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Abstract—Input/Output (I/O) operations can represent a sig-
nificant proportion of run-time when large scientific applications
are run in parallel and at scale. In order to address the growing
divergence between processing speeds and I/O performance, the
Parallel Log-structured File System (PLFS) has been developed
by EMC Corporation and the Los Alamos National Laboratory
(LANL) to improve the performance of parallel file activities.
Currently, PLFS requires the use of either (i) the FUSE Linux
Kernel module; (ii) a modified MPI library with a customised
ROMIO MPI-IO library; or (iii) an application rewrite to utilise
the PLFS API directly.

In this paper we present an alternative method of utilising
PLFS in applications. This method employs a dynamic library
to intercept the low-level POSIX operations and retarget them
to use the equivalents offered by PLFS. We demonstrate our
implementation of this approach, named LDPLFS, on a set of
standard UNIX tools, as well on as a set of standard parallel
I/O intensive mini-applications. The results demonstrate almost
equivalent performance to a modified build of ROMIO and
improvements over the FUSE-based approach. Furthermore,
through our experiments we demonstrate decreased performance
in PLFS when ran at scale on the Lustre file system.

Index Terms—Data Storage Systems, File Systems, High Per-
formance Computing, I/O

I. INTRODUCTION

Historically, much of the high performance computing (HPC)
industry has focused on the development of methods to
improve compute-processing speeds, creating a tendency to
measure performance in terms of floating-point operations
per second (FLOP/s). The result has been that many other
contributors to application performance have developed at a
slower rate. An example of this are input and output (I/O)
activities which are required to read and store application
data and checkpoints. As the performance of I/O systems
continues to diverge substantially from compute performance,

a number of projects have been initiated to look for software-
and hardware-based solutions to address this concern.

One recent project of note is the Parallel Log-structured File
System (PLFS) which is being actively developed by EMC
Corporation, the Los Alamos National Laboratory (LANL) and
their academic and industrial partners [1]. To date, PLFS has
been reported to yield large gains in both application read and
write performance through the utilisation of two well known
principles for improving parallel file system performance: (i)
through the use of a log-structured file system – where write
operations are performed sequentially to the disk regardless of
intended file offsets (keeping the offsets in an index structure
instead); and (ii) through the use of file partitioning – where
a write to a single file is instead transparently transposed into
a write to many files, increasing the number of available file
streams.

Currently PLFS can be deployed in one of three ways:
(i) through a File System in Userspace (FUSE) mount point,
requiring installation and access to the FUSE Linux Kernel
module and its supporting drivers and libraries; (ii) through
an MPI-IO file system driver built into the Message Passing
Interface (MPI) library; or (iii) through the rewriting of an
application to use the PLFS API directly. These methods
therefore require either the installation of additional software,
recompilation of the MPI application stack (and, subsequently,
the application itself) or modification of the application’s
source code. In HPC centres which have a focus on relia-
bility, or which lack the time and/or expertise to manage the
installation and maintenance of PLFS, it may be seen as too
onerous to be of use.

In this paper we present an alternative method of using
PLFS that avoids the need to rewrite applications, obtain
specific file/system access permissions, or modify the applica-
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tion stack. Such a method will allow HPC centres to quickly
and simply assess the impact of PLFS on their applications
and systems. We call this solution ‘LDPLFS’ since it is
dynamically linked (using the Linux linker ld) immediately
prior to execution, enabling calls to POSIX file operations to
be transparently retargeted to PLFS equivalents. This solution
requires only a simple environment variable to be exported
in order for applications to make use of PLFS – existing
compiled binaries, middleware and submission scripts require
no modification.
Specifically, this paper makes the following contributions:

• We present LDPLFS, a dynamically loadable library
designed to retarget POSIX file operations to functions
on PLFS file containers. We demonstrate its use with
standard UNIX tools, providing users with an alternative
method for extracting raw data from PLFS structures
without the need for a FUSE file system;

