
Sandia is a Multiprogram Laboratory Operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy

Under Contract DE-ACO4-94AL85000.

Ideas for Future
High Performance
CPU and System
Architectures

Ideas for Future
High Performance
CPU and System
Architectures

Dave Resnick
Sandia National Laboratories

SAND2012-1717C

Mar 2012 2

Starting Out: Today’s Limits

• Board- and cabinet-level power

• Difficulty in parallelizing applications

• Low efficiencies and high overheads make for usage
complexity and lower than desirable performance

• Memory and IO scalability: bandwidth and size

• High-overhead communication and data sharing

• Easier to create complexity to support old ways of doing
things than to say “Enough!” and find ways forward that
make breakthroughs while supporting current workloads

We are not in the 1970s. Our capabilities have increased by more
than a million times. Requirements have increased even further.
Why accept limits or ways of doing things established then?

What follows is a fairly spare outline of some
basic ideas. There are lots of additional thoughts,
insights, and additional details above what is
presented here. Welcome NDAs, if needed, to support
deeper technical interactions. Lets talk!

There are many possibilities—and opportunities—to
establish roadmaps to reasonably (if not totally easily)
move into the future, using the ideas presented here as
goals and suggested new ways to do things

There needs to be general co-design at all levels to
fully develop these ideas and to integrate with other
ideas, requirements, and goals

Mar 2012 4

Ideas for Moving Ahead

• Make systems memory-centered rather than CPU centered

• Put new functions into memory systems to support
parallelism and execution efficiency; include NV memory

• Extend system addressing to cover all sources of processing
capabilities: cores, threads, network functions, IO, memory
parts… so can greatly increase efficiency and lower overhead

• Replace CPU chip caches with a more general memory that is
internally intelligent and is controllable by user applications

• Make CPU implementations much more efficient with
multi-thread cores and new internal organizations

• Make data sharing and communication (including coherency
operations) much easier, and with low latency and reduced
energy

Mar 2012 5

Memory System

• Micron HMC (Hybrid Memory Cube) technology breaks
through the memory wall (100x bandwidth per component!)
and provides opportunities for new memory functions

 Memory Atomics greatly improve some coherency operations

 Memory Moves (including Gather/Scatter, Transpose, etc.)
for increased parallelism and processing efficiency

 Low-overhead resiliency functions (CubeKill, ModuleKill, auto-
recovery operations), including recovery from path failures

 Coherency and communication capabilities to make those
functions easier, faster, and lower energy

 Should be reasonable to include some processing capability

 Easy memory scaling (to terabytes connected to a CPU with
small energy impact for increased size—less than linear increase)

 Bring non-volatile memory to up to 1st level integration and
functionality with DRAM memory

Mar 2012 6

Local Memory Store Replacing Caches

LMStr* eliminates cache issues and offers new functions

• Memory functions
 Scratch

 Cache

 Message/data source and destination (no main memory copies)

 Shared/Private as needed

• Application controlled—both for amount of memory per
process and for functionality.

• Ability to ‘go around’ LMStr to directly address main memory
(eliminate ‘use once’ references to cache so don’t contaminate
local memory still in use)

• Built-in error detection and auto-recovery. Memory failures
automatically removed from operation (generally with no
impact on users)
*Sandia Conceptual Design

Mar 2012 7

Easy Communication: MCCU

Management, Communication, Coherency Unit*

Start by upgrading system addressing to include thread-level
components

• Upgrade address capability so can send signal flags directly
between processes.

• Include multiple ‘signal blocks’ in CPUs that remote processes
can activate. Receiving processes can test signal state. Also, a
signal going set can cause a branch to a handler function, if
enabled. No interrupts, no polling for coherency!

• Some signal blocks used to determine when multiple other
instructions (generally memory operations) are complete and so
safe to continue. Example: Can indicate to another process that
needed memory operations are complete and so safe for the
receiving process to access.
*Sandia Conceptual Design

Mar 2012 8

Efficient CPUs: SR-S, SR-P

Shared Resource–Serial, Shared Resource–Parallel

• Support multi-threaded implementations so can have CPU
efficiencies approaching 100%--Most all execution cycles used

• Capability of many threads in execution; AND have the same
hardware support fewer but much more powerful processes,
as needed—and change very quickly.

