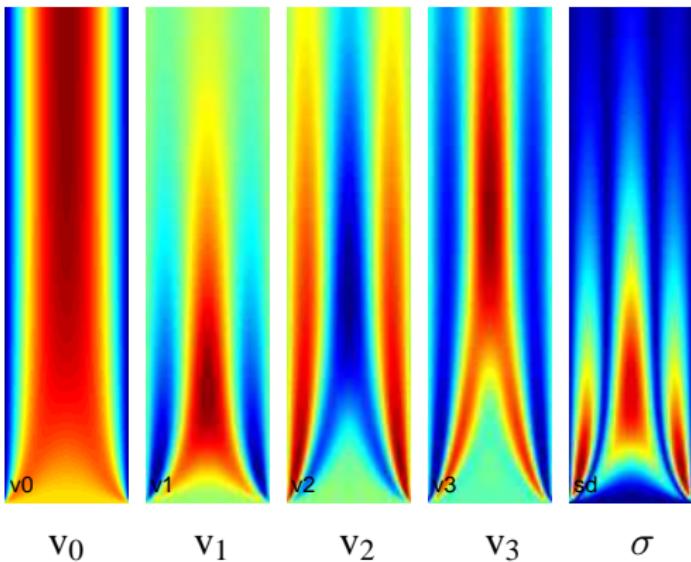
Say  $f(u; \lambda) = \lambda u$ , then

$$\frac{du_i}{dt} = \sum_{p=0}^P \sum_{q=0}^P \lambda_p u_q C_{pqi}, \quad i = 0, \dots, P$$

where the tensor  $C_{pqi} = \langle \Psi_p \Psi_q \Psi_i \rangle / \langle \Psi_i^2 \rangle$  is readily evaluated

# Laminar 2D Channel Flow with Uncertain Viscosity

- Incompressible flow
- Viscosity PCE
  - $\nu = \nu_0 + \nu_1 \xi$
- Streamwise velocity
  - $v = \sum_{i=0}^P v_i \Psi_i$
  - $v_0$ : mean
  - $v_i$ :  $i$ -th order mode
  - $\sigma^2 = \sum_{i=1}^P v_i^2 \langle \Psi_i^2 \rangle$

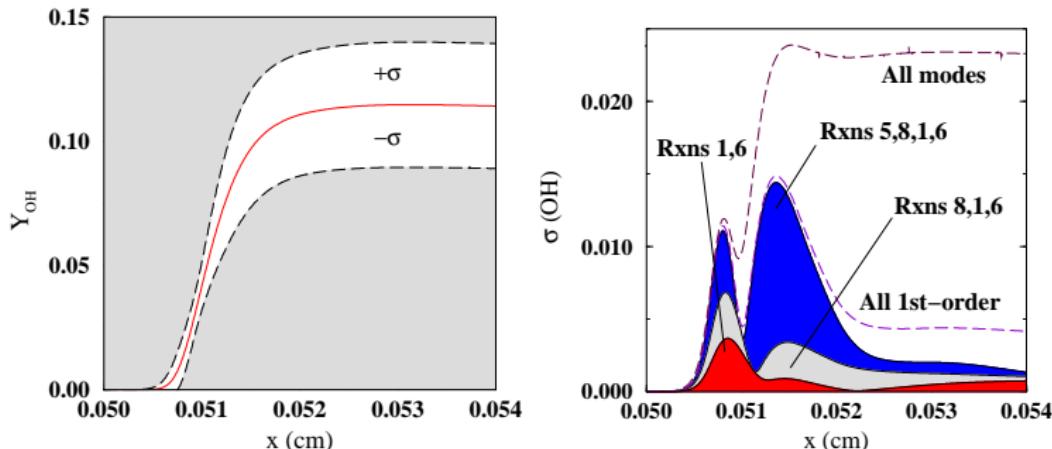


# Non-intrusive Spectral Projection (NISP) PC UQ

- Sampling-based
- Relies on black-box utilization of the computational model
- Evaluate projection integrals *numerically*
- For any model output of interest  $\phi(\mathbf{x}, t; \lambda)$ :

$$\phi_k(\mathbf{x}, t) = \frac{1}{\langle \Psi_k^2 \rangle} \int \phi(\mathbf{x}, t; \lambda(\xi)) \Psi_k(\xi) p_\xi(\xi) d\xi, \quad k = 0, \dots, P$$

- Integrals can be evaluated using
  - A variety of (Quasi) Monte Carlo methods
    - Slow convergence;  $\sim$  indep. of dimensionality
  - Quadrature/Sparse-Quadrature methods
    - Fast convergence; depends on dimensionality

1D H<sub>2</sub>-O<sub>2</sub> SCWO Flame NISP UQ/Chemkin-Premix

- Fast growth in OH uncertainty in the primary reaction zone
- Constant uncertainty and mean of OH in post-flame region
- Uncertainty in pre-exponential of Rxn.5 ( $H_2O_2 + OH \rightarrow H_2O + HO_2$ ) has largest contribution to uncertainty in predicted OH

