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b l f d i f i i hTubes are only formed in a narrow range of interaction strengths Bonding Energy U from MD SimulationsMotivations Tubes are only formed in a narrow range of interaction strengths Bonding Energy UB from MD SimulationsMotivations
• In eukaryotic cells α-β tubulin dimers self-assemble into microtubules (key

• UB is the mean potential energy of two
In eukaryotic cells, α β tubulin dimers self assemble into microtubules (key 
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components of cytoskeleton) with diameter ~25nm and length as larger as 25 µm. 
bonded wedges before the bond breaks
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The molecular mechanism of this process is poorly understood gThe molecular mechanism of this process is poorly understood.

• Calculate UB with various startingOth l l i l di th f l t i i th ll ll f Calculate UB with various starting 
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• Other macromolecules, including the surface layer protein in the cell wall of 
configurations  (lateral/vertical dimers, prokaryotic organisms many amphiphilic molecules diblock/triblock copolymers g (
rings) and at different temperatures

prokaryotic organisms, many amphiphilic molecules, diblock/triblock copolymers, 
rings) and at different temperaturesand even hybrid structures, can form tubes under the right conditions.

• U scales with temperature
and even hybrid structures, can form tubes under the right conditions.

• UB scales with temperature• What is the general scheme of making tubes out of simple building blocks?
• No many body effect

What is the general scheme of making tubes out of simple building blocks?
• No many-body effect

S t d f l t l/ ti l b diModel of Artificial Microtubule Self-Assembly • Same trend for lateral/vertical bondingModel of Artificial Microtubule Self-Assembly
• UB less than ideal strength 4A because of thermal fluctuationsUB ess t a dea st e gt because o t e a uctuat o s
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• Tubes are better formed when the lateral bonding is slightly strongerTubes are better formed when the lateral bonding is slightly stronger 
h h i l b di → i f i fi d h k Mapping A in Simulations to g in Theorythan the vertical bonding → easier to form rings first and then stack Mapping A in Simulations to g in Theoryg g

rings into tubes Comparing n calculated directlyrings into tubes Comparing np calculated directly 
• Reversibility of bonding is essential to remove defects by allowing Lines: from Lattice Theory
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• Reversibility of bonding is essential to remove defects by allowing Lines: from Lattice Theory from simulations with theoretical 

• Rigid wedge-shaped monomers (backbone + attractive sites) structural rearrangements A =4 4kT predictions provides a mappingg g p ( )
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structural rearrangements AV=4.4kT predictions provides a mapping 
b t U /A d• Lateral (vertical) bonding leads to rings (filaments) • Helical tubes are frequently formed even though wedge monomers between UB/A and g:( ) g g ( )

A i bi i f l l d i l b di l d b
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• Appropriate combination of lateral and vertical bonding leads to tubes are designed for non-helical tubes AV=4.8kT
kTUg 69=pp p g
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• An ideal ring (tube) contains 13 wedges (filaments) AV=4.8kT
kTkTA
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V kTkTA 6.94.34 −−=l h f h l f d• Bonding interactions only between attractive sites in the same color kTkTA 6.94.34Flory-Huggins Lattice Theory of Straight Polymerization of Wedgesg y
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represents the contribution ofwe start from straight polymerization of wedges (e g A =0 and A ≠0) We• Ideal bonding strength for two wedges is 4A (two attractive sites on a face) represents the contribution ofwe start from straight polymerization of wedges (e.g., AL=0 and AV≠0). We Ideal bonding strength for two wedges is 4A (two attractive sites on a face)
thermal fluctuations and the third term -9 6kT reveals an energy barriercalculate the entropy of the system by counting the number of ways to put thermal fluctuations, and the third term 9.6kT reveals an energy barrier 
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V i t t f d f d lf bl of the formation of a stable bond between two rigid building blocks.all chains onto a lattice (with M cells and coordination number z) that 
Various structures are found from wedge self-assembly g g( )

discretizes the simulation box The free energy of the system isg y
Combining the lattice theory of straight polymerization with the energy

discretizes the simulation box. The free energy of the system is
Combining the lattice theory of straight polymerization with the energy 
barrier of stable bonding allows us to determine the boundaries (lines in⎞⎛pFilaments Sheets Cluster barrier of stable bonding allows us to determine the boundaries (lines in 
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which agree with MD calculations quite well.1= ⎠⎝p M

where p is the filament length n is the number of chains of length p and gwhere p is the filament length, np is the number of chains of length p, and g 
i h bi di f b d Th i f l b f How helical tubes are formed?is the mean binding energy of a bond. The conservation of total number of How helical tubes are formed?g gy
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For a given g, Eq. (4) is used to solve for x, which in turn gives µ. Then np is g g, q ( ) , g µ p
calculated with Eq (3) The transition to a state dominated by p segment smooth edge jagged edgecalculated with Eq. (3).  The transition to a state dominated by p-segment smooth edge jagged edge
chains is determined by the conditionchains is determined by the condition

cluster collision + monomer diffusion
∂n

cluster collision + monomer diffusion
0=

∂np 0=
∂∂gg
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