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➢  Non-Intrusive Spectral Projection (NISP)
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Motivation
• Physical systems often require multiscale simulations to 

capture phenomena occurring at both bulk and interface (e.g. 
ionic flux through nanopores in water desalination).

• Modeling such systems requires exchange of information 
between the different scales.

• Uncertainty quantification is needed 
in order to get a predictive fidelity 
of the multiscale simulation.

Based on all inputs into the 
simulation, what is the resulting 
uncertainty in the predicted 
value of the coupling variables? 



Canonical plane Couette flow is used as model
problem for algorithm development

This BC is handled by an 
atomistic simulation.

This BC is handled by 
a continuum model.

Multiscale interface
(hand-shake region)

uy=h = w

uy=0 = 0

v vA



Exchange of variables 

uC

vC

AtomisticContinuum

y = δ
y = 0

y = hMD

• We assume strong separation in the time scales such that we can 
extract one macroscale uncertain variable vC from the fluctuating output 
of the atomistic simulation.

• This macroscale variable is imposed on the continuum model through 
stochastic coupling.

• We do not propagate the small scale fluctuations to the macroscale. 
We rather determine the uncertainty in the deterministic macroscale 
coupling variables due to sampling noise, and propagate this uncertainty.

y = δ
y = hMD

y = hMD



Building blocks in atomistic to continuum coupling

Uncertain 
observables

MD sampling noise only
Fixed point iterations on the atomistic level (Salloum et.al., 2012) 

Salloum, M., Sargsyan, K., Najm, H.N., Debusschere, B., Jones, R., Adalsteinsson, H. “A Stochastic Multiscale Coupling Scheme to account 
for Sampling Noise in Atomistic-to-Continuum Simulations” SIAM Multiscale Modeling and Simulation, 2012 (in press).
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A ● This approach requires many 
atomistic simulations at nearby 
inputs, until convergence.

● Thus, the implementation is 
expensive unless a surrogate to 
the atomistic simulations is used. 
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Building blocks in atomistic to continuum coupling

Uncertain 
observables

MD sampling noise and parametric uncertainty
Infer a response surface of the atomistic blocks

Group these blocks into one response surface that accounts for the 
uncertain parameters and the sampling noise:

vC=f A(uC, pA ,ζ)

Solve these equations for the polynomial chaos expansions (PCE) uC and vC.  

uC
=gC

(vC , pC
)



Bayesian Inference of Response Surfaces

1

λ

v

v j

λ
i

v j
=v (λ i

)+sηij

λ={λm}m=1
M

a={aq}q=1
Q

p={pq (λm)}q=1
Q

● pn are polynomials.
● aq are the polynomials 
coefficients.
● λm can be either input 
variables or uncertain 
parameters.

η
ij
∼Ν(0,1)

d={v j
}j=1
NP(aq , s2

∣d)⏟
Posterior

∝P (d∣a q, s2
)⏟

Likelihood

P (aq , s 2
)⏟

Prior

v=pT
⋅a

● Gaussian likelihood

● v is linear in λi 
● Infinite (improper) prior for aq

●
 Jeffrey's prior for s2

a∼St( ā,S , γ)

v=p(λm)
T
⋅ā+ζ √p(λm)

T
⋅S⋅p(λm)

ζ∼St(0,1,γ)
Analytical 
solution ζ accounts for the 

sampling noise



Response Surface of an Atomistic Couette Flow 

v vC

uC

2uC Lennard-Jones interaction potential:

ϕ=4 ϕ0[(σr )
12

−(
σ
r )

6

]

vC
=p(uC ,σ)T⋅ā+ζ √p(uC,σ)T⋅S⋅p(uC,σ)

p=Ο(uC ,σ4
)

vC
=f A

(uC,σ ,ζ )

We assume that σ is an uncertain 
parameter in the atomistic simulation.

● ā and S are inferred from MD data at 
sampled values of uC and σ. 
● The sampling noise is represented as a 
student-t process.



