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Introduction

Motivation
@ Direct characterization of material
properties is not always possible or
desirable

@ Nondestructive/noninvasive material
characterization is important in many
engineering applications, e.g. bio, aero

@ Variations in structural response can be
induced by
o Disease; or
o Damage

Wellington Hospital Cardiac Service

Challenges
@ Solution of large-scale inverse problems
with models given by partial differential
equations (PDEs) Aloha Airlines Flight 243, 1088
@ Characterization of the uncertainties in
the model inputs for high-dimensional
parameter spaces
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SQP Summary

Matrix-free full-space SQP algorithm with trust regions.

Handles inequality constraints — control and state constraints.

Linear solver accuracy adjusted dynamically, based on SQP progress.

Approximate Schur preconditioning reuses forward PDE solvers.

Fully scalable — assuming scalable forward PDE solvers.
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Inverse Estimation of Parameters in Linear
Elastodynamics

Problem Overview
NLP Problem

Results
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Problem Overview

Find the shear modulus i and bulk modulus  from measurements
{U;}i=1,....4 related to the solution {u;}; . 4 of the boundary value problem

)

—oj j=w?pu; in  Q,
u=20 on [,
ojin; =T; on [,.

The stress tensor o is defined as

i = nClyen(u) + rCligea(u)

. 2
C/}Lk, = 5ik5j/ + 8,05k — §6U5k/ Cij'{kl = 5ij5kl

and the strain tensor is defined to be the symmetric part of the displacement
gradient, as follows,

1
ej(u) = 5 (uij + uji)-

2
Here, Q C R?, d = {1,2,3} is the computational domain with boundary 9Q
and indices i, j, k, and / take on values 1,... d.
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e
Full-Space [?> Formulation

Problem
We consider the following nonlinear programming problem (NLP):

Jmiimize L= 67+ RGO+ R |
subject to —0jj,j = Wlpup in Q
oijnj=T1 on [,
where U = {u;:u; € HY(Q), ui=00nT,}, G = {p:p € L3(Q)}, B= {x:
K € L2(Q)}.
Lagrangian
L(ui, pi, 5, Ai) = %||u;—ﬁ;\|2+R(u)+R(n)+<)\;, —0j, j—w’ pup)+(\i, =)
First-Order Necessary Optimality Conditions
(ui — Ti) — (Cimew(N)),j — w?pu; in Q
VuR(1) + €5(A) Clyy€ra(u)
ViR(k) + €;(N) Cliyen(v)
—(Gijen(u)),j — Ww2pup in QT — ojnj on [,

F(uivl’(‘a R, )‘I) =
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Full-Space [?> Formulation

Hessian of the Lagrangian

F'(uj, py 5, X)) (O i, O, Ok, ON;) =

XIm>
mFom®
£—-on0n
coc-n0D

Jacobian

D = —(Gaew(dN)).j — w0 G = (0N Cligen(u) I = ;(0N) Chiyen(u)

]

K = —(Cuuew(ou)) j — w?pou; L= —(uClyen(u)); M= —(0kClhyeu(u)),
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Full-Space [?> Formulation

Hessian of the Lagrangian

A B C D
F'(uj, py 5, N ) (O i, O, Ok, ON;) = :_EI g (I) g;
K L M 0
Hessian Operator
A= Bou; ~(nClyen(N).; €= —(rClyen(N)
E = e(\) Cliyen(du) F = V2R(u)ou
H = ¢;(A) Cliyen () | = V2R(x)on
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Results

Undeformed Grid Deformed Grid

2.5
05

0.5

@ Our domain D is [-1,1]?, the grid is uniform triangular, 128 x 128
@ Data is sampled on a finer grid 256 x 256

@ We solve the PDE using Galerkin FEM with a piecewise linear basis
@ As the initial guess, we use constant 4y =1 Pa and k=1 Pa

@ Total number of unknowns is equivalent 99, 330
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Results

Target Shear Modulus Target Bulk Modulus
1 1

-1 -1
-1 0 1 -1 0 1
@ Our domain D is [—1,1]?, the grid is uniform triangular, 128 x 128
@ Data is sampled on a finer grid 256 x 256
@ We solve the PDE using Galerkin FEM with a piecewise linear basis
@ As the initial guess, we use constant 4 =1 Pa and k=1 Pa
@ Total number of unknowns is equivalent 99, 330
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Computed

Shear Modulus

Parameters, No Noise

Bulk Modulus
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Computed Parameters, 3% Noise

Shear Modulus Bulk Modulus
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SQP Performance