• We demonstrate the performance of LDPLFS in parallel
with respect to: the FUSE mounted alternative, the PLFS
ROMIO file system driver and standard MPI-IO file
operations without PLFS. Our study shows performance
that is near identical to the PLFS ROMIO driver and
greater than the PLFS FUSE file system, without the need
for FUSE specific permissions;

• Finally, we utilise LDPLFS at scale on the 260 TFLOP/s
Sierra cluster located at the Lawrence Livermore National
Laboratory (LLNL), utilising two mini-applications de-
signed for file system performance analysis. We show
how LDPLFS can improve the performance of applica-
tions without requiring any modification to the system’s
environment or an application’s source code. We also
demonstrate that on the Lustre file system used by Sierra,
PLFS can harm an application’s performance at scale,
most likely due to a bottleneck being created by the
metadata server (MDS).

The remainder of this paper is organised as follows: Section 2
outlines related work in the area of I/O optimisation; Section
3 discusses the experimental setup used in this study, the
mechanics of LDPLFS, and an analysis of its performance
compared to the FUSE and ROMIO alternatives; Section 4
contains a case study demonstrating the performance gains
of LDPLFS in parallel using a number of I/O intensive
mini-applications; finally, Section 5 concludes the paper and
outlines future work.

II. BACKGROUND AND RELATED WORK

Just as the Message Passing Interface (MPI) has become the
de facto standard for the development of parallel applications,
so too has MPI-IO become the preferred method for handling
I/O in parallel [2]. The ROMIO implementation [3] – utilised
by OpenMPI [4], MPICH2 [5] and various other vendor-
based MPI solutions [6], [7] – offers a series of potential
optimisations.

Firstly, collective buffering has been demonstrated to yield a
significant speed-up, initially on applications writing relatively

small amounts of data [8], [9] and more recently on densely
packed nodes [10]. These improvements come in the first
instance due to larger “buffered” writes which better utilise
the available bandwidth and in the second instance due to the
aggregation of data to fewer ranks per node, reducing on-node
file system contention.

Secondly, data-sieving has been shown to be extremely
beneficial when utilising file views to manage interleaved
writes within MPI-IO [9]. In order to achieve better utilisation
of the file system, a large block of data is read into memory
before small changes are made at specific offsets. The data is
then written back to the disk in a single block. This decreases
the number of seek and write operations that need to be
performed at the expense of locking a larger portion of the
file.

Another approach shown to produce large increases in
write bandwidth is the use of so called log-structured file
systems [11]. When performing write operations, the data is
written sequentially to persistent storage regardless of intended
file offsets. Writing in this manner reduces the number of
expensive seek operations required on I/O systems backed by
magnetic disks. In order to maintain file coherence, an index
is built alongside the data so that it can be reordered when
being read. In most cases this offers a large increase in write
performance at the expense of poor read performance.

In the Zest implementation of a log-structured file sys-
tem [12], the data is written in this manner (via the fastest
available path) to a temporary staging area that has no read-
back capability. This serves as a transition layer, caching data
that is later copied to a fully featured file system at a non-
critical time.

As well as writing sequentially to the disk, file partitioning
has also been shown to produce significant I/O improvements.
In [13] and [14], an I/O profiling tool is utilised to guide
the transparent partitioning of files written and read by a set
of benchmarks. Through segmenting the output into several
files spread across multiple disks, the number of available
file streams is increased, reducing file contention on the I/O
backplane. Furthermore, file locking incurs a much smaller
overhead as each process has access to its own unique file.

PLFS from LANL [1] combines file partitioning and a log-
structure to improve I/O bandwidth. In an approach that is
transparent to an application, a file access from n processors
to 1 file is transformed into an access of n processors to
n files. The authors demonstrate speed-ups of between 10⇥
and 100⇥ for write performance. Furthermore, due to the
increased number of file streams, they report an increased
read bandwidth when the data is being read back on the same
number of nodes used to write the file [15]. Whilst the log-
structured nature of the file system usually decreases the read
performance, the use of file partitioning has a much greater
effect in this respect on large I/O systems.