Response Surface of a Continuum Couette Flow 

uy=h = w

uy=0 = 0
y = δ
y = 0

y = hMD

y = h

v
uC

v vC

The steady state linear velocity profile allows analytical 
propagation of uncertainties.

uC
=w+β(w−vC

)

uC
=gC

(vC ,w)

We assume an uncertain 
continuum wall velocity

β=
hMD−h

h−δ



Polynomial Chaos Expansions (PCE) are used in uncertainty 
quantification for an efficient representation of a random variable.

Let X be a random variable with finite variance.

 are i.i.d. random variables (e.g., Gaussian)

 are multivariate orthogonal polynomials (e.g., Hermite)

 We truncate the expansion at order No and dimension Nd such that:

X=∑
k=0

P

X kΨk(ξ)

{Ψ
k
}k=0
∞

X (ω)=∑
k=0

∞

X kΨk(ξ1, ξ2...ξNd
)

{ξi}i=1
Nd

X :Ω→ℝ



Methods to Operate on PCEs
e.g. Product of two PCEs

1. Direct (Intrusive)
    Zk are obtained by Galerkin projection 

X=∑
k=0

P

X k
Ψ

k
(ξ)

Y=∑
k=0

P

Y k
Ψ

k
(ξ )

Z=∑
k=0

P

Zk Ψk(ξ) Zk=
1

〈Ψ
k
Ψ

k
〉
∑
i=0

P

∑
j=0

P

X kY k 〈Ψi Ψ jΨk〉

Other mathematical operations such as divisions, log, exp, square root... 
can also be performed on PCEs in a similar fashion. 
http://www.sandia.gov/UQToolkit/

Find Z=X .Y

2. Sampling (Non-Intrusive)
    Get samples Xi and Yi from quadrature points, compute Zi=Xi.Yi, then project   
the Zi on the PC basis Ψk.



Intersecting Response Surfaces with Fixed Point 
Iterations 

vC
=f A

(uC,σ ,ζ )

uC
=gC

(vC ,w)vC=∑
k=0

P

vC, kΨk(ξ1,ξ2, ξ3)

vC
=f A

(uC,σ ,ζ )vC
=f A

(uC,σ ,ζ )uC=∑
k=0

P

uC,k Ψk(ξ1, ξ2, ξ3)

• Assume known uncertainties in w and σ
• Substitute PC expansions into response surfaces
• Start with an initial guess of either uC or vC

• Iterate on uC and vC: two well-known approaches:

   - Perform Galerkin operations on the expansions of uC and vC: intrusive spectral 
projection (ISP)
   - Sample ζ, w and σ on quadrature points, solve for uC and vC then project on the 
PC basis Ψk(ξ1,ξ2,ξ3): non-intrusive spectral projection (NISP)

σ→ξ1

w→ξ2

ζ→ξ3



Solution method
1. Intrusive Spectral Projection (ISP)

uC
=w+β(w−vC

)

vC
=p(uC ,σ)T⋅ā+ζ √p(uC,σ)T⋅S⋅p(uC,σ)

● ā, S, β and the polynomial coefficients vector p are known entities.
● The PCEs of ζ, w and σ are known.
● Start with an initial guess of the uC,k or vC,k 
● Different Galerkin operations take place at each iteration:

➢ Multiple products of PCEs depending on the order of the polynomial p.
➢ Square root of a PCE.