# Other non-intrusive methods

- Response surface employing PC or other functional basis
- Collocation: Fit interpolant to samples
  - Oscillation concern
- Regression: Estimate best-fit response surface
  - Least-squares
  - Bayesian inference
- Useful when quadrature methods are infeasible, e.g. when
  - Can't choose sample locations; samples given *a priori*
  - Can't take enough samples
  - Forward model is noisy

# PCE Construction for Noisy Functions

- Quadrature formulae presume a degree of smoothness
  - No convergence for a noisy function

$$u_k = \frac{1}{\langle \Psi_k^2 \rangle} \int u(\lambda(\xi)) \Psi_k(\xi) p_\xi(\xi) d\xi, \quad k = 0, \dots, P$$

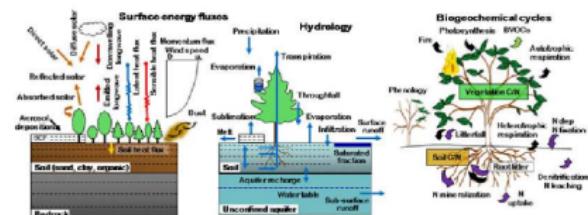
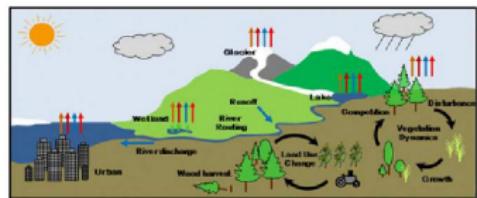
- Sparse-Quadrature formulae are *ill-conditioned* and highly-sensitive to noise
  - No convergence with order
  - Error grows with increased dimensionality
- Options in the presence of noise:
  - RMS fitting for PC coefficients
  - Bayesian inference of PC coefficients

# Challenges in PC UQ – High-Dimensionality

- Dimensionality  $n$  of the PC basis:  $\xi = \{\xi_1, \dots, \xi_n\}$ 
  - number of degrees of freedom
  - $P + 1 = (n + p)!/n!p!$  grows fast with  $n$
- Impacts:
  - Size of intrusive system
  - # non-intrusive (sparse) quadrature samples
- Generally  $n \approx$  number of uncertain parameters
- Reduction of  $n$ :
  - Sensitivity analysis
  - Dependencies/correlations among parameters
  - Dominant eigenmodes of random fields
  - Manifold learning: Isomap, Diffusion maps
  - Sparsification: Compressed Sensing, LASSO

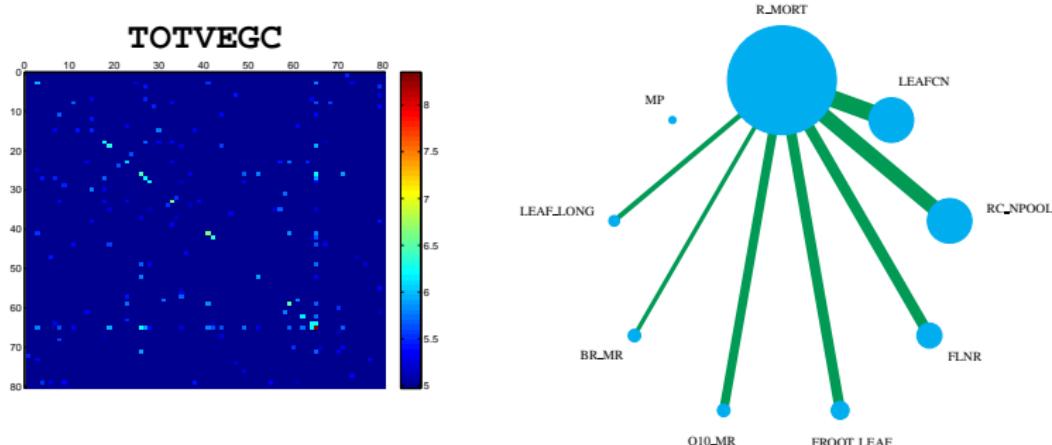
# UQ in the Community Land Model (CLM)

- Land component of CESM
- Spatial heterogeneity of the land surface
- A single-site, 1000-yr simulation:  
10 hr/1 CPU
- 80 input parameters
- Need to eliminate unimportant parameters