As discussed, PLFS can currently be used in one of three
ways, each with advantages and disadvantages.

Firstly, the use of the FUSE kernel module and device
allows PLFS to be utilised by any user, but due to passing data
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Fig. 1: An applications view of a file and the underlying PLFS
container structure.

in and out of the kernel, may produce the worst performance of
the three options. It may also introduce several known security
issues, such as non-privileged access to block devices, or
privilege escalation. Furthermore, the installation of FUSE also
requires administrative privileges which may not be available
on shared systems (such as the Sierra supercomputer used in
Section IV).

Secondly, PLFS can be used by building a modified version
of the MPI library to include the PLFS ROMIO MPI-IO driver.
This method strikes a balance in performance between the
FUSE module and an application rewrite. However, recompi-
lation of the MPI library may introduce performance issues
in other areas, since optimisations found in the system’s MPI
installation may not be present in a modified build.

Finally, an application can be rewritten to use the PLFS
API directly. This has the potential to produce the greatest
performance at the expense of application redevelopment and
recompilation. However, neither a modified MPI library or an
application rewrite will allow users to view PLFS files as if
they were single files. Any applications that do not use MPI or
the PLFS API will not be able to load PLFS containers. This
may make the output of visualisation dumps, through PLFS,
inaccessible to the user.

In this paper we aim to offer an alternative approach that
operates much like the MPI-IO ROMIO driver without the
need to recompile the application stack. Furthermore, our
approach can take advantage of advanced MPI-IO features,
such as collective buffering and data-sieving, that are not
available when using the PLFS API directly.

III. PERFORMANCE ANALYSIS

A. LDPLFS

PLFS is a virtual file system that makes use of file partitioning
and a log-structure to improve the performance of parallel file
operations. Each file within the PLFS mount point appears to
an application as though it is a single file; PLFS, however,
creates a container structure, with a data file and an index for
each process or compute node. This provides each process
with its own unique file stream, increasing the available

i n t open ( c o n s t c h a r ⇤ f i l e n a m e , i n t f l a g s , mode t mode ) ;
i n t p l f s o p e n ( P l f s f d ⇤fd , c o n s t c h a r ⇤ f i l e n a m e , i n t f l a g s ,

p i d t pid , mode t mode , Pl f s open opt ⇤open op t ) ;

s s i z e t w r i t e ( i n t fd , c o n s t vo id ⇤buf , s i z e t c o u n t ) ;
s s i z e t p l f s w r i t e ( P l f s f d ⇤ p l f s f d , c o n s t vo id ⇤buf ,

s i z e t count , o f f t o f f s e t , p i d t p i d ) ;

s s i z e t r e a d ( i n t fd , void ⇤buf , s i z e t c o u n t ) ;
s s i z e t p l f s r e a d ( P l f s f d ⇤ p l f s f d , void ⇤buf ,

s i z e t count , o f f t o f f s e t ) ;

Listing 1: Open, Read and Write functions from the POSIX
and PLFS API.

bandwidth, as file writes do not need to be serialised [10].
Figure 1 demonstrates how a six rank (two processes per rank)
execution would view a single file and how it would be stored
within the PLFS backend directory.

LDPLFS is a dynamic library specifically designed to
interpose POSIX file functions and retarget them to PLFS
equivalents. By utilising the Linux loader, LDPLFS overloads
many of the POSIX file symbols (e.g. open, read, write),
causing an augmented implementation to be executed at run-
time1. This allows existing binaries and application stacks to
be used without the need for recompilation. For systems where
dynamic linking is either not available or is only available in
a limited capacity (such as on an IBM BlueGene system), a
static LDPLFS library can be compiled and, through the use
of the -wrap functionality found in some compilers, can be
linked at compile time.

Due to the difference in semantics between the POSIX
and PLFS APIs, LDPLFS must perform two essential book-
keeping tasks. Firstly, LDPLFS must return a valid POSIX
file descriptor to the application, despite PLFS utilising an
alternative structure to store file properties. Secondly, as the
PLFS API requires an explicit offset to be provided, LDPLFS
must maintain a file pointer for each PLFS file. Listing 1 shows
three POSIX functions and their PLFS equivalents.

