
A Continuous-Time Random-Walk 
Description of Monodisperse, Hard-Sphere 
Colloids below the Ordering Transition

Jeremy Lechman and Flint Pierce

Nanoscale and Reactive Processes Department

Engineering Sciences Center

Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia 
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. 
Department of Energy's National Nuclear Security Administration under contract DE-AC04-
94AL85000.

SAND2012-1454C



• Need better prediction and control of 
– Ion transport in composite electrodes (microstructure scale)

– Durability of composite electrodes

• Heterogeneous material
– Inhomogeneous, discontinuous 

microstructure and material properties

• Composites

• Discrete particles in polymer matrix or suspending fluid
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• Brownian Dynamics
– Markov assumption

– FB assumed Gaussian distributed and self similar

– Colloid inertia is often neglected

• Can we find kernel that transforms (non-local) spatial 
interactions into (non-local time) convolution integral 
with memory kernel?
– This is a constitutive relation we can measure

Langevin Equation with Interations
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Details:  Colloid interactions

• Integrated Lennard-Jones 
potential1

– Repulsive soft-sphere
• a1 = a2 = 5

• A12 = 1

• rc = rmin = 30-1/6



1R. Everaers and M.R. Ejtehadi, Phys. Rev. E 67, 41710 (2003) 



Details: Hydrodynamic Interactions

• Markovian assumption
– Steady state (quasistatic flow)

• Stokesian Dynamics

– PME 

» O(NlogN)

• Fast Lubrication Dynamics

– O(N)

Isotropic Constant 
(mean-field mobility) δ

δ-1 or δ-1+log(δ-1)

Kumar and Higdon, Phys Rev E, 82, 051401 (2010) 
Ball and Melrose, Physica A, 247, 444-472 (1997)

R0 = 3d(1+2.16)I



Simulation Results and Validation

MSD



• Fit VACF with 

• Which is a solution to

Memory Kernel from the VACF
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Alternative Form of VACF

 = 0.40
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• Consider CTRW of the form

– Assume jump pdf can be decoupled into jump length pdf and waiting 
time pdf

– Assume jump length pdf is Gaussian 

– true for long times in any finite variance jump length distribution

– Waiting time distribution, g(t)

Equivalent Macroscopic, Deterministic Eqn
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• Nonlocal-time model

• Solution 

• Choose g(t)

• Note: 

Macroscopic, Deterministic Equation for 
NonMarkovian Stochastic Dynamics
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Waiting Time Distribution
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Full Jump Distributions

• Recall
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Green’s Function for CTRW

• Note:
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Conclusions

• Solution on interaction Langevin Equation leads to 
GLE
– Memory Kernel

• With Memory Kernel we can determine waiting time 
distribution for CTRW
– Assuming Gaussian Jumps

– Leads to Generalized diffusion equation

• Connection to Experiments forth coming
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• Transient Brownian Dynamics (Interactionless)
• NonMarkovian Langevin Equation

• If noise is modeled by Gaussian, stationary, self-similar 
processes, we have fBm

• Note Basset-Boussinesq

The “Generalized Langevin Equation” –
Nonlocal-Time SDE

)'(2)'()(

0)(

)(')'()'(
)2/1(2

)'(
6

)(
*

0

2/3

ttTktt

t

tdtttt
tt

a
dt

td
m

B
R

i
R

i

R
i

R
i

t

i
i


















 







FF

F

Fv
v


















 
 



fp

t

ii

mmm

tadt
dt

tdtt
a

dt

td
m

2

1
*

)(6'
'

)'()'(
6

)(
*

0

2/1

v
vv






)'( tt 



Micro-rheology to Macro-rheology

• Mason and Weitz
– microscopic memory function proportional to macroscopic bulk 

frequency-dependent viscosity (mean-field approximation)

• Relaxation Modulus for Transient BD

• Viscoelastic (complex) modulus
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Validation: Diffusing-Wave Spectroscopy

• Diffusivity of turbid 
suspensions

• Connect stochastic colloidal 
dynamics to rheology

Laser

Sample

correlator

PMT

Measure:
intensity fluctuations 

vs. time

Autocorrelation :
Transmission-> f(τ, l*)

Backscatter-> f(τ)

Mean square 
displacement

Rheology
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• Translation of Isolated small sphere in Newtonian fluid
– Time dependent Stokes drag force on sphere

• Nonlocal model: space  time

• Assume: Steady-state (no history) and Gaussian random 
force

• Interactionless, Markovian, SDE

The Classical Langevin Equation Model for 
Brownian Dynamics of Colloids
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Nonlocal Space and Time

• More generally, consider a separable CTRW

– Joint jump distribution, y, x, tgty, x

• Jump length distribution, (y,x) contains spatial correlations

• Waiting time distribution, g(t) contains temporal correlations

• Do the underlying dynamics give rise to this 
macro behavior?
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Non-Markovian Example

• Note, impulsive response of sphere in incompressible, 
Newtonian fluid 
– sphere initially at rest, fluid at rest at infinity – i.e., dilute suspension

• We can use this to derive the memory kernel
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Memory Kernel

• Recall, for spheres in dilute limit

• Impulsive response v(t) ~ h(t)
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Fits of Mittag-Leffler to VACF (various )
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Summary and Outlook

• Recall Mason and Weitz
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Micro-rheology
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