<http://www.cesm.ucar.edu/models/clm/>

# Bayesian Compressed Sensing (BCS) CLM Analysis

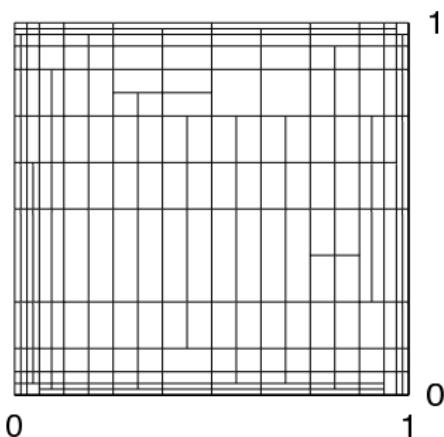
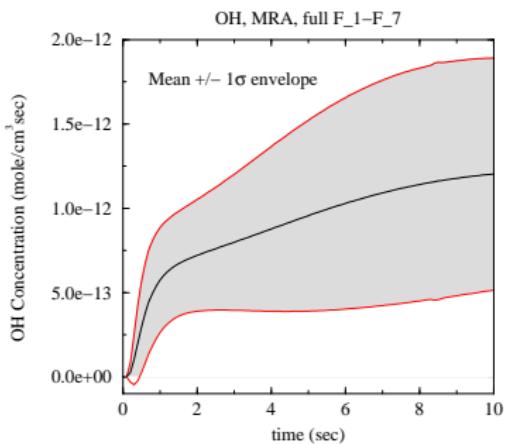


- $10^4$  random sample model runs
- BCS fit of 80-D Legendre-Uniform PC
  - Laplace priors & evidence maximization [\(Babacan, 2010\)](#)
- Eliminate unimportant terms; discover sparse PCE
- Global sensitivity analysis

# Challenges in PC UQ – Non-Linearity

- Bifurcative response at critical parameter values
  - Rayleigh-Bénard convection
  - Transition to turbulence
  - Chemical ignition
- Discontinuous  $u(\lambda(\xi))$ 
  - Failure of global PCEs in terms of smooth  $\Psi_k()$
  - $\Leftrightarrow$  failure of Fourier series in representing a step function
- Local PC methods
  - Subdivide support of  $\lambda(\xi)$  into regions of smooth  $u \circ \lambda(\xi)$
  - Employ PC with compact support basis on each region
  - A spectral-element vs. spectral construction
- Domain mapping

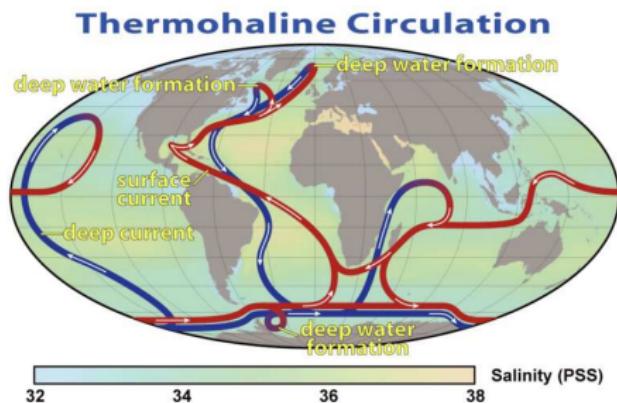
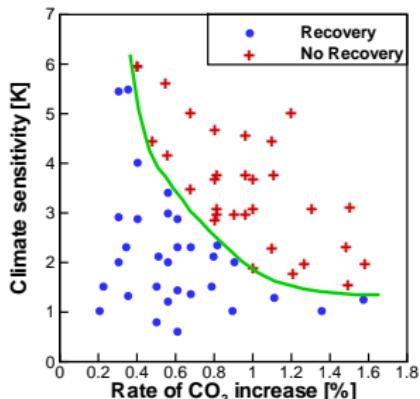
# Multi-Block Multiwavelet PC UQ in Ignition



- H<sub>2</sub>-O<sub>2</sub> supercritical water oxidation model
- Empirically-based uncertainty in all 7 reactions
- Adaptive refinement of MW block decomposition

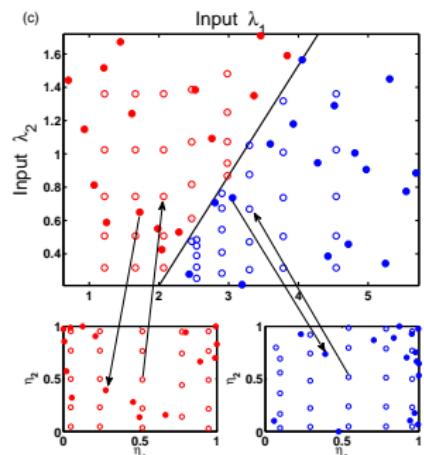
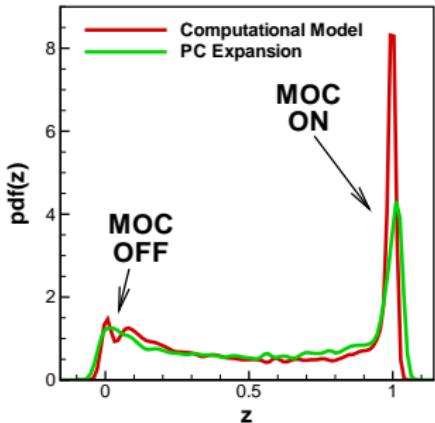
(Le Maître, 2004, 2007)

