
Using a Custom-Built HDL For Printed Circuit
Board Design Capture
Brent Nelson, Brad Riching, and Richard Black
Department of Electrical and Computer Engineering

Brigham Young University, Provo, Utah 84602
Email: nelson@ee.byu.edu, bradriching@gmail.com, aeldstesort@gmail.com

Abstract—The use of Hardware Description Languages
(HDL’s) for printed circuit board design is presented and its
advantages over schematic capture are detailed. One such HDL
called PHDL is presented and its use demonstrated through a
set of sample designs.

Index Terms—Printed circuit board, PCB, HDL, schematic,
design, EDA, CAD

I. INTRODUCTION

The creation of Hardware Description Languages in the
1980’s forever changed digital design at the gate and transistor
levels by replacing schematic entry with textual design based
on formally defined languages. Initially these languages were
the proprietary creations of individual companies; now known
as Hardware Description Languages or HDL’s, they were
eventually standardized by the IEEE and now bear names like
Verilog and VHDL[1].

Today, virtually all integrated circuit and FPGA design is
done using textual design entry in HDL’s. The benefits of
this are many: increased designer productivity, greater support
for collaboration and design version management, greater
design reuse, and the availability of a much richer CAD tool
ecosystem for design.

However, the Printed Circuit Board (PCB) industry has
largely failed to capitalize on the many advantages provided
by HDL-based system design and continues to rely almost
exclusively on graphical design entry tools. In the process,
they miss out on the many advantages provided by HDL-based
design entry.

This paper argues for the use of HDL’s for PCB design
capture and that the vast array of advantages provided far
outweighs any perceived disadvantages incurred in moving
away from graphical design entry. It will also introduce the
PHDL language and associated CAD tool suite, an open-
source CAD tool developed for PCB design capture.

PCB design consists of two main steps: (1) the use of
a schematic editor to graphically draw the connectivity of
the PCB components, and then (2) the use of a drafting
tool to complete the physical PCB layout and prepare the
required manufacturing data files. A netlist is typically used

This research was supported by Sandia National Laboratories under PO
Contract 1125274, sponsored by Sandia Corporation (a wholly owned sub-
sidiary of Lockheed Martin Corporation) as Operator of Sandia National
Laboratories under its U.S. Department of Energy Contract No. DE-AC04-
94AL85000.

to communicate the results of the first step to the second step.
This overall design process is shown in Figure 1.

Fig. 1. The Two-Step PCB Design Process

A similar two-step process exists in conventional IC or
FPGA digital design. However, the first step (RTL design
capture) is done using an HDL (VHDL or Verilog) and the
second step (physical design) is done using different tools
(layout, placement, and routing tools). This work proposes that
the first PCB design step (design entry) be completed using an
HDL specially created for this purpose, while the second step
(physical design) continues to use the existing PCB physical
design tool flow. Thus, this paper proposes to use HDL’s for
only the left box in Figure 1.

The paper will begin by discussing the advantages of textual
input for PC board design capture, comparing and contrasting
it with current practice. It then will introduce the PHDL
language and, through a series of graduated code examples,
illustrate the language’s features for describing PC board
device connectivity. An overview of the associated PHDL
CAD tool suite is then provided to show how an HDL-
based CAD tool flow is used for PC board design. Finally,
conclusions are given along with suggestions for future work.

II. GRAPHICAL DESIGN ENTRY FOR PC BOARD DESIGN

Schematic capture using a computer program imitates the
manual drawing of schematics on paper to reflect the selec-
tion of electronic components and their interconnection using
wires. For such schematics, visual inspection is the preferred
mechanism for understanding connectivity and circuit func-
tion. However, such an approach is non-scalable, meaning that
it breaks down for large designs. For example, consider the
insertion of a high pin count device such as an FPGA chip
into a PCB design as shown in Figure 2. The large size of the
component is due to the large number of pins present around

SAND2012-1360C

its periphery; this large size precludes the showing of more
than a few additional components and their interconnections
on this particular schematic sheet.

Fig. 2. A High Pin Count Device In A Schematic

Worse, consider the schematic page shown in Figure 3. In
this case, the high-density mezzanine connector has so many
pins its I/O banks are divided into multiple pieces, some of
which are not even shown in the figure, and that span multiple
sheets. As before, the complexity of the circuit component
leaves little room for other relevant circuit components and
their interconnections on this particular schematic page.

