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ABSTRACT
Fault-tolerance is a major challenge for many current and
future extreme-scale systems, with many studies showing it
to be the key limiter to application scalability. While there
are a number of studies investigating the performance of
various resilience mechanisms, these are typically limited to
scales orders of magnitude smaller than expected for next-
generation systems and simple benchmark problems. In this
paper we show how, with very minor changes, a previously
published and validated simulation framework for investi-
gating application performance of OS noise can be used to
simulate the overheads of various resilience mechanisms at
scale. Using this framework, we compare the failure-free per-
formance of this simulator against an analytic model to vali-
date its performance and demonstrate its ability to simulate
the performance of two popular rollback recovery methods
on traces from real HPC workloads, showing how perfor-
mance can vary dramatically both with scale and the com-
munication behavior of the application.

1. INTRODUCTION AND BACKGROUND
Reliability is a key challenge in the design of future extreme-
scale high performance computing (HPC) systems. As these
systems continue to grow dramatically in size and complex-
ity, they are becoming less reliable. In fact, failures are
predicted to go from the current state of several failures per
day [17,27–29,31] to multiple failures per hour [7].

Fault-tolerance for HPC systems and distributed systems in
general has been studied for several decades. Although many
techniques have been proposed, checkpoint/restart remains
the most commonly used technique [6]. The prevalence of
checkpoint/restart is due to a number of factors: failure is
a relatively rare event, checkpointing is easy to integrate in
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an application’s computation because applications are gen-
erally self-synchronizing, and application state can be saved
and restored much more quickly than a given system’s mean
time to interrupt (MTTI). These factors have kept the over-
heads of traditional checkpoint/restart on current systems
relatively low.

The assumptions on which checkpoint/restart rests are un-
likely to be true in future generation systems, however [8,20,
27], prompting a wide range of recent research optimize roll-
back/recovery protocols. These optimizations range from
memory-based coordinated checkpointng schemes [19,21,30]
to asynchronous checkpointing schemes with message log-
ging [1, 2, 11,12,24].

All of these techniques involve complex trade-offs, and un-
derstanding these trade-offs at the scales expected in next-
generation systems is vital to evaluating their suitability.
Unfortunately, it has been difficult to evaluate proposed re-
silience methods at the scales expected on future systems,
and so their true overheads are not known. Additionally,
evaluations have generally been limited to microbenchmarks
rather than production workloads. Both of these are because
system time on leadership-class machines is difficult to ob-
tain, and future systems are expected to be much larger than
any machine currently in existence.

In this work, we show how the performance of new resilience
techniques can be simulated at large scale on production
workloads through minor changes to an existing validated
simulation framework. In particular, we show that novel
resilience techniques can generally be accurately modeled
as detours in a simulator originally designed for investigat-
ing the impact of OS noise (or jitter) on application per-
formance. We demonstrate this approach by validating it
against an analytic coordinated checkpointing model [3]. We
also show how it can be used to evaluate the performance
of two popular rollback/recovery methods in scenarios that
were previously not easy to evaluate – showing that the
application’s communication behavior can have a dramatic
impact on a method’s efficiency. Due to space limitations,
we focus our evaluation in this paper on failure-free perfor-
mance. However, the framework is also capable of simulating
performance in a faulty environment.

The organization of this paper is as follows: in the follow-
ing section we describe the design and implementation of
our contributions to this exiting simulation framework as
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well as how we evaluate its performance. In Section 3 we
validate the failure-free performance prediction capabilities
of this framework against a simple analytic model. In this
section we also evaluate the performance of two popular roll-
back/recovery methods on real production HPC workloads,
showing how an application’s communication properties can
significantly influence efficiency. We discuss related work
in Section 4. We conclude in Section 5, summarizing our
contributions and discussing avenues of future research.