# Uncertainty in Discontinuous Climate Response



- Atlantic meridional ocean circulation (AMOC)
- Predicted response to increasing CO<sub>2</sub> (Webster, 2007)
- Circulation ON/OFF response over parameter space
  - Rate of CO<sub>2</sub> increase
  - Climate sensitivity

# Domain Mapping for Discontinuous Response



- Initial set of computational samples
- Discover uncertain discontinuity with Bayesian inference
- Map sub-domains to unit hypercubes; Rosenblatt transform
- PC quadrature in mapped domains; map back
- Marginalize over uncertain curve [\(Sargsyan, 2012\)](#)

# Challenges in PC UQ – Time Dynamics

- Systems with limit-cycle or chaotic dynamics
- Large amplification of phase errors over long time horizon
- PC order needs to be increased in time to retain accuracy
- Time shifting/scaling remedies
- Futile to attempt representation of detailed turbulent velocity field  $v(x, t; \lambda(\xi))$  as a PCE
  - Fast loss of correlation due to energy cascade
  - Problem studied in 60's and 70's
- Focus on flow statistics, e.g. Mean/RMS quantities
  - Well behaved
  - Argues for non-intrusive methods with DNS/LES of turbulent flow

## Bayes formula for Parameter Inference

- Data Model (fit model + noise):  $y = f(\lambda) + \epsilon$
- Bayes Formula:

$$p(\lambda, y) = p(\lambda|y)p(y) = p(y|\lambda)p(\lambda)$$

$$p(\lambda|y) = \frac{p(y|\lambda) p(\lambda)}{p(y)}$$

- Prior: knowledge of  $\lambda$  prior to data
- Likelihood: forward model and measurement noise
- Posterior: combines information from prior and data
- Evidence: normalizing constant for present context

# Exploring the Posterior

- Given any sample  $\lambda$ , the un-normalized posterior probability can be easily computed

$$p(\lambda|y) \propto p(y|\lambda)p(\lambda)$$

- Explore posterior w/ Markov Chain Monte Carlo (MCMC)
  - Metropolis-Hastings algorithm:
    - Random walk with proposal PDF & rejection rules
  - Computationally intensive,  $\mathcal{O}(10^5)$  samples
  - Each sample: evaluation of the forward model
    - Surrogate models
- Evaluate moments/marginals from the MCMC statistics

# Surrogate Models for Bayesian Inference

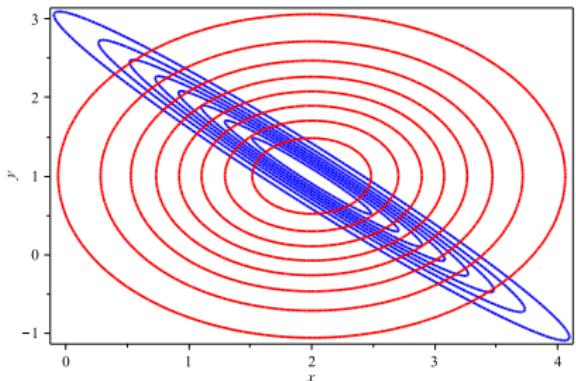
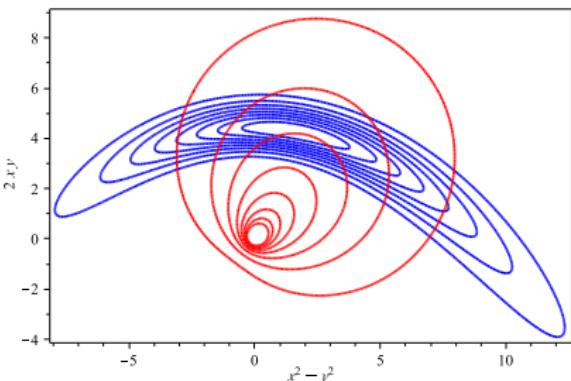
- Need an inexpensive response surface for
  - Observables of interest  $y$
  - as functions of parameters of interest  $x$
- Gaussian Process (GP) surrogate
  - GP goes through all data points with probability 1.0
  - Uncertainty between the points
- Fit a convenient polynomial to  $y = f(x)$ 
  - over the range of uncertainty in  $x$
  - Employ a number of samples  $(x_i, y_i)$
  - Fit with interpolants, regression, ... global/local
  - With uncertain  $x$  :
    - Construct Polynomial Chaos response surface

Marzouk *et al.* 2007; Marzouk & Najm, 2009

# Uncertainty in Model Inputs

- Probabilistic UQ requires specification of uncertain inputs
- Require joint PDF on input space
- PDF can be found given data
- Typically such PDFs are not available from the literature
  - Summary information, e.g. nominals and bounds, is usually available
- Uncertainty in computational predictions can depend strongly on detailed structure of the missing parametric PDF
- Need a procedure to reconstruct a PDF consistent with available information in the absence of the raw data
  - “Data Free” Inference (DFI) (Berry *et al.*, JCP 2012)