To interconnect pins from either of these examples to the
pins of other components found on other schematic pages,
the following method is typically used: (a) each pin on each
component has a small wire stub attached to it and (b) each
such wire stub is labelled with a signal name. Thus, the use of
matching names for different wire stubs on different schematic
sheets implies wire connections between the corresponding
pins.

Fig. 3. A High Pin Count Device Broken Into Pieces in the Schematic

To claim that this spreading of devices across multiple
schematic sheets and using name matching on wire stubs
to verify connectivity is somehow natural and efficient for
entering and verifying a design is a stretch — any geometric
information present in a smaller schematic (which may fit onto
a page or two) is completely lost for large designs. Further the

act of inserting the many required wire stubs and successfully
labelling them represents a huge time burden for a designer
and the source of hundreds or even thousands of potential
design errors.

Schematic capture approaches have a number of additional
limitations. First, schematic design tools are typically propri-
etary and employ proprietary design database formats. This
precludes third party development of any kind of add-on tools
to help with the design process. Their design databases are also
typically in a binary format, preventing the use of source code
control systems such as SVN or CVS for managing design files
and tracking changes. The same goes for the myriad of other
productivity-enhancing tools present in software development
environments (IDE’s, etc).

III. HDL-BASED PCB DESIGN

HDL’s have a number of important advantages over
schematic capture for PCB design:

• HDL files are plain text and are expressed in an open and
documented format — they require no sophisticated or
proprietary design tools to manipulate. Simple text editing
functions such as copy-paste and search-and-replace can
be used during their editing and processing as well as
simple command line tools such as diff and grep.

• HDL files are printable, share-able, and email-able, facil-
itating collaboration and communication amongst a team
of designers.

• A language-based approach readily supports higher level
constructs such as arrays, structures, lists, etc. for declar-
ing and manipulating design elements as well as reference
designators. This allows the designer to work at a higher
level of abstraction, increasing design productivity.

• HDL files lend themselves to the use of source code
control systems such as SVN or CVS, which store
design files in a central repository and facilitate sharing
among a group of designers. They further allow source
code changes to be individually tracked and documented,
allowing any version of any design file to be checked
out for use. They support the intelligent merging of
different file version content to support extensive sharing
and reuse. They also allow for the tagging of file sets
which represent logical design versions (such as all the
files that make up version 1.1 of a given PCB).

• HDL files lend themselves to software development-
oriented IDE’s (integrated development environments)
such as Eclipse. One role of IDE’s is to further simplify
the management of the design files using the previously-
mentioned source code control systems. They also can
provide automation for running the needed compilation
tools to convert design source files into netlists, bill of
materials, etc.

• IDE’s can provide real-time syntax checking and error
reporting as file editing is done. They provide syntax
highlighting (coloring) to aid the programmer/designer
in understanding the structure of the design code. They

provide syntax auto-completion to minimize the required
typing to enter a design.

• IDE’s can provide sophisticated cross-probing capabilities
such as moving the cursor to the original declaration of
a net which is connected to a specific component pin.
Another example would be the user selecting a pin on
a device instance and asking the IDE to highlight all
other pins in the source tree wired to that same pin or
generating a text listing with line numbers of those pins.

• Finally, open language specifications allow for the cre-
ation of a variety of design checking tools such as DRC,
ERC, and even linting tools as are found in most software
development environments.

In light of these significant advantages, the use of HDL’s for
PCB design has a number of clear advantages over schematic
entry tools. These advantages were recognized long ago in
the ASIC and FPGA design communities, and they will only
continue to grow in importance as designs grow in complexity
and as device pin counts increase.

IV. INTRODUCTION TO PHDL

The Printed Circuit Board Hardware Description Language
(PHDL) is a domain specific language specially designed for
PCB design capture (the left half of Figure 1). PHDL exhibits
all the above-mentioned benefits of a text-based design tool
and addresses additional problems that arise in the use of
graphical tools. Its greatest strength lies in its simplicity of
syntax and data entry.

A. PHDL Syntax and Language Structure

The design construct is used in PHDL to describe the overall
PCB — it simply lists the device instances in the design along
with the wires (nets) that interconnect them. Since a designer
will typically create device declarations before starting to
specify a design, we will start by describing PHDL device
declarations.

B. PHDL Device Declarations

PHDL device declarations are used to describe the library
components that will be placed onto the board. A typical
device declaration is shown in Program IV.1.