2. APPROACH
2.1 Overview
To evaluate the impact of resilience mechanisms on HPC
applications at scale, we augment LogGOPsim, a previously
published [15] and freely available [32] simulator. LogGOPsim
is based on the popular LogP model. LogP and its variants
have a long history of accurately predicting the performance
of large-scale parallel applications and algorithms. The sim-
ulation framework consists of three major components: a
trace collector, a schedule generator, and an optimized Log-
GOPS discrete-event simulator. The trace collector records
the actual MPI communication of the target application.
The schedule generator uses the MPI traces to generate a
schedule that captures the control- and data-flow of the ap-
plication while preserving the happens-before relationships
within the application. The LogGOPS discrete-event simu-
lator reads the generated schedule, performs a full LogGOPS
simulation and reports the end times for each process.

This validated simulation framework was developed to sim-
ulate applications at scale. It has the ability to extrapolate
traces collected on smaller scale systems. This allows for the
simulation of platforms larger than those currently in exis-
tence while keeping the same communication characteristics
(equivalent to weak-scaling of the application). This power-
ful framework has been shown to be capable of simulating
a single collective operation over up to 10 million processes
and applications on up to 64 thousand processes on a single
CPU. It has been used to evaluate the performance of collec-
tive communications [16] and the impact of OS noise [14] on
large-scale applications. A detailed study of the simulation
framework and its functionality is presented in [15].

The key insight that allows us to use the LogGOPsim simula-
tor is that resilience mechanisms (e.g., writing checkpoints,
restart, rework) can be modeled as CPU detours: cycles used
for something besides the application, similar to OS noise.
One key difference between OS noise and these resilience de-
tours that our work must address is that “noise” events must
be replayed synchronously with the application communica-
tion/computation pattern rather than in the asynchronous
manner of typical OS noise.

2.2 Libsolipsis

We model resilience in LogGOPsim using a new library, lib-
solipsis that generates CPU detours based on a specified
resilience mechanism and the application’s communication
pattern. The library links to the application using the MPI
profiling layer, intercepting all MPI calls. The output of this
library is a per-process detour file that can be provided as
input to LogGOPsim. The detour files contain the timestamp
and the duration of each of the resilience detours. Detours

generated by this library might include writing a checkpoint,
writing a message log entry, or simulating a failure1.

For the purpose of this work, we focus on the libraries’ abil-
ity to emulate failure-free performance of two popular re-
silience mechanisms: coordinated checkpointing and asyn-
chronous checkpointing with message logging [6]. We focus
on these on these two methods because coordinated check-
point/restart is currently the most popular approach and
asynchronous checkpointing has been proposed as a low-
overhead checkpoinint option for future extreme-scale sys-
tems.

For asynchronous checkpointing with message logging, our
library writes the timestamp and the duration of the local
checkpoints. In addition, the library must handle the logging
of messages to stable storage. For pessimistic message log-
ging [6], we modify the CPU overhead parameter (o in the
LogGOPS model) for send operations (os) to account for
the write to stable storage. For optimistic message logging,
we write the time and duration of writing to the message
log, if any, in the detour file. The LogGOPsim simulator uses
a single detour file to simulate asynchronous checkpointing
across all of the nodes in the system.

For coordinated checkpoint/restart, the library only writes
the timestamp and the duration of each checkpoint taken
by the application. When the simulation is run, we use the
“--noise-cosched”option of the LogGOPsim simulator. This
option ensures all detour files are co-scheduled on all proces-
sors, thereby simulating coordinated checkpoint/restart.

Although we only present failure-free performance of re-
silience mechanisms here, the library can also simulate node
failure. To simulate failure, the library generates failure
times for each node from a random distribution based on
a per-node mean time between failure (MTBF). When a
failure is generated, the library adds a detour event that in-
cludes the the time required to restart from the last check-
point and the time required for rework (i.e., the time since
the last checkpoint). The LogGOPsim simulator will ensure
that all communication in the trace file that depends on
the failed node will be delayed until the node has “recov-
ered”. The library can also simulate hybrid or hierarchical
approaches (e.g., [12]) that apply one resilience approach
within node clusters and a different resilience approach be-
tween the clusters.