When a file is opened from within a pre-defined PLFS
mount point, a PLFS file descriptor (Plfs_fd) pointer is
created and the file is opened with the plfs_open function
(using default settings for Plfs_open_opts and the value
of getpid() for pid_t). In order to return a valid POSIX
file descriptor (fd) to the application, a temporary file (in
our case /dev/random) is also opened. The file descriptor
of the temporary file is then stored in a look-up table and
related to the Plfs_fd pointer. Future POSIX operations on
a particular fd will then either be passed onto the POSIX
API, or if a look-up entry exists, the PLFS library.

In order to provide the correct file offset to the PLFS
functions, a file pointer is maintained through lseek()
operations on the temporary POSIX file descriptor. When a
POSIX operation is to be performed on a PLFS container,

1Note that although LDPLFS makes use of the LD_PRELOAD environmen-
tal variable in order to be dynamically loaded, other libraries can also make use
of the dynamic loader (by appending multiple libraries into the environmental
variable), allowing tracing tools to be used in alongside LDPLFS.
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Fig. 2: The control flow of LDPLFS in an applications
execution.

the current offset of the temporary file is established (through
a call to lseek(fd, 0, SEEK_CUR)), a PLFS operation
is performed (again using getpid() where needed), and
then finally, the temporary file pointer is updated (once again
through the use of lseek()). Figure 2 shows the control flow
of an application when using LDPLFS.

B. Testing Platform

LDPLFS has been tested and utilised on two production-grade
supercomputers: Minerva, located at the Centre for Scientific
Computing (CSC) at the University of Warwick, and Sierra,
located at the Open Computing Facility (OCF) at LLNL.
Both machines consist of dual Intel “Westmere” hex-core
processors, clocked at 2.66 GHz and 2.8 GHz respectively,
and a QLogic QDR InfiniBand interconnect.

Minerva consists of 258 nodes and has a peak LINPACK
performance of approximately 30 TFLOP/s. The I/O back-
end for Minerva uses IBM’s General Parallel File System
(GPFS) [16] and consists of two servers. 96 disks, configured
in RAID-6, are used for data storage and 24 disks, config-
ured in RAID-10, are used for the storage of metadata. The
theoretical peak bandwidth is approximately 4 GB/s, but the
performance is heavily constrained by the relatively small
number and slow speed of the 2 TB hard disk drives.

Sierra is a much larger machine, with 1,849 compute nodes.
It has a LINPACK performance of 260 TFLOP/s and is backed
by LLNL’s “islanded I/O” (where many file systems are shared
by multiple machines). For this study we utilise the lscratchc
Lustre file system [17], using 24 I/O servers and a dedicated
MDS. The system uses 3,600 hard disk drives, running at
10,000 RPM. The theoretical peak bandwidth of the file system
is approximately 30 GB/s, with the limiting factor being the

Minerva Sierra
Processor Intel Xeon 5650 Intel Xeon 5660
CPU Speed 2.66 GHz 2.8 GHz
Cores per Node 12 12
Nodes 258 1,849
Interconnect QLogic TrueScale 4X QDR InfiniBand
File System GPFS Lustre
I/O Servers / OSS 2 24
Theoretical Bandwidth ⇠4 GB/s ⇠30 GB/s
Storage Disks

Number of Disks 96 3,600
Disk Type 2 TB 450 GB
Disk Speed 7,200 RPM 10,000 RPM
Bus Type Nearline SAS SAS
Raid Level 6 (8 + 2) 6 (8 + 2)

Metadata Disks
Number of Disks 24 30 (+2) a

Disk Type 300 GB 147 GB
Disk Speed 15,000 RPM 15,000 RPM
Bus Type SAS SAS
Raid Level 10 10

aSierra’s MDS uses 32 disks; two configured in RAID-1 for journalling
data, 28 disks configured in RAID-10 for the data volume itself and a further
two disks to be used as hot spares.