Program IV.1 A Basic Device Declaration

device seven_seg {
attr library = "led";
attr package = "ss4061";
attr refPrefix = "DSP";
pin common = {1};
pin[1:7] segments = {2,3,4,5,6,7,8};
pin dp = {9};

}

The device declaration includes the device’s name. The
body of the declaration then defines a list of attributes as-
sociated with the device. In the example given, the attributes
specify the name of the layout footprint library the device is
a part of as well as the package type for the device. It also

provides a reference designator (refdes) prefix string which
will be used for all devices of this type instantiated on the
board (with unique instance numbers being appended to this
prefix by the compilation tools). The set of attributes that can
be declared for a device is limitless — the attribute names
are arbitrary identifiers and the attribute values are arbitrary
strings. Thus, different devices will have different attributes
associated with them such as ’manufacturer’, ’cost’, etc. All of
the specified attributes ultimately will appear in the generated
Bill of Materials for the design.

The device declaration also includes definitions of the names
of the device’s pins. The advantage of naming pins this way
is that they can later be referred to by name rather than by
pin number. This also makes it possible to refer to a multi-bit
pin by its name. In this example the pin named common is
mapped to physical pin 1 on the device, the segments pin is
mapped to physical pins 2-8 on the device, and the dp pin is
mapped to physical pin 9 on the device. These pin numbers
would presumably be taken from the data sheet or physical
footprint found in the layout database.

Note that in this example the segments pin is declared as a
bus with bits numbered 1 to 7 when viewed from left to right.
Any two indices can be used in this notation to specify the
range for a multi-bit pin — the indices can increase from left
to right as in this example or they could decrease from left to
right as in:

pin[6:0] segments = {2,3,4,5,6,7,8};

Also, note that a comma-separated list is used to specify
the set of physical pins they map to on the right side of the
equals sign. Any combination of letters, numbers and limited
special characters (+, -, $, etc.) may be used to represent pin
mappings.

C. PHDL Design Blocks

A design block is a collection of device instances along with
the nets that interconnect them. In PHDL, the top-level design
is the final PCB. An example design declaration is given in
Program IV.2.

This design contains three nets (vcc, gnd, and lr net) and
three device instantiations. Nets are declared inside of the
design block in a similar fashion to pins but using the net
keyword, either as individual bits or as a multi-bit net using
a range specifier.

Devices previously defined using the device construct are
instantiated inside the design using the inst keyword. Device
instances consist of an instance name and the name of a
previously declared device. The body of the inst construct then
contains a set of pin assignments.

A single copy of the battery 9V device is first instantiated
and its pos pin is tied to design net named vcc and its neg pin
is tied to design net gnd (both of these nets must have been
previously declared).

Next, an array of 8 led red devices is instantiated using
array-like syntax to specify that 8 such devices are desired.

Program IV.2 A Simple Design

design led_circuit {
net vcc, gnd;
net[1:8] lr_net;

inst pwrsup of battery_9V {
pos = vcc;
neg = gnd;

}
inst(1:8) led of led_red {
a = vcc;
combine(k) = lr_net;

}
inst(1:8) res of resistor {
combine(a) =lr_net;
b = gnd;
value = "330";

}
}

Each one of the 8 LED’s a pins is then wired to design net
vcc. This shows the ability to map all of the a pins on these 8
devices to a single wire, something commonly done in designs.
Next, all of the k pins of the 8 different LED’s are lined up
into an 8-bit bus (using the combine keyword) and these are
then connected to the 8-bit net called lr net. The semantics of
this are that the k pin of instance 1 is tied to bit 1 of lr net
and so on.

Finally, 8 resistor devices are instanced. The new construct
shown here is that the attribute value is over-ridden from
whatever default value it might have been given in its device
declaration and set to the value ”330” here, illustrating the
ability to over-ride attribute values on an instance by instance
basis.

D. More On PHDL Device Instantiation

As previously shown, either single device instantiations can
be made or an array of multiple instantiations can be made,
all with the inst keyword. In the case of a single device
instantiation, the syntax to map its pins to design nets is
straightforward. The same goes for changing its attributes as
shown in Program IV.2.

However, when instantiating an array of devices, PHDL
provides great flexibility in wiring instance pins to nets and
over-riding instance attributes. A variety of mechanisms for
doing so are shown in Program IV.3. All of of the statements
in the code assume that an array of eight led red devices has
just been instanced.