Fewer but more
Many processes powerful processes Mixed processes

Same hardware,
same total compute capability

Mar 2012 9

CPU Design Objectives

• A design that is very latency tolerant for processes/threads

• Implement so that each single process can have a good range
of performance—as needed at each application time period

• Support process ‘swapping’ on a clock cycle basis

• Easy data sharing and sharing management

• Do things in a way that support existing applications, but
with significantly increased performance and with reasonable
opportunities for upgrading those applications

• Plan, with the other architecture ideas, for the total being
greater than the sum of the parts—everything works together

• Plan for scalability and with the future in mind

Mar 2012 10

SR-S Simplified Block Diagram

…

…

Functional
Units

Instruction Results

Responses

Memory, IO Requests

1 Process

Processes execute round-robin,
skipping those inactive. Some
functions and capabilities not
shown

Colored processes
are executing; uncolored
processes are ready or are
being loaded or unloaded

Starts from the CDC 6600 Peripheral Processor concept, 1964

Mar 2012 11

SR-P Simplified Block Diagram

Result &
Source

Mux

Function
Unit A

Function
Unit B

Memory &
External
Interface

Requests &
Write Data

Responses &
Read Data

Execution
Buffers

Q A

Q B

Q R

Register
Files

Instruction
Dispatch

Instructions

Instruction
Requests
to I-Store

Instructions
From I-Store

Register File
Reads

Dispatch interleaves multiple
instruction streams as needed

Execution buffers hold
instructions for execution,
waiting for operands

If an instruction is held up, only
a single entry in one execution
buffer waits

Similar to concepts shown by Bill Dally, then at Nvidia.
There has also been other, previous work.

Mar 2012 12

CPU-centered vs. Memory-centered

CP
U

CP
U

CP
U

CP
U

MEM

MEMMEM

MEM

Network and/or interconnect
to other clusters

MEM

P

MEM

P

MEM

P

MEM

P

CPUCPU

CPUCPU

Network and/or interconnect
to other clusters Network

Network

The Memory System
IS the Network

Mar 2012 13

Benefits of Memory-centering

• Easier to understand and to manage

• Enables easier implementation of generalized memory
functions (Moves, Gather/Scatter for sparse matrix ops, etc.)

• Can provide memory scaling separate from CPUs and CPU
boards and packaging

• Enable easier and lower overhead data sharing and data
management

• Can offer increased resiliency as needed (like easier
checkpoint functionality)

• Basis for network abstraction: everything in a network is
addressable—with a single protocol and interface

Mar 2012 14

More at the System Level

• Make a single system-wide abstract communication protocol.
CPUs, IO, all memory components (DRAM, Flash/NAND, PCM,

FeRAM, …), network functions, etc. use the same interface and
protocol. No such thing as an ‘IO channel’ or ‘Memory
channel’ visible to the network

Don’t send: “Activate, Read, Read, Read, Read, Precharge” to a DRAM

Send: “Read N bytes”

The DRAM has intelligence and knows what to do

• Use the example of HMC technology (built-in ECC) and build
resiliency into most everything and make error recovery local

• Integrated CPU/GPU heterogeneous nodes have costs as well
as benefits, and will raise scaling and overhead issues in the
future.

Mar 2012 15

Benefits of the Architectural Features

• Reduced amount of data movement

• Greatly reduced number of interrupts

• Reduced amount of hardware as the higher efficiency gets
more done in less space

• Reduced latency in sharing and coherency operations

• Easier parallelism in multiple functions will reduce effort and
complexity in use. Much easier fine-grained parallelism

• Significant improvements available in system resiliency

• Increased usage flexibility will enable better performance in
a higher percentage of applications

Reduced total energy, increased ease of use, higher
performance

Mar 2012 16

And Finally

• What is proposed here is a revolution.
• It is also—and must be—the basis for evolution
• Nothing proposed here automatically breaks current

applications. Cache still functions, interrupts still happen,
messages get delivered.

• Current applications should actually speed up, even if they
take no advantage of the new functions. Examples:

 Much more memory and memory bandwidth

 Parallelism is supported more effectively and with lower
overhead

 Processes will not cause cache misses in other processes

• The new functions are independent of each other and can be
taken advantage of over time and as needed

Questions and Discussion?