TABLE I: Benchmarking platforms used in this study.

InfiniBand interconnect to the file servers.
The specification for each machine is summarised in Table I.

C. Performance Analysis

Our initial assessment of LDPLFS is conducted on Minerva.
We utilise the MPI-IO Test application [18] from LANL,
writing a total of 1 GB per process in 8 MB blocks. Collective
blocking MPI-IO operations are employed with tests utilising
PLFS through the FUSE kernel library, the ROMIO PLFS
driver and LDPLFS. In all cases we use OpenMPI version
1.4.3 and PLFS version 2.0.1. We compare the achieved
bandwidth figures against those from the default MPI-IO
library without PLFS.

Tests have been conducted on 1, 2, 4, 8, 16, 32 and 64
compute nodes utilising 1, 2 and 4 processors per node2.
We note that each run is conducted with collective buffering
enabled and in its default configuration3 in order to pro-
vide better performance with minimal configuration changes.
The node-wise performance should remain largely consistent,
while the number of processors per node is varied – in each
case there remains only one process on each node performing
the file system write. As the number of processors per node
is increased, an overhead is incurred because of the presence
of on-node communication and synchronisation.

Figure 3 demonstrates promising results, showing that
LDPLFS performs almost as well as PLFS through ROMIO
and significantly better than FUSE (up to 2⇥) in almost all
cases. It is interesting to note that on occasion, LDPLFS
performs better than the PLFS ROMIO driver. This perfor-
mance difference may be due to a combination of background

2Due to machine usage limits, using all 12 processors per node would limit
our results to a maximum of 16 compute nodes, decreasing the scalability of
our results.

3The default collective buffering behaviour is to allocate a single aggregator
per distinct compute node.
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Fig. 3: Benchmarked MPI-IO bandwidths on FUSE, ROMIO, LDPLFS and standard MPI-IO (without PLFS).

load on the file system, optimisations in the standard MPI-
IO routines and the reduced overhead incurred by LDPLFS
over the PLFS ROMIO driver equivalent. On the Minerva
cluster, FUSE performs worse than standard MPI-IO by 20%
on average for parallel writes. While the overhead of FUSE
is addressed in [1], the I/O set-up used in that study is much
larger than that used by Minerva, and makes use of custom
optimised hardware.

D. Standard UNIX Tools

One of the current difficulties associated with the practical use
of PLFS is the complexity associated with managing PLFS
containers. Since FUSE treats a PLFS mount point as a self-
contained file system, using the files in any application is
trivial. However, when using either of the alternative solutions
for PLFS, applications must either use MPI or be rewritten
for PLFS. PLFS files appear inside the “backend” directory
as directories with hundreds of files. Visualising data or post
processing the information output becomes difficult in this
scenario; this is one of the problems LDPLFS aims to address.
As LDPLFS operates at the POSIX call level, it can be used
with any standard UNIX tools as well as parallel science and
engineering applications.

Table II presents the performance of several standard UNIX
tools operating on a PLFS container of 4 GB in size. Note that
the file copy (cp) times correspond to copying a file from a
PLFS container to a standard UNIX file and vice versa. These

PLFS Container Standard UNIX File
cp (read) 100.713 114.279
cp (write) 107.587
cat 25.186 25.433
grep 130.662 128.863
md5sum 26.970 26.781

TABLE II: Time in seconds for UNIX commands to complete
using PLFS through LDPLFS, and without PLFS.

can be compared to a single time for copying from and to a
standard UNIX file.

Since each of these commands are serial applications, each
command was executed on the login node of Minerva. It is
promising to see that the time for each of the commands to
complete is largely the same for both standard UNIX files
and PLFS container structures. These results show that PLFS
is marginally faster when copying to or from a PLFS file
than a normal UNIX file. We attribute this improvement in
performance to the increased number of file streams available,
improving the bandwidth achievable from the file servers.