Note that when a subset of the instances in an array of
instances is to be accessed, it is done using this(range).
where range can be a single number, two numbers separated
by a colon, or a comma-separated list of numbers. This same
flexibility in specifying ranges also extends to the selection of
the bits of lr net on the right hand side of each statement.

The last statement in the code of Program IV.3 illustrates
how the order of the index range is significant, and that
by reversing the range a permutation can be effected. In
the very last statement, instance 2’s a pin is assigned to

Program IV.3 Slicing and Dicing Indices

// Tie all 8 ’a’ pins to signal ’vcc’
a = vcc;

// Combine the ’k’ pins from all 8 instances
// into an 8-bit bus and tie it to the 8-bit
// net named ’lr_net’
combine(k) = lr_net;

// Tie the ’a’ pin of instance number 3
// to net ’gnd’
this(3).a = gnd;

// Tie the ’a’ pins of the odd numbered
// instances to the right half of ’lr_net’
this(1,3,5,7).a = lr_net[5:8];

// Tie the ’a’ pins of the even numbered
// instances to the other half of ’lr_net’
this(2,4,6,8).a = lr_net[3:0];

lr net[3], instance 4’s a pin is mapped to lr net[2] and so
forth. It is crucial to realize that the assignment rule always
treats aggregate bits of pins spanning possibly multiple device
instances on the left (and similarly aggregate bits of nets on
the right) as groups lined up in the order specified by the range
expression. These two groups are then assigned one-to-one, in
a left-to-right fashion. Assignments of mismatching aggregate
sizes on the left and right hand side of an assignment statement
is not supported.

On the right hand side of assignment statements, a concate-
nation operator can be used to create new multi-bit nets as
in:

this(1,3,5,7).a = vcc & lr_net[2] & gnd & gnd;

If no selector notation is used at all in an assignment
statement, all the instances are modified as they were in
Program IV.2 where all of the LED’s a pins were connected
to vcc together.

Finally, the same selection mechanism used to assign pins
to nets can also be used to over-ride a subset of the instances’
attribute values. For example, to make half the resistors one
value and half another, the following could be used:

this(1,2,3,4).value = "100";
this(5:8).value = "330";

E. Using Hierarchy in PHDL Designs

Like all HDL’s, PHDL supports the use of hierarchy in
design creation. First, the subdesign keyword is used to create
a sub-design as shown in Program IV.4. A sub-design is
identical to a design in all respects except two (which have
been highlighted in the code). First, it is declared using the
subdesign keyword. Second, it must have one or more port
declarations. The purpose of a port is to provide something
to wire the sub-design to when it is instantiated. In this case,
there are two port declarations which use similar syntax to
net declarations. While these ports are both one-bit wide, in

general they can be of any width. Like a design, this sub-
design then instances a number of devices.

Program IV.4 A Sub-Design Declaration

subdesign led_block {
port vcc, gnd;
net lr_net;

inst led of led_red {
a = vcc;
k = lr_net;

}

inst res of resistor {
a = lr_net;
b = gnd;
value = "330";

}
}

A sub-design can then be instanced inside another sub-
design or design, similar to how devices are instanced. This is
shown in Program IV.5. Comparing it to Program IV.2, it can
be seen that the arrays of 8 LEDs and 8 resistors have been
replaced with an array of 8 sub-designs (using the subinst
keyword), where each subinst contains an LED and resistor
sub-circuit.

Program IV.5 Instancing a Sub-Design

design led_circuit {
net vcc, gnd;

inst pwrsup of battery_9V {
pos = vcc;
net = gnd;

}

subinst(1:8) leds of led_block {
vcc = vcc;
gnd = gnd;

}
}

We saw previously that the attributes of device instances
can be over-ridden using the this syntax. A similar capability
exists for arrays of sub-designs as shown in Program IV.6.

