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EOS poses a stringent challenge for calculations 

• Calculate Be HCP-> BCC phase 
transition pressure with
LDA+QHA

• What is sensitivity of 
transition?
– Make constant shift of EBCC(V)

• Transition pressure changes 
from 350 GPa to 525 GPa with 
a 1 kcal/mol shift

• Chemical Accuracy is not good 
enough!

• Note zero point energies were 
an order of magnitude larger!
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A wide variety of physics must be accurately calculated

• Van der Waals forces

• Localization vs delocalization

• Kondo physics

• Charge transfer

• Chemical Reactions

Cerium Phase diagram

Elkin et al. PRB 84, 094120 (2011)

Xe isosurfaces

Tkatchenko et al PRB 78, 045116 (2008)
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Localized d-orbital in FeO
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Diffusion Monte Carlo solves many of these problems

• Direct, stochastic solution of the many body Schrodinger equation

• Must recast integrand as a probability distribution
– Probability distributions must be positive everywhere
– Wavefunction is not positive definite!
– Restrict sampling using nodes of trial wavefunction

• Highly accurate calculations of the properties of condensed phases are possible
– Electron Gas
– Van Der Waals solids
– Localized d-electrons
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DMC is not as mature as DFT

• Calculations of condensed phases involve a variety of approximations
– Most approximations may be made arbitrarily small, but approaches to this are not 

standardized

• Finite size effects
– One body effects  -> DFT comparison or twist averaging
– Two body effects -> Extrapolation, KZK functional or MPC / Chiesa combination

• Fixed node errors
– Slater jastrow wavefunction, self healing, backflow, geminals, pfaffians, multideterminants

• Pseudopotentials
– Only valence electrons simulated because of computational cost
– In which approximation should core and valence be separated
– Correction via all electron calculation or comparison with all electron DFT
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Impact of approximations

• Case study with Si

• Total energies of diamond and beta-Sn
phases calculated with DMC / LRDMC

• Quasiharmonic phonon corrections included

Sorella et al.  PRB 83, 075119 (2011)
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Pseudopotential Details

• LDA pseudopotentials constructed with OPIUM

• Compared to either LAPW calculations with elk or LMTO calculations with 
RSPT (Mattsson et al. JCP 128, 084714 (2008))

• Bulk modulus and equilibrium volume nearly same to minimize 
corrections such as applied in Maezono et al. PRB 82, 184108 (2010)
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Convergence of technical parameters

• Tests performed for moderate size supercell at 2 volumes

• Time step, b-spline spacing and twist averaging converged to within meV

• Finite size convergence achieved when change to larger supercell
produced same energy shift in ambient and high pressure calculations
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DMC results agree with experiment

• Fit vinet form to E(V) and compare equilibrium lattice constant and bulk 
modulus to experiment
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QMC is a promising method for calculation of 
cold curves

• Calculated equilibrium lattice constant and bulk modulus agree with 
experiment for a variety of materials

• A consistent approach was used for all calculations

• With specifically constructed pseudopotentials no correction from DFT is 
needed

• Difficulties were most pronounced for van der Waals compounds and the 
bulk modulus of diamond


