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Motivation

* Physical systems often require multiscale simulations to
capture phenomena occurring at both bulk and interface (e.gq.
ionic flux through nanopores in water desalination).

* Modeling such systems requires exchange of information
between the different scales. l Finite MD

sampling noise
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* Uncertainty quantification is needed .
in order to get a predictive fidelity » Atomc}stllc
of the multiscale simulation. BC® .5 Jilo: 2

Multiscale

interface

Based on all inputs into the
Ssimulation, what is the resulting AC w

. : . ontinuum
uncertainty in the predicted BC* model
value of the coupling variables? =

Uncertain
observables




Canonical plane Couette flow is used as model
problem for algorithm development

Uy=h =W _, This BC is handled by
a continuum model.

Multiscale interface
(hand-shake region)

~ This BC is handled by an
- atomistic simulation.
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Exchange of variables
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Continuum Atomistic

* We assume strong separation in the time scales such that we can
extract one macroscale uncertain variable v¢ from the fluctuating output
of the atomistic simulation.

* This macroscale variable is imposed on the continuum model through
stochastic coupling.

* We do not propagate the small scale fluctuations to the macroscale.
We rather determine the uncertainty in the deterministic macroscale
coupling variables due to sampling noise, and propagate this uncertainty.



Building blocks in atomistic to continuum coupling

MD sampling noise only
Fixed point iterations on the atomistic level (Salloum et.al., 2012)

Atomistic

* This approach requires many
atomistic simulations at nearby
inputs, until convergence.

* Thus, the implementation is
expensive unless a surrogate to
the atomistic simulations is used.

Sampling u¢
Bayesian
inference of v¢

Uncertain
observables

Salloum, M., Sargsyan, K., Najm, H.N., Debusschere, B., Jones, R., Adalsteinsson, H. “A Stochastic Multiscale Coupling Scheme to account
for Sampling Noise in Atomistic-to-Continuum Simulations” SIAM Multiscale Modeling and Simulation, 2012 (in press).



Building blocks in atomistic to continuum coupling

MD sampling noise and parametric uncertainty
Infer a response surface of the atomistic blocks

Group these blocks into one response surface that accounts for the
uncertain parameters and the sampling noise:

ve=f*(u®, p*,T)
u"=g"(v*, p°)

Solve these equations for the polynomial chaos expansions (PCE) u¢ and v~.



Bayesian Inference of Response Surfaces

- Jeffrey's prior for s?
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Response Surface of an Atomistic Couette Flow
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Lennard-Jones interaction potential:
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We assume that o is an uncertain
parameter in the atomistic simulation.

p=0(u, o"
ve=f*(u®, 0,C) <

* a and S are inferred from MD data at
sampled values of u¢ and o.

* The sampling noise is represented as a
student-t process.

vi=p(u,0)"-a+typ(u,0)"-S-p(u,0)
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Response Surface of a Continuum Couette Flow

We assume an uncertain
u =W — > ) )
continuum wall velocity

<< <

The steady state linear velocity profile allows analytical
propagation of uncertainties.

h,,.—h
u‘=w+p(w-v") MD
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Polynomial Chaos Expansions (PCE) are used in uncertainty
quantification for an efficient representation of a random variable

Let X be a random variable with finite variance.
X:0Q—-R
Ky ok
X((’O):Z X" <§1,Ez. - gNd)
k=0
{%,-}7:"1 are i.i.d. random variables (e.g., Gaussian)

koo
{‘P }k=0 are multivariate orthogonal polynomials (e.g., Hermite)

We truncate the expansion at order N_and dimension N, such that:
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Methods to Operate on PCEs
e.g. Product of two PCEs

—— Find Z=X.Y

X =
Y

2, X"wi(g) "
2, Y Wi(E)

1. Direct (Intrusive)
Zk are obtained by Galerkin projection

z-3 2w(g) Z'=

k=0

p
<111k1111k> Zc; Z:‘, XY (e )
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2. Sampling (Non-Intrusive)
Get samples X and Y, from quadrature points, compute Z=X.Y, then project

the Z. on the PC basis Wk,

Other mathematical operations such as divisions, log, exp, square root...

can also be performed on PCEs in a similar fashion.
http://www.sandia.gov/UQToolkit/