In the highlighted statements of this program, dot notation
has been used to reach inside the various sub-designs and
modify the value attribute of their res instances. Use of dot
notation to reach down into the design hierarchy and modify
device attributes is a powerful capability of PHDL. If two
collections of circuitry have different attributes on their con-
stituent devices but otherwise have identical connectivity, they
can be converted to a single sub-design, instanced multiple
times, and then dot notation used to customize each sub-
design instance’s device attributes as needed. Further, this dot
notation can be used with arbitrary levels of hierarchy in a
design. Finally, it is important to realize that PHDL does not
allow modification of connectivity across levels of hierarchy
as this would likely open the door to a plethora of hard-to-find

Program IV.6 Instancing a Sub-Design

design led_circuit {
net vcc, gnd;

inst pwrsup of battery_9V {
pos = vcc;
net = gnd;

}

subinst(1:8) leds of led_block {
vcc = vcc;
gnd = gnd;
this(1,3,5,7).res.value = ”330”;
this(2,4,6,8).res.value = ”660”;

}
}

connectivity design errors.
The preceding examples provided show the ease with which

arbitrary arrays of device and sub-design instances can be in-
serted into a design, interconnected, and customized. Repeated
or regular structures can be created in just a line or two of
code, compared to the hundreds of steps required in a graphical
zoomIn-select-zoomOut-pan-zoomIn-select-. . . design tool.

At first glance, some may argue that PHDL is just another
netlisting language. However, PHDL provides an environ-
ment much more capable than simply expressing one-to-one
correspondences between declared primitives and generated
connectivity. With all the examples of aggregation, slicing,
concatentation, and hierarchy previously shown, PHDL actu-
ally infers structure based on implications in the source text.
As such, we believe PHDL more closely parallels a structural
HDL by providing a higher level of abstraction that can be
used to model all aspects of a PCB.

F. The PHDL CAD Tool Flow

The PHDL CAD tool is a compiler, taking PHDL source
files as input and producing a netlist and other files for use
by back-end physical layout tools. Current formats which
can be produced by the compiler include netlists for Mentor
Graphics PADS and EAGLE PCB. Additionally, the compiler
outputs ancillary files such as a Bill of Materials, a comma-
separated Reference Designator Mapping Document, and a
Layout Supplementary Information Document.

The Bill of Materials summarizes all device instances used
in the design along with any attributes attached to those device
instances. The format of the Bill of Materials is a 2D table with
one row per device and one column for each unique attribute.

The Reference Designator Mapping Document lists all of
the device instance names and their respective reference desig-
nators for layout-driven manual back-annotation or debugging.

A part of the syntax of the PHDL language allows for the
designer to add comments or informational statements about
the various structures in the design (designs, sub-designs,
instances, and nets). The Layout Supplementary Information
Document is a text document that compiles all these comments
and information statements into a readable form for the layout
engineer.

Figure 4 shows the PHDL tool flow. The front end (lexer,
parser, AST, and tree parser) is built on the ANTLR frame-
work (a compiler creation framework) [2][3]. The back end
(analyzer/generator) is custom-written Java program code. In
addition to creating a netlist and other files for transmission to
the physical layout tools, the compiler can also be instructed
via command line switches to create an XML representation
of the parsed PHDL data structure for processing by custom
tools.

2

Lexer Parser PHDL
source

Tree
Parser

Abstract Syntax
Tree (AST)

Analyzer /
Generator

Command
line switches

Output
files

ANTLR framework

•  Net List
•  Bill of Materials
•  Component List
•  Layout Considerations
•  XML
•  Tool-specific Scripts

$java phdl.Compile <file_name>.phdl [switches]

Fig. 4. The PHDL CAD Tool Flow

G. PHDL and High Pin-Count FPGA Devices

FPGAs present many challenges to PCB design for a
number of reasons. First, they typically have hundreds of
pins which must be declared in a device declaration and then
mapped to wires when the FPGA is instantiated. Second, most
of their pins are reconfigurable and may frequently change
during the design process, requiring both device declarations
as well as instantiations to be changed frequently until the
design stabilizes.

As previously mentioned, it is difficult to express an instance
of an FPGA on a single schematic page while maintaining
meaningful circuit context with surrounding hardware. Break-
ing up a graphical instantiation of an FPGA device to span
multiple schematic pages further exacerbates the problem.
However, the equivalent FPGA instantiation written in PHDL
is extremely compact, especially if many of the pins are
declared as bit vectors. Program IV.7 shows an actual FPGA
instantiation which is surprisingly compact given it contains
some 98 user pins in addition to 46 power, ground, and
configuration interface pins.

Additionally, FPGA tools already generate many report files
that describe how an HDL FPGA design is synthesized, placed
and routed, and how its inputs and outputs are constrained to
particular I/O sites [4]. Perhaps less widely known in the PCB
community is that these reports contain configuration-specific
information about every pin on the FPGA, including how all
of the top-level design ports (and their corresponding wires)
are bound to specific I/O sites.