# The strong role of detailed input PDF structure



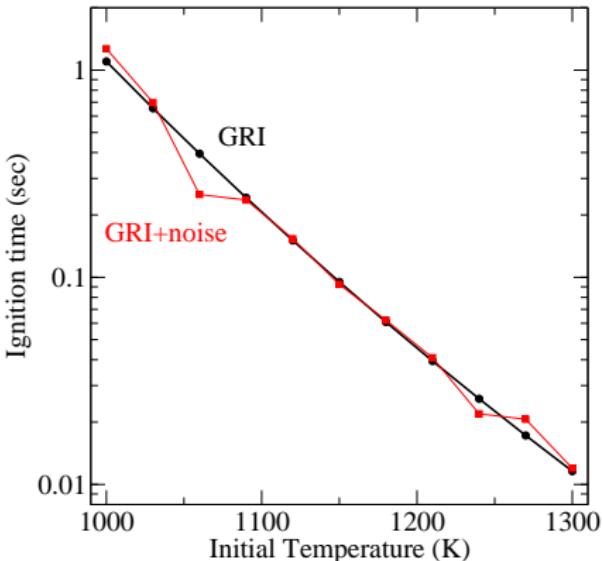
- Simple nonlinear algebraic model  $(u, v) = (x^2 - y^2, 2xy)$
- Two input PDFs,  $p(x, y)$ 
  - same nominals/bounds
  - different correlation structure
- Drastically different output PDFs
  - different nominals and bounds

# Generate ignition "data" using a detailed model+noise

- Ignition using a detailed chemical model for methane-air chemistry
- Ignition time versus Initial Temperature
- Multiplicative noise error model
- 11 data points:

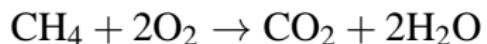
$$d_i = t_{ig,i}^{\text{GRI}} (1 + \sigma \epsilon_i)$$

$$\epsilon \sim N(0, 1)$$



# Fitting with a simple chemical model

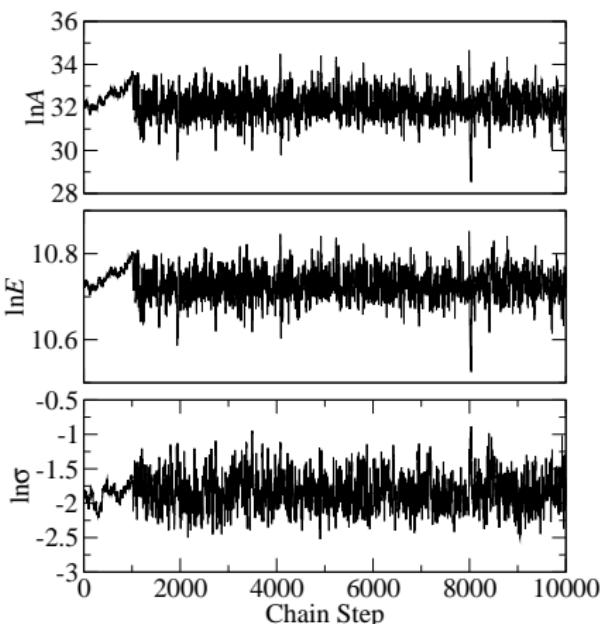
- Fit a global single-step irreversible chemical model



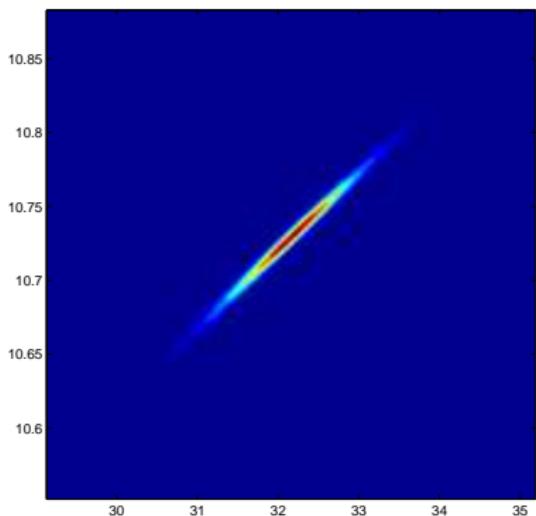
$$\mathfrak{R} = [\text{CH}_4][\text{O}_2]k_f$$