Intersecting Response Surfaces with Fixed Point
Iterations
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u"=g"(v", w)

e Assume known uncertainties in w and o

« Substitute PC expansions into response surfaces
 Start with an initial guess of either u¢ or v¢

e |terate on u‘ and v¢: two well-known approaches:

- Perform Galerkin operations on the expansions of u¢ and v¢: intrusive spectral
projection (ISP)

- Sample ¢, w and o on quadrature points, solve for u¢ and v¢ then project on the
PC basis Y& ,¢,,€,): non-intrusive spectral projection (NISP)



Solution method
1. Intrusive Spectral Projection (ISP)

ve=p(u‘,0)"-a+cVp(u,o)-S-p(uc,o)

u=w+p(w—v")

B d 0200+01§1
Z WH(E, 8 w=w'+w'E,
=Y vhE E ) =T

*d, S, B and the polynomial coefficients vector p are known entities.
* The PCEs of ¢, w and o are known.
* Start with an initial guess of the u%k or v&k

* Different Galerkin operations take place at each iteration:
> Multiple products of PCEs depending on the order of the polynomial p.
> Square root of a PCE.



Solution method
2. Non-Intrusive Spectral Projection (NISP)

* Sample the PCEs of ¢, w and o on quadrature points.
« For each sample (¢, w, 0),, solve:

vi=p(uf,o,)"-a+g\p(uf,0)"-S-p(uf,0,)
ufzwi"'ﬁ(Wi_ViC)
« Project the obtained (u¢, v¢). on the PC basis ¥ ,¢,,¢.)

(VC,k,uC,k> <<VC";’C);:PI(>
(W)

M~
c
(@)

; E1 E2 % ) UC: kqjk(%ugz, %3)

»
Il
o



Method Validation: Case of no Parametric Uncertainty
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for y>30

Yy is related to the
amount of data used

to infer fA.

In this study we have
y=190

lterations



Method Validation: Case of no Parametric Uncertainty
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Results: Case of Parametric Uncertainty

0=3.15+0.074¢,
w=20+E,
C:§3(y:190) tW=5n$)

V=X Ve 8 YU 5 )

We assume that all ¢ ,§,and &, follow Gaussian distributions i.e.,
W(€,,¢€,,€,) are Hermite polynomials truncated at order N_

VC:p<uC)G)T'a+C\/p(UC: G)T'S°p(uc: 0)
u=w+p(w—v°)

p is linear in u¢ and 4™ order in o. Thus, we expect u¢and v¢to have
a linear dependence on w and a 4™ order dependence on o.
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Results: NISP
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Comparison between ISP and N

10°
* The ISP and NISP approaches are in
a very good agreement. ol

* The modes with orders higher than
one in w have a negligible amplitude
and can be reduced from the PCE.

* The ISP approach is much more
expensive due to the computational
overhead caused by the Galerkin

SP ——]SP —&— NISP
b N, =1
40 50
N, =2
40 50
Y

operations.

* Thanks to the response surface
representation of the atomistic

model, deterministic solutions of the
obtained system are cheap, making

NISP much more attractive in terms
of performance.




Contribution of different sources of uncertainty

* We perform a global sensitivity analysis to quantify the contribution
of the uncertain parameters (w and o) and the sampling noise ({) to
the uncertainty in the macroscale variables u¢ and v~.

* We compute the total sensitivity indices* of u¢ and v¢ from their PC

representations (N_=3):

o W 4
u‘ 0.606 0.254 0.140
Ve 0.745 0.083 0.172

5=3.15+0.074F,
w=20+Eg,
C=E&,(y=190,t,=5ns)

* The uncertain Lennard-Jones parameter o of the atomistic simulation
contributes the most to the uncertainty in u¢ and v¢.

* Le Maitre, O., Knio, O. Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics.

Springer, Berlin (2010)



Conclusions and Ongoing Work

We showed a systematic approach to infer response surfaces
that account for both finite sampling noise and parametric
uncertainty in atomistic simulations.

This response surfaces approach allows coupling on the
macroscale level and uncertainty quantification using either
intrusive or non-intrusive methods.

We found that for the given range of uncertainty in the
parameters and the sampling noise, the uncertain Lennard-
Jones parameter of the atomistic simulation is the dominant
source of uncertainty.

The Couette flow used here allows for analytical solutions,
but the formulation is generally applicable.

The application to nanopore ionic fluxes is in progress.
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