Program IV.7 An FPGA Instance in PHDL

inst my_fpga of fpga {
// map all of the power and ground pins to signals
// angle brackets replicate a one-bit-wide net
vcco = <vcco_net>;
vccaux = <vcc_aux_net>;
vccint = <vcc_int_net>;
gnd = <gnd_net>;

// map all of the configuration pins
cclk = cclk_net;
done = done_net;
tck = tck_net;
tms = tms_net;
tdi = tdi_net;
tdo = tdo_net;
prog_b = prog_b_net;
m0 = m_net[0];
m1 = m_net[1];
m2 = m_net[3];
hswap_en = hswap_en_net;

// map all of the user (reconfigurable) pins
clk_100 = clk_100;
out_data[31:0] = data_out_bus[31:0];
in_data[31:0] = data_in_bus[31:0];
w_en = w_en;
r_en = r_en;
leds[7:0] = led_net[7:0];
switches[7:0] = sw_net[7:0];
buttons[3:0] = btn_net[3:0];
segments[6:0] = seg_net[6:0];
digit_sel[3:0] = anode_net[3:0];
dp[3:0] = dp_net[3:0];

}

The information in these report files can be used to automat-
ically generate a device declaration for a given FPGA and an
instantiation template, both of which greatly reduce the typing
required by the designer. As the FPGA design changes or I/O
pins are moved to different locations, the device declaration
and instantiation template can be re-generated and an updated
netlist immediately forwarded to the the physical layout tools,
often without manual intervention or modifying the PHDL
source. Program IV.8 shows a small portion of the generated
pinout file from the Xilinx ISE tool flow.

The portion of the file given shows a total of eleven pins,
eight of which are assigned to LEDs. The other pins are the
FPGA clock, a ground pin, and an unused pin (P58).

To leverage this information, a utility called csv2phdl has
been developed that reads this file, and automates the process
of creating the FPGA device declaration. A portion of the
corresponding output from the csv2phdl tool is shown in the
code fragment of Program IV.9. Note that the package and
library attributes are set to a placeholder value, so that the
user may customize them to reflect actual device libraries and
footprints in the layout tool of their choice. Also, only one
GND pin was shown in the CSV file, but csv2phdl accounted
for all occurrences in the entire file and consequently generated
a GND bit vector in the declaration. When this FPGA is
instanced, all of the pins in the GND pin array may be assigned
to the ground net using the replication syntax in Program IV.7,

Program IV.8 Partial Pinout From ISE

...
#INPUT FILE: top_bldc_map.ncd
#OUTPUT FILE: top_bldc_pad.csv
#PART TYPE: xc3s400
#SPEED GRADE: -4
#PACKAGE: tq144

...
Pin Number,Signal Name,Pin Usage,Pin Name,...

...
P50,leds<7>,IOB,IO_L31P_5/D5,OUTPUT...
P51,leds<6>,IOB,IO_L31N_5/D4,OUTPUT...
P52,clk,IOB,IO_L32P_5/GCLK2,INPUT...
P53,leds<5>,IOB,IO_L32N_5/GCLK3,OUTPUT...
P54,,,GND,,,2,,,,,2.50,,,,
P55,leds<4>,IOB,IO_L32P_4/GCLK0,OUTPUT...
P56,leds<3>,IOB,IO_L32N_4/GCLK1,OUTPUT...
P57,leds<2>,IOB,IO_L31P_4/DOUT/BUSY,OUTPUT...
P58,,DIFFS,IO_L31N_4/INIT_B,UNUSED...
P59,leds<1>,IOB,IO_L30P_4/D3,OUTPUT...
P60,leds<0>,IOB,IO_L30N_4/D2,OUTPUT...

...

greatly simplifying how connectivity is expressed for an oth-
erwise repetitive task.

Program IV.9 Partial FPGA Device Declaration

device top_tq144 {
attr refPrefix = "U";
attr package = "myPkg";
attr library = "myLib";
...
pin[7:0] led = {P50,P51,P53,P55,P56,P57,P59,P60};
...
pin[15:0] GND = {P54, ...};
...