2.3 Test Environment
To validate the performance of this simulation framework
and to motivate the importance of this framework, we eval-
uated the performance of two widely used rollback/recovery
based mechanisms. We present results for: two key HPC
applications, CTH [5], a shock physics simulation code, and
LAMMPS [22, 26], a molecular dynamics simulation code;
and one microbechmark HPCCG [25], a conjugate gradi-
ent solver. All of these applications were developed at San-
dia National Laboratories. They represent important HPC
modeling and simulation workloads. They use different com-
putational techniques, are frequently run at very large scale,

1In the case of a failure, the duration of the detour includes
both the restart and rework time on the failed node.



sometimes for weeks at a time, and are key simulation ap-
plications for the US Department of Energy. These applica-
tions also contain easily-adaptable checkpoint mechanisms
that will be used in this work.

The application and resilience traces for this work were col-
lected by running these three applications on 128 nodes of a
Cray XE6 machine. The simulations were run on the same
platform. For the simulation runs, we use the LogGOPS pa-
rameters as measured using the netgauge benchmark [13,33]
on the XE6 platform. In the case of coordinated checkpoint-
ing, we simulate an aggregate filesystem bandwidth of 256
GB/s. For the asynchronous case, each node can write to
the filesystem at 2 GB/s. Finally, for all of the results in this
paper, we simulate a low-noise environment (e.g., the Blue-
Gene/L [4, 34] family of supercomputers) by only injecting
detours arising from the resilience mechanisms.

3. RESULTS
We demonstrate this approach in two different ways: First,
we validate the simulation framework described in the pre-
vious section against a simple analytic model of coordinated
checkpoint performance. Second, we demonstrate its ability
to simulate the impact of different resilience strategies on
system performance in failure-free cases at scales and using
workloads that were previously challenging to evaluate.

3.1 Validation Against an Analytic Model
We first validate the failure-free coordinated checkpointing
performance of this simulation framework against a simple
analytic model. Equation 1 presents a simple failure-free
analytic model of application performance with coordinated
checkpointing and shared stable storage. The total wall
clock time is computed as the time required to solve the
problem without interruption plus the time to take each of
the required checkpoints.

Tw = Ts +
Ts

τ
× δ (1)

Tw is the wall clock time, in this case without failures, Ts

is the solve time of the application without any resilience
mechanism, τ is the checkpoint interval [3], and δ is the
checkpoint commit time (time to write one checkpoint). For
coordinated checkpointing to shared stable storage, we can
express the checkpoint commit time as:

δ =
N ∗ ||cavg||

β
(2)

where N is the number of nodes, ||cavg|| is the average check-
point size per node, and β is the aggregate write bandwidth
to stable storage.

Figure 1 compares this simple model with the output of
the simulator. The model and the simulator use identical
values for Ts, τ , and δ. For the simulator, we use the Log-
GOPS parameters as measured on a Cray XE6 platform
using netgauge. The simulation data is based on a commu-
nication trace from CTH. In the figure we see that the sim-
ulation framework wall clock time differs by approximately
10% for these parameters. Overall, however, the simulator
accurately matches the shape of the performance curve of
this simple model with relatively low error. This suggests
that the simulation framework can be used to accurately
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Figure 1: Comparison of the the analytic model de-
scribed in Equation 1 with the simulator for coor-
dinated checkpointing to stable storage in a failure-
free environment. Both the model and the simulator
use identical values for Ts, τ , and δ

predict application performance of resilience mechanisms at
scale.

3.2 Rollback/Recovery Performance at Scale
Because resilience interacts with application communication
and computation, different resilience mechanisms may have
unexpected performance impacts on applications at scale.
We note that this is similar to the previously unexpected
impact of OS noise LogGOPsim was originally designed to
study. In this section, we demonstrate the use of the mod-
ified simulation framework to analyze such interactions for
two popular rollback/recovery mechanisms for real applica-
tion traces at non-trivial scales.