$$k_f = A \exp(-E/R^o T)$$

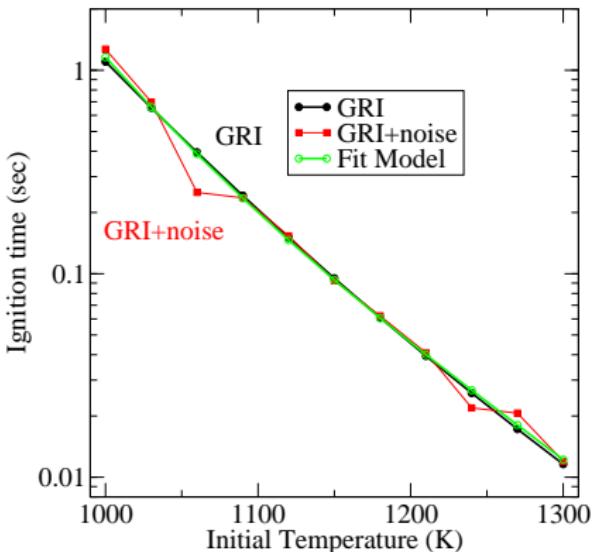
- Infer 3-D parameter vector ( $\ln A$ ,  $\ln E$ ,  $\ln \sigma$ )
- Good mixing with adaptive MCMC when start at MLE



# Bayesian Inference Posterior and Nominal Prediction



Marginal joint posterior on  $(\ln A, \ln E)$  exhibits strong correlation



Nominal fit model is consistent with the true model

# Central Challenge for UQ in Chemical Kinetic Models

- Need joint PDF on model parameters for forward UQ
- Joint PDF structure is crucial
- Joint PDF not available for chemical kinetic parameters
- At best, have
  - Nominal parameter values
  - Bounds, e.g. marginal 5%, 95% quantiles
- PDF **can** be constructed by repeating experiments or access to original raw data
  - Neither is feasible
- Is there a way to construct an approximate PDF **without** access to raw data?
  - Yes!

# Data Free Inference (DFI)

(Berry *et al.*, JCP 2012)

- Intuition: In the absence of data, the structure of the fit model, combined with the nominals and bounds, implicitly inform the correlation between the parameters
- Goal: Make this information *explicit* in the joint PDF
- DFI: discover a consensus joint PDF on the parameters consistent with given information
- Method construction is closely related to
  - Maximum entropy
  - Imputation and Bayesian missing data problems

# Data Free Inference Challenge

Discarding initial data, reconstruct marginal ( $\ln A$ ,  $\ln E$ ) posterior using the following information

- Form of fit model
- Range of initial temperature
- Nominal fit parameter values of  $\ln A$  and  $\ln E$
- Marginal 5% and 95% quantiles on  $\ln A$  and  $\ln E$

Further, for now, presume

- Multiplicative Gaussian errors
- $N = 8$  data points

# DFI Algorithm Structure

Basic idea:

- Explore the space of hypothetical data sets
  - MCMC chain on the data
  - Each state defines a data set
- For each data set:
  - MCMC chain on the parameters
  - Evaluate statistics on resulting posterior
  - Accept data set if posterior is consistent with given information
- Evaluate pooled posterior from all acceptable posteriors

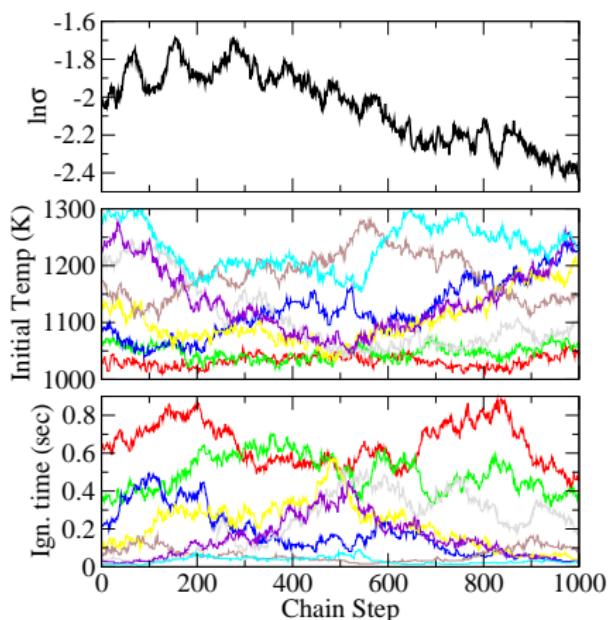
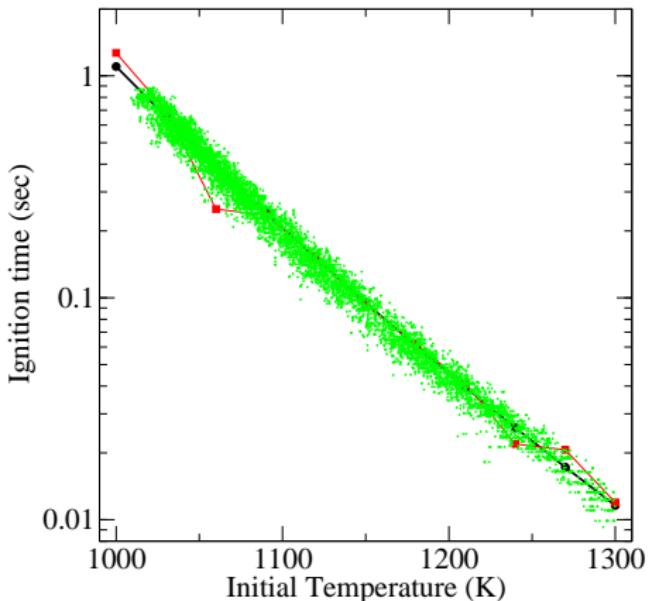
Logarithmic pooling:

$$p(\lambda|y) = \left[ \prod_{i=1}^K p(\lambda|y_i) \right]^{1/K}$$

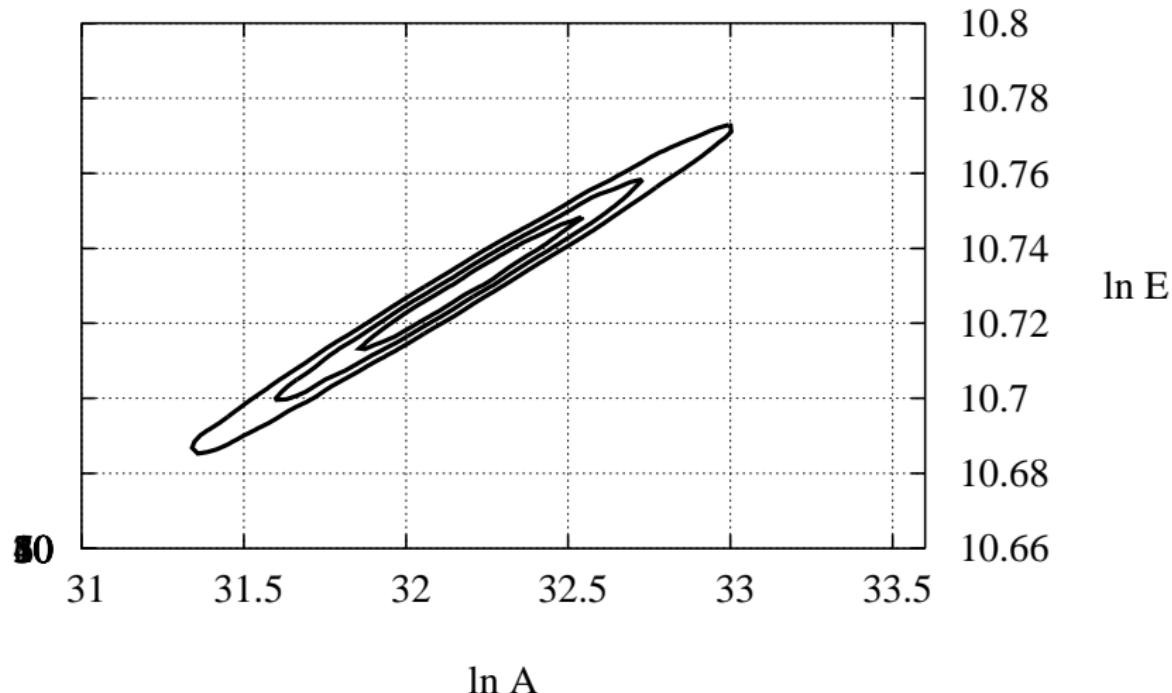
# DFI Uses two nested MCMC chains

- An outer chain on the data,  $(2N + 1)$ -dimensional
  - $N$  data points  $(x_i, y_i) + \sigma$
  - Likelihood function captures constraints on parameter nominals+bounds
- An inner chain on the model parameters
  - Conventional MCMC for parameter estimation
  - Likelihood based on fit-model
- Computationally challenging
  - Single-site update on outer chain
  - Adaptive MCMC on inner chain
  - Run multiple outer chains in parallel, and aggregate resulting acceptable data sets

