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— lon transport in composite electrodes (microstructure scale)

— Durability of composite electrodes

 Heterogeneous material
— Inhomogeneous, discontinuous

microstructure and material properties
« Composites
» Discrete particles in polymer matrix or suspending fluid



3 Langevin Equation with Interations

 Brownian Dynamics
— Markov assumption
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— FZ assumed Gaussian distributed and self similar

— Colloid inertia is often neglected

« Can we find kernel that transforms (non-local) spatial
interactions into (non-local time) convolution integral
with memory kernel?

5 This is a constitutive relation we can measure
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Integrated Lennard-Jones
potential’

— Repulsive soft-sphere
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Details: Hydrodynamic Interactions

 Markovian assumption

— Steady state (quasistatic flow)
» Stokesian Dynamics

_ PME R=(I-R)"Rig+ Riuw

» O(NlogN)

« Fast Lubrication Dynamics
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* Fit VACF with
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Alternative Form of VACF
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Equivalent Macroscopic, Deterministic Eqn

. ConS|der CTRW of the form

op(x,1) op(x,t") O*p(x.t) o,
> j(_) ~df'=D— j(t )t

— Assumejump pdf can be decoupled into jump length pdf and waiting
time pdf

W(k,s) =K)g(s)

— Assume jump length pdf is Gaussian
— true for long times in any finite variance jump length distribution

d(k) ~1— DI+ O(k*)

— Waiting time distribution, g(t)

_1-g() P, (k)
O~ P = 1 DEY)e(s)
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=2 Macroscopic, Deterministic Equation for

‘ NonMarkovian Stochastic Dynamics

. Nonlocal-tlme model
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v (k,s)=g(s)p(k)
d(k) =1-c°k’
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Green’s Function for CTRW

* Note: p(k,s)= l_f(S) FT;E?S)
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Conclusions

« Solution on interaction Langevin Equation leads to
GLE

— Memory Kernel

 With Memory Kernel we can determine waiting time
distribution for CTRW

— Assuming Gaussian Jumps
— Leads to Generalized diffusion equation

« Connection to Experiments forth coming
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» The “Generalized Langevin Equation” —

5 Nonlocal-Time SDE

 Transient Brownian Dynamics (Interactionless)
 NonMarkovian Langevin Equation
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« If noise is modeled by Gaussian, stationary, self-similar
processes, we have fBm

 Note Basset-Boussinesq
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— microscopic memory function proportional to macroscopic bulk
frequency-dependent viscosity (mean-field approximation)

Bs)==)  fis)~ G (s)

« Relaxation Modulus for Transient BD
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* Viscoelastic (complex) modulus
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. Diffusivity of turbid Sample
suspensions

« Connect stochastic colloidal
dynamics to rheology

/‘\

Measure: Autocorrelation : Mean square Rheology

intensity fluctuations Transmission-> f(g, I*) displacement
vs. time Backscatter-> f(1)

correlator
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» The Classical Langevin Equation Model for

Brownian Dynamics of Colloids

. Translatlon of Isolated small sphere in Newtonian fluid

— Time dependent Stokes drag force on sphere
* Nonlocal model: space = time

jv-oH(t)dV: joH(t)-de—> jF(t—t')-Vi(t')dt'; F—1)=y@—-1"I

d:l(; ) j y (t = 1")v(1)dr'+E (1)
« Assume: Steady-state (no history) and Gaussian random

force
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* Interactionless, Markovian, SDE
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' 4 Nonlocal Space and Time

 More generally, consider a separable CTRW
— Joint jump distribution, Y(y, x, t) = g(t) y(y, X)
« Jump length distribution, y(y,x) contains spatial correlations
« Waiting time distribution, g(t) contains temporal correlations
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* Do the underlying dynamics give rise to this

macro behavior?
,--i.
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Iiawag Non-Markovian Example

* Note, impulsive response of sphere in incompressible,
Newtonian fluid
— sphere initially at rest, fluid at rest at infinity — i.e., dilute suspension
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 We can use this to derive the memory kernel
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42 Memory Kernel

« Recall, for spheres in dilute limit
Vo +ﬁz‘R (s)
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Fig. 4. The elastic, &', and the viscous, G*, components of the complex modulus for the CTAB/NaSal /water system at different

temperatures and fived W = 1.5 (a). Inset: Cole-Cole plot from DWS microrheology (line: best fit for Maxwel
different W values and fixed T = 22°C.
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