σ=σ
0
+σ

1
ξ1

w=w 0
+w1

ξ2

ζ=ξ3vC=∑
k=0

P

vC, kΨk(ξ1,ξ2, ξ3)

uC=∑
k=0

P

uC,k Ψk(ξ1, ξ2, ξ3)



Solution method
2. Non-Intrusive Spectral Projection (NISP)

u i
C
=w i+β(w i−v i

C
)

v i
C
=p(u i

C ,σ i)
T
⋅̄a+ζi √p(u i

C ,σ i)
T
⋅S⋅p(u i

C ,σ i)

 ● Sample the PCEs of ζ, w and σ on quadrature points.
● For each sample (ζ, w, σ)i, solve:

● Project the obtained (uC, vC)i on the PC basis Ψk(ξ1,ξ2,ξ3)

vC=∑
k=0

P

vC, kΨk(ξ1,ξ2, ξ3) uC=∑
k=0

P

uC,k Ψk(ξ1, ξ2, ξ3)

(vC, k,uC,k
)=

〈(v C,uC
)i Ψ

k
〉

〈Ψ
k
Ψ

k
〉



Method Validation: Case of no Parametric Uncertainty

uC
=gC

(vC
)

vC
=f A

(uC,ζ )uC=uC,0+uC,1 ξ3
ζ→ξ3

uC
=uC,0

+uC,1
ξ3

Iterations

uC
,0

uC
,1

ζ∼St (0,1,γ)∼N (0,1)⏟
for γ>30

γ=190

γ is related to the 
amount of data used 
to infer fA.

In this study we have



Method Validation: Case of no Parametric Uncertainty
uC
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Results: Case of Parametric Uncertainty

σ=3.15+0.074 ξ1

w=20+ξ2

ζ=ξ3(γ=190,tw=5ns )

vC=∑
k=0

P

vC, kΨk(ξ1,ξ2, ξ3) uC=∑
k=0

P

uC,k Ψk(ξ1, ξ2, ξ3)

We assume that all ξ1,ξ2 and ξ3 follow Gaussian distributions i.e., 
Ψk(ξ1,ξ2,ξ3) are Hermite polynomials truncated at order No

uC
=w+β(w−vC

)

vC
=p(uC ,σ)T⋅ā+ζ √p(uC,σ)T⋅S⋅p(uC,σ)

p is linear in uC and 4th order in σ. Thus, we expect uC and vC to have 
a linear dependence on w and a 4th order dependence on σ.



Results: ISP



Results: NISP



Comparison between ISP and NISP
● The ISP and NISP approaches are in 
a very good agreement.

● The modes with orders higher than 
one in w have a negligible amplitude 
and can be reduced from the PCE.

● The ISP approach is much more 
expensive due to the computational 
overhead caused by the Galerkin 
operations.

● Thanks to the response surface 
representation of the atomistic 
model, deterministic solutions of the 
obtained system are cheap, making 
NISP much more attractive in terms 
of performance.



Contribution of different sources of uncertainty

● We perform a global sensitivity analysis to quantify the contribution 
of the uncertain parameters (w and σ) and the sampling noise (ζ) to 
the uncertainty in the macroscale variables uC and vC.

● We compute the total sensitivity indices* of uC and vC from their PC 
representations (No=3):

* Le Maitre, O., Knio, O. Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics. 
Springer, Berlin (2010)

● The uncertain Lennard-Jones parameter σ of the atomistic simulation 
contributes the most to the uncertainty in uC and vC. 

σ w ζ

uC 0.606 0.254 0.140

vC 0.745 0.083 0.172

σ=3.15+0.074 ξ1

w=20+ξ2

ζ=ξ3(γ=190,tw=5ns )



Conclusions and Ongoing Work 
• We showed a systematic approach to infer response surfaces 

that account for both finite sampling noise and parametric 
uncertainty in atomistic simulations.

• This response surfaces approach allows coupling on the 
macroscale level and uncertainty quantification using either 
intrusive or non-intrusive methods.

• We found that for the given range of uncertainty in the 
parameters and the sampling noise, the uncertain Lennard-
Jones parameter of the atomistic simulation is the dominant 
source of uncertainty.

• The Couette flow used here allows for analytical solutions, 
but the formulation is generally applicable.

• The application to nanopore ionic fluxes is in progress.



THANK YOU FOR YOUR 
ATTENTION

Questions???