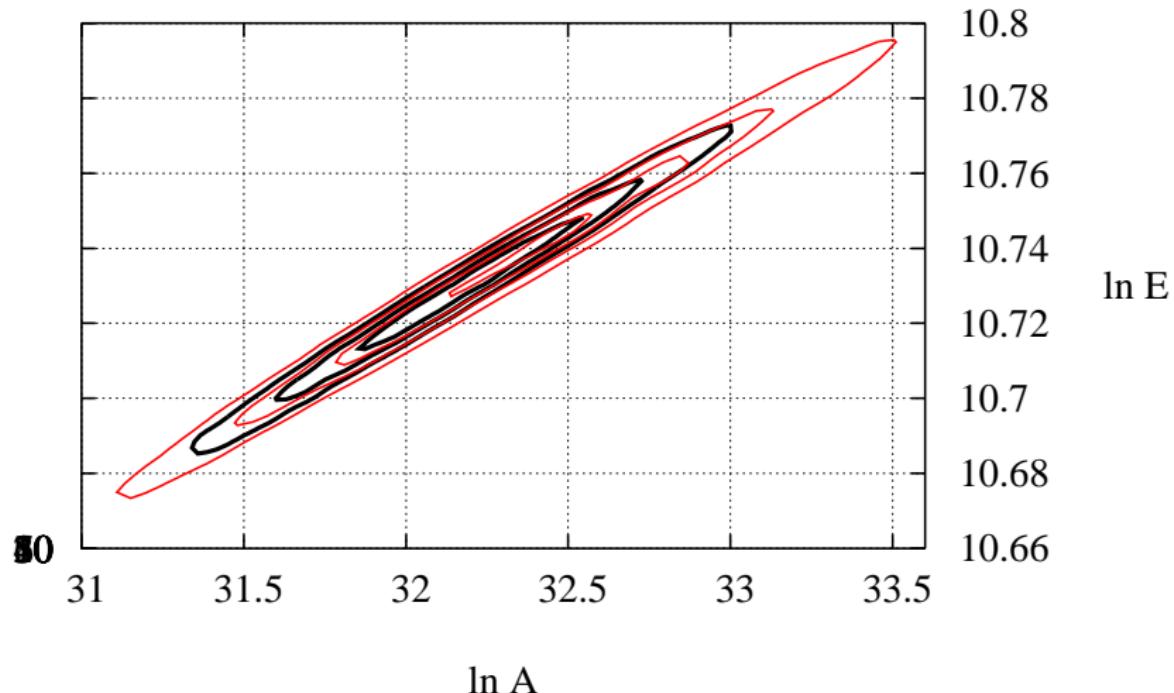
# Short sample from outer/data chain



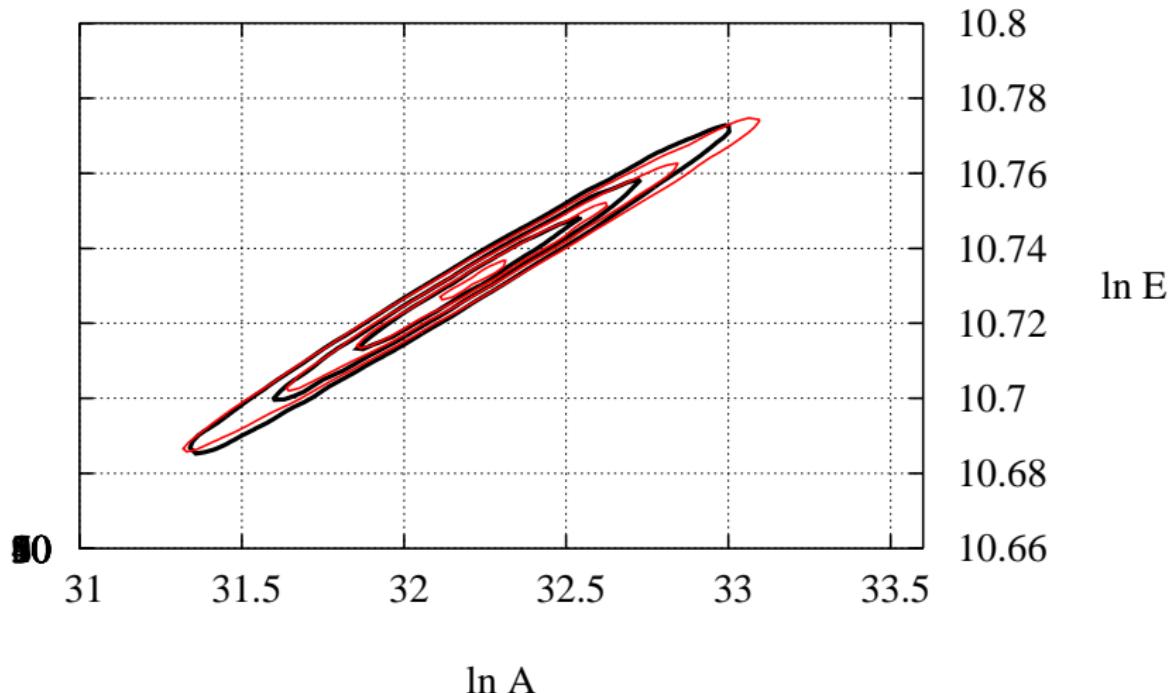
# Reference Posterior – based on actual data



## Ref + DFI posterior based on a 1000-long data chain



## Ref + DFI posterior based on a 5000-long data chain



# Closure

- Probabilistic UQ framework
  - PC representation of random variables
  - Utility in forward UQ
    - Intrusive PC methods
    - Non-intrusive methods
- Challenges
  - High Dimensionality
  - Non-linearity
  - Long term dynamics
- Need for probabilistic characterization of uncertain inputs
  - Correlations important for uncertainty in predictions
  - Discover joint PDF consistent with available information