Specifically, we measure the failure-free performance at scale
of coordinated checkpointing to shared stable storage with
uncoordinated checkpointing to node-local storage for LAM-
MPS, CTH, and HPCCG. The metric we use for this eval-
uation is application efficiency. Efficiency is defined as the
percentage of time spent in the application performing com-
putation for the problem. This excludes time spent on the
resilience mechanism, rework, dealing with failures, etc. For
example, suppose we have an application whose solve time
is 90 time units without interruption. If the addition of a re-
silience mechanism causes the application’s time-to-solution
to increase to 100 time units, the efficiency of the application
would be 90

100
× 100, or 90%.

In our tests, we take significantly more checkpoints than
would we expected at these scales. The reasoning behind
this is that we intend to use the simulator to evaluate the in-
fluence of scale and communication patterns on application
performance. This may give us some insight into applica-
tion performance in a large-scale, failure-prone environment.
We also keep the checkpoint interval constant independent
of node count. Lastly, the coordinated checkpointing check-
points are written to a shared store with an aggregate check-
point commit bandwidth of 256GB/sec. For uncoordinated
checkpointing we assume each node has a checkpoint commit
bandwidth of 2GB/sec.

Figure 2 shows the efficiency of these two resilience tech-
niques using production workloads LAMMPS and CTH, and
the microbenchmark HPCCG. Each of the techniques in
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(a) Coordinated Checkpointing
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(b) Uncoordinated Checkpointing

Figure 2: Coordinated and Uncoordinated checkpointing efficiency (the percent of time spent performing
work for the application and and not the resilience mechanism) using the simulator for CTH, LAMMPS, and
HPCCG. Each of these mechanisms is using the same checkpoint interval and checkpoint size per process.
These simulations show performance an environment where checkpointing needs to be done frequently. For
coordinated checkpointing checkpoints are written to a shared aggregate checkpoint commit bandwidth of
256GB/sec. For uncoordinated checkpointing we assume each node has a checkpoint commit bandwidth of
2GB/sec. We see from these simulations that coordinated checkpointing has a significant negative impact on
application efficiency the grows as systems increase in size. We also see that asynchronous checkpointing has
a significant negative impact on application efficiency for CTH and HPCCG. Although the trend suggests
that the rate of decrease in efficiency tapers off for very large systems, there is a significant decrease in
efficiency for systems that are larger than the small systems that are typically available for evaluation. In
contrast, LAMMPS exhibits only nominal decreases in application efficiency.

these figures are using the same checkpoint interval and
checkpoint size per process. For the coordinated check-
pointing results in Figure 2(a), we assume all checkpoints
are written to shared a shared stable storage which has an
aggregate commit bandwidth of 256GB/sec. For the unco-
ordinated results in Figure 2(b), we assume each node has a
checkpoint bandwidth of 2GB/sec. For the coordinated re-
sults, we see the predictable dip in efficiency at larger node
counts. This dip occurs for all applications and is gener-
ally independent of an applications communication pattern.
This dip in efficiency is due to the fact that the nodes write
to shared storage. As node counts increase, so does data
being concurrently written to the shared storage, thereforie
performance is degraded. In ranges outside of those speci-
fied here, efficiency drops precipitously, rapidly approaching
0% efficiency.

The uncoordinated results in this figure are more interest-
ing. First, the overheads of the uncoordinated approach are
much higher at smaller node counts than coordinated. Also,
the applications communication pattern greatly influences
the efficiency of this technique. For example, CTH, which
does a good deal more bulk data transfer and collective com-
munication, sees much lower efficiency than HPCCG. And
both of these workloads do much more communication and
collective communication than LAMMPS, which sees nearly
constant overheads from this uncoordinated approach over
the range tested.