Our results position LDPLFS as a viable solution to improving
the performance of I/O in parallel, as well as showing that
there is no substantial performance hit when using LDPLFS
to interact with PLFS mount points using serial (non-MPI) ap-
plications. We next demonstrate the performance of LDPLFS
at much larger scale, using a set of I/O intensive mini-
applications.
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Fig. 4: BT benchmarked MPI-IO bandwidths using MPI-IO, as well as PLFS through ROMIO and LDPLFS.

IV. CASE STUDY

Figure 3 shows that the performance of PLFS on Minerva is
approximately 2⇥ greater than that of MPI-IO without PLFS
in parallel. Because of the relatively small I/O set-up employed
by Minerva, we do not believe it is possible to achieve the
same levels of speed-up seen in [1], where a high-end PanFS
I/O solution is used. In order to better demonstrate how PLFS
and LDPLFS perform on a much more substantial I/O set-up,
we have used two applications to benchmark the lscratchc file
system attached to Sierra.

For this study we utilise the Block Tridiagonal solver
application (BT) from the NAS Benchmark Suite [19], [20]
and the FLASH-IO [21], [22] mini-application. For BT we
use the C problem class (162 ⇥ 162 ⇥ 162), writing a total
of 6.4 GB of data during an execution, and the D problem
class (408 ⇥ 408 ⇥ 408), writing a total of 136 GB of data.
The application is strong scaled – as the number of processor
cores is increased, the global problem size remains the same,
with each process operating over a smaller sub-problem. For
the C problem class, the global problem size is relatively
small, and can only be scaled to 1,024 processors before the
local problem size becomes too small to operate on correctly.
Conversely for the D program class, the global problem size
is so large that on less than 64 processors, the execution time
becomes prohibitive. For this reason we use between 4 and
1,024 processor cores for the C problem class, and between
64 and 4,096 processor cores for the D problem class.

Figures 4 and 5 show the achieved bandwidth for the
two mini-applications in their default configurations using the
system’s pre-installed OpenMPI version 1.3.4 library (without
PLFS), as well as with the system’s OpenMPI library aug-
mented with LDPLFS, and finally with the ROMIO PLFS file
system driver compiled into a customised build of OpenMPI
version 1.4.3. The performance of PLFS through the two
methods is largely the same, with a slight divergence for BT.

Since LDPLFS retargets POSIX file operations transpar-

ently and uses various structures in memory to maintain file
consistency, a change in the local problem size may effect
the LDPLFS performance due to the memory access patterns
changing and additional context switching. Furthermore, write
caching can produce a large difference in performance – where
data is small enough to fit in cache, the write of that data to
disk can be delayed.

Write caching is most prevalent in the BT application where,
at large-scale, small amounts of data are being written by each
process during each parallel write step. For the C problem
class (Figure 4(a)), 6.4 GB of data is written in 20 separate
MPI write calls, causing approximately 300 KB of data to be
written by each process at each step. When writing to a single
file, the file server must make sure that writes are completed
before allowing other processes to write to the file. This causes
each write command to wait on all other processes, leading to
relatively poor performance. Conversely, through PLFS, each
process writes to its own file, therefore allowing the write to
be cleared to cache almost instantly.

In Figure 4(b), the performance rapidly decreases at 1,024
cores, where each process is writing approximately 136 MB,
in 20 steps. We believe these writes (of approximately 7 MB
each) are marginally too large for the system’s cache, causing
performance that is equivalent to vanilla MPI-IO. However,
when using 4,096 cores, each write is less than 2 MB per
process, writing only 34 MB per process during the execution.
This causes the write caching effects seen in Figure 4(a) to
reappear.

FLASH-IO is a synthetic benchmark that recreates the
checkpointing behaviour of the FLASH thermonuclear simula-
tion code [23], [24]. In this study we weak scale the problem,
with a local problem size of 24 ⇥ 24 ⇥ 24. This causes each
process to write approximately 205 MB to the disk, through
the HDF-5 library [25]. Runs were conducted on between 1
node and 256 nodes, using all 12 processors each time, thus
utilising up to 3,072 processors. We note that as the number
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Fig. 5: FLASH-IO benchmarked MPI-IO bandwidths using MPI-IO, as well as PLFS through ROMIO and LDPLFS.

of compute nodes is increased, so too is the output file size.
Since each process is writing the same total amount of data,
over the same number of time steps, caching effects will be
less prevalent in weak scaled problems.