}

In addition to the initial generation of the PHDL device
declaration as shown, changes made in the HDL can be prop-
agated from the embedded FPGA HDL code to the netlist, and
PCB layout. This is important because HDL ports frequently
need to be remapped to other pins as the design evolves. To
illustrate the advantages of this refactoring process, a small
data bus port of the FPGA device declaration is shown in
Program IV.10.

As shown, the 4-bit data pins in PHDL were initially as-
signed to the comma-separated list of pins in the FPGA device,
which were created in Xilinx PlanAhead. To alleviate routing
congestion in the board layout immediately surrounding the
FPGA, several pins were later swapped inside the FPGA
I/O constraints file with Xilinx PlanAhead. The csv2phdl
utility completely automated the process of generating a new
FPGA device declaration to propagate the changes through the
PHDL with an updated netlist, and into the layout tool. The
resulting new device declaration for the FPGA is shown in

Program IV.10 FPGA Device Declaration

device top_tq144 {
attr refPrefix = "U";
attr package = "tq144";
attr mfgr = "XILINX";
attr partNumber = "xc3s400-4tq144";

// User I/O pins.
pin[3:0] data = {P18,P17,P15,P13};
...

}

Program IV.11.

Program IV.11 Refactored FPGA Device Declaration

device top_tq144 {
attr refPrefix = "U";
attr package = "tq144";
attr mfgr = "XILINX";
attr partNumber = "xc3s400-4tq144";

// User I/O pins.
pin[3:0] data = {P13,P15,P17,P18};
...

}

H. PHDL in a Realistic Design

As an example of the use of PHDL, a proof of concept
board design was captured using the PHDL language, a netlist
generated, and the physical design then done using EAGLE
PCB. The design consists of a multi-axis 32-bit precision
motor controller based on a Xilinx Spartan-3 400K FPGA.
It has 1MB (512Kb x 16) of on-board RAM and a 2MB
flash PROM to store the FPGA configuration. In addition
to H-Bridge drivers for brush-motor control, the design also
contains circuitry for 2 brushless motor drives. All axes can
operate under fully parameterized closed loop Proportional-
Integral-Derivative control using high resolution quadrature
encoder feedback. The concept board communicates with a
host application developed in C# using simple RS232 com-
mands. The top layers of the finished board are shown in
Figure 5.

As with any FPGA-centric board, a significant amount of
time was spent choosing appropriate FPGA I/O pin constraints
to satisfy routing congestion and keep the overall board
size to a minimum. With the aid of the csv2phdl utility to
automatically generate PHDL device declarations from the
Xilinx tool flow, several I/O pin location arrangements were
easily tested to find one that minimized board level routing
congestion.

The finished board was approximately 4 × 6 inches in size,
had 4 layers, and contained about 200 components. The first
batch manufactured were assembled, tested and found to be
fully functional and are currently in use at Brigham Young
University.

Fig. 5. Motor Controller Board Created Using PHDL

V. CONCLUSION

This paper has presented the use of an HDL for PCB
design, argued and also illustrated by way of example the
many advantages an HDL has over graphical schematic entry.
In addition, it has introduced PHDL, a new special-purpose
HDL for doing PCB design and given some examples of its
syntax and structure. A proof of concept board design using
PHDL was also described.

The PHDL compiler has been released open source at
“http://phdl.sourceforge.net” where either the complete source
code or a pre-compiled version of the tool can be downloaded.
As it is written in Java, the PHDL compiler will run on any
Java-compatible computer. The csv2phdl tool, a tutorial, and
set of sample designs are also available at the SourceForge
site.

The current version of the PHDL does not contain all of the
features described as advantages of HDL’s for PCB design in
Section III. In particular, future work to be completed includes:

• The creation of an Eclipse plug-in to take advantage
of all the IDE capabilities described above (cross prob-
ing, content assist, syntax highlighting, real-time syntax
checking).

• The creation of DRC, ERC, and linting tools.
• Adding support for additional physical layout tool netlist

formats.
• Adding support for back-annotating design changes made

by the layout engineer back into the PHDL source code.
• The creation of additional analysis and automation tools

for PHDL designs.

REFERENCES

[1] Hardware Description Language. [Online]. Available: http://en.wikipedia.
org/wiki/Hardware description language

[2] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Bookshelf, 2007.

[3] ——. What is ANTLR? [Online]. Available: http://www.antlr.org/
[4] Xilinx. Verifying Pinout. [Online]. Available: http://www.xilinx.com/

support/documentation/sw manuals/xilinx11/ise c report pinout.htm