These results point directly to the importance of this simu-
lation framework as a number of factors must be considered
when determining the most efficient resilience technique. In
previous work, scale is typically the only factor considered.
As we can see, both scale and an application communication
behavior must also be considered.

4. RELATED WORK
Significant effort has been devoted to developing strategies
that reduce the overhead of traditional coordinated check-
pointing as systems grow larger. However, evaluation of
these approaches has been on systems that are significantly
smaller than even today’s largest systems. Our approach al-
lows for a more thorough evaluation of how these proposed
improvements scale as systems grow toward exascale.

Many approaches have been proposed that eliminate the
coordination overhead by allowing processes to checkpoint
independently. For example, Bosilca et al. [1] propose an
elaborate solution using uncoordinated checkpointing and
pessimistic message logging. They evaluate their approach
on a 130-node system and present results for applications
running on 9, 16 and 25 nodes. The authors extend this
work to use sender-based message logging in [2]. Their eval-
uation is conducted on a 32-node cluster. Guermouche et
al. [11] leverage send-determinism to reduce the number of
messages that must be logged. They evaluate their approach
on several systems, the largest of which is composed of 1024
nodes.

A common problem in coordinated checkpointing is con-
tention for access to the global filesystem. Many solutions to
reduce this contention have been proposed. Moody et al. [19]
propose multi-level checkpoints. This approach stores the
most recent checkpoints on the compute nodes. Older check-
points are moved to global filesystem. They show that, in
most cases, recovery from the failure of a single node can be
accomplished with local checkpoint data. To evaluate the
effectiveness of their approach they use several systems, the
largest of which was composed of 1024 nodes.

Our approach builds upon efforts to understand the effects of
system noise. Hoefler et al. [14] use the LogGOPsim simulator



to explore the effect of recorded system noise on the perfor-
mance of several scientific applications. Ferreira et al. [9]
inject synthetic noise in a low-noise environment to charac-
terize the effect of frequency and duration of noise events on
several production workloads. Although these efforts form
the foundation of our contribution, we model a distinct set
of behaviors in distributed systems.

5. CONCLUSIONS AND FUTURE WORK
In this work, we presented a novel method for simulating
the impact of resilience techniques on production workloads
running on large-scale systems. In particular, we showed
that the behavior of resilience techniques can be accurately
modeled as detours in a simulator originally designed for
investigating the impact of OS noise on application perfor-
mance. We validated the predictive ability of this simula-
tion framework by comparing it to an analytic coordinated
checkpointing model [3]. Finally, we used this framework to
evaluate the performance of two popular rollback/recovery
methods on production HPC workloads. Our results illus-
trate that the communication properties of an application
can significantly alter the impact of resilience strategies on
application efficiency. For example, the effect of using un-
coordinated checkpointing on the efficiency of LAMMPS is
significantly different than its impact on the efficiency of
CTH.

While the results in this work are important, there are sev-
eral avenues of promising future work. First, while the coor-
dinated and uncoordinated checkpoint strategies considered
in this work are important data points, there are a num-
ber of optimizations to these approaches that attempt to
significantly improve application performance [8, 10–12, 18,
19, 23, 24]. Integrating these approaches into libsolipsis

will be important for evaluating the efficiency of resilience
mechanisms at scale. Second, in this work we focused solely
on failure-free application performance. Evaluating perfor-
mance in the presence of failures will be key to determin-
ing the proper resilience strategy for extreme-scale systems.
Third, we need to evaluate performance for the larger scale
systems expected in the future. Additionally, LogGOPsim al-
lows us to investigate how various LogP model parameters
can influence performance. This might provide insight on
which architectural features would improve performance of
future systems. Lastly, libsolipsis is in the process of
public release at Sandia National Laboratories. Once this
process is complete, we hope the LogGOPsim developers see
the merit of this work and decide to distribute it with their
simulation framework.
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