Interestingly, Figure 5 shows that as the core count is
increased on FLASH-IO, the write speed of MPI-IO gently
increases up to approximately 550 MB/s. However, when
using PLFS we see a sharp increase in write speed until
192 cores (or 16 nodes), at which point the average write
speed reaches approximately 1,650 MB/s, before decreasing
to 210 MB/s at 3,072 cores. A possible explanation for this is
that since the Lustre file system uses a dedicated MDS, as the
number of processors is increased, the performance plateaus
and then decreases due to the MDS becoming a bottleneck
in the system. Since PLFS operates using multiple files per
processor (at least one for the data and one for the index),
it uses many more files as the problem is scaled, potentially
putting a large load on the MDS. This bottleneck is less evident
in the BT mini-application due to the small write sizes, which
facilitates simple write caching. On a file system like GPFS,
where metadata is distributed, these performance decreases
may not materialise.

V. CONCLUSION

File I/O operations have, in many cases, been one of the
last aspects considered during application optimisation. In
this paper we have presented LDPLFS – a dynamic, runtime
loadable plug-in for PLFS which offers the opportunity to
accelerate file read and write activities without modification
to the machine’s environment or an application’s source code.

Specifically we have demonstrated the performance of our
LDPLFS solution in comparison to PLFS using the FUSE
Linux kernel module, PLFS using the ROMIO MPI-IO file
system driver and the original MPI-IO operations without
PLFS. In this comparison LDPLFS is able to offer approx-
imately equivalent performance to using PLFS through the

ROMIO file system driver and improved performance over
FUSE.

LDPLFS not only allows end-users to improve their ap-
plications I/O performance, but also allows users to quickly
evaluate the benefits of PLFS on their system before under-
taking the task of library rebuilds or code modifications to use
PLFS natively.

In the second part of this paper we used LDPLFS at scale
to accelerate the I/O operations of the FLASH-IO and BT
mini-applications. We have shown that ROMIO with PLFS
and LDPLFS can offer significant improvements in I/O per-
formance – up to 20⇥ – when compared to the original un-
modified applications. Furthermore, we have demonstrated that
while PLFS may seem like a quick-fix solution to improving
I/O performance, its use can actually harm performance at
scale and under certain conditions, due to the overhead of
managing hundreds or thousands of files in parallel.

LDPLFS is a solution which requires only two small pieces
of software to be built with no system administrator actions.
The library is loadable from only a single environment vari-
able, yet is able to offer significant improvement in parallel
I/O activity. In our work with industry partners, such a solution
helps to address concerns which may arise over the security
model of FUSE and the significant investment associated
with the recompilation of applications using a custom MPI-
IO/ROMIO middleware. LDPLFS therefore straddles the gap
between offering improved application performance and the
effort associated with the installation of traditional PLFS.

A. Future Work
In future work we intend to create an alternative implementa-
tion of PLFS that can operate on IBM BlueGene systems. We
feel that this platform is of interest to many research laborato-
ries and therefore PLFS could help improve the performance
of its unusual I/O setup (where all I/O operations are “function
shipped” to dedicated I/O nodes).



Through utilising an alternative implementation of PLFS,
we aim to investigate the low-level performance effects of
a log-based file system and file partitioning in isolation.
Furthermore, we aim to make our implementation much more
customisable, in order to correct the negative effects seen at
scale in Figure 5. We also intend to model the performance
of our implementation in order to aid auto-optimisation of
parameters, as well as assess the benefits of PLFS on future
I/O backplanes without requiring extensive benchmarking.

We hope to use our performance model to highlight systems
where PLFS may have a negative effect on performance, where
perhaps using just file partitioning or a log-based file system
will provide greater performance.
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