kK f(x k) I c(x k) [ [IL x(x k,lam k}|| Delta k || nk || || t k || itcg
@ 6.03000e-01 3.062110e-13  1.781733e-02 1.00e+02
1 8.10553e-03 7.771020e-03  5.054813e-04 5.33e+02 2.88e-10 7.6le+0l 72
2 4.42033¢-03 3.788758e-03  1.870175e-04 1.21e+02 4.45¢+00 1.66e+01 3
3 3.33068e-03 1.020809¢-02  3.779170e-05 1.06e+02 7.87e-01 1.5le+dl 6
4 3.186309e-03 1.049432e-02  1.377018e-05 1.32e+01 5.20e-01 1.32e+01 8
5 3.13484e-03 1.060105e-02  5.134040e-06 1.32e+01 2.57e-01 1.32e+01 11
6 3.12505¢-03 4.355073e-03  2.525812e-06 1.20e+01 2.16e-01 6.43e+00 12
7 3.12184e-03 3.640399e-03  1.7¢1322e-06 4.56e+00 5.00e-02 4.56e+00 14
8 3.12074¢-03 1.006678¢-03  1.064661c-06 1.60e+01 2.54e-82 2.28e+00 14
0 3.12026e-03 8.401915¢-04  8.417355e-07 2.35¢+00 6.0le-03 2.35¢+00 16
10 3.12010e-03 3.957708e-04  5.254084e-07 2.35e+00 3.75¢-03 1.18¢+00 16
11 3.12004e-63 1.138563e-04  2,018372¢-07 3.83e+00 0.26e-04 5.47e-01 16
12 3.12002¢-03 9.428050e-05  1.820050e-07 4.35¢-01 3.12e-04 4.35¢-01 16
13 3.12001e-63 1.194862¢-04  1.865811e-07 4.35¢-01 2.27e-04 4.35¢-01 16
14 3.12000e-03 3.342200e-05  7.061537e-08 1.52¢+00 2.84e-84 2.17e-01 16
15 3.11999¢-63 3.390794e-05  8.867013e-08 2.13e-01 8.19¢-05 2.13¢-01 16
16 3.11999¢-83 4.356250e-05  7.217764e-08 2.13e-01 8.81le-05 2.13¢-01 17
17 3.11999¢-03 4.831992e¢-05  7.877364¢-08 2.13e-01 1.03e-04 2.13e-01 17
18 3.11000e¢-03 5.779310e-05  1.007613e-08 2.13e-01 1.209e-04 2.13e-01 21
19 3.11000e-03 5.475001e-06  1.825626e-10 4.24e-01 1.45¢-04 6.06e-02 37
20 3.11000e-03 4.199292e-10  6.559367e-12 4.24e-01 1.33e-05 8.24e-04 42

@ We observed quadratic convergence in all numerical studies
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Inverse Es.timation of Parameters in Nonlinear
Elastostatics

Problem Overview
NLP Problem

Results
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"
Problem Overview

Find the shear modulus p and bulk modulus x from measurements
{Ui}i=1,....4 related to the solution {u;}; .4 of the boundary value problem

_(FIKSKL),L =0 in QO,
uy=0 on T9©
(FixSk)n? = T,-O on 0.
For a Saint Venant-Kirchhoff Material, the second Piola-Kirchhoff stress
tensor Sy, is defined as
S = IU/ClﬁLKL E,+ HC/TKL E,

Ch. = 5IK5JL + 6IL5JK - (2/3)5IJ5KL C,TKL = §IJ6KL

1JKL

The deformation gradient F;, and Green-Lagrangian strain tensor E,, are
respectively defined as

1 3u,- 1
Fi :2<8X,9+5’K> EIJIE(I:I'KFI‘L+5KL)'

Here, Qo C RY, d = {1,2,3} is the computational domain on the reference
configuration with boundary 0€ and indices /,/,J,K and L take on values
1,...,d.
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-
Full-Space [?> Formulation

Problem
We consider the following NLP:
ominimize {2l =57+ RG) + RO |
subject to —(FixS),. =0 in Qo
(FiS)n® =72 on T?°
Lagrangian

E(u,-,,u,/i,)\,-):%||u,-—U,-H2+R(u)+R(/$) +(Ais = (FixSia), )+ (Ais 7, ,_( :KSKL)”>

First-Order Necessary Optimality Conditions
Fui,p, 5, \j) =
B (ui —ui) — ()\i,KSKL),L — (Fi(Ci (FJK)‘LL + Nk jL))),L in Lo
VuR(i) + NiFi Gl E
VR(K) + Xi Fi «Chi Ey
—(FikSi),. in Qo ; 7',. — (FikSx)n® on 10
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Full-Space [?> Formulation

Hessian of the Lagrangian

A B C D
F'(uis 1, 5, Ai)(uj, O, 0k, 0N;) = |I.E| g ? g;
K L MO
Jacobian
D = ~(FixCon(Fdda + ONiFi)) G =DNFiuCliuBy )= iFiCliaEo

_(SXI,KSKL),L

K= *(FIKCUKL(FJ'K@J',L + ng,KFjL)),L L= *(SILEKCIGLKLE/J),L M = *(g/;FiKC/TKLEU),L
—(Bui kSia) 0
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Full-Space [?> Formulation

Hessian of the Lagrangian

F'(uj, py 5, X)) (O i, S, Ok, ON;) =

XIm>
mFomm@
£E-on
-0

Hessian Operator
A = 5u; — (A ko (Fiduj.e + 6uj kFiu)).c — (3ui.x Cume (Firchj.e + NjwFie)) o
_(FIKCIJKL(@J',K il T Ak EEJ,L)),L
B = — (31 FrnClia (Fixhic + NiwFi)) e € = —(0k FinClia(Firhj + NiwFic))
—(Op ik ClEn) —(0R Nk Cli En) 1
E = N ikl (Find i + 0t kFin) + NioOui Cli By F = V2 R(1)
H= )\i,LFi,KC/TKL(FngDj,L + gzj,KFjL) + )\i,LgDi,KCSKLE/J I = ViR(k)
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Results
Undeformed Grid Deformed Grid
1 1
05 05
0 0
05 05
B 05 o 05 1 s 1 95 o es 1 15

@ Our domain D is [-1,1]?, the grid is uniform triangular, 200 x 200
@ Data is sampled on a finer grid 400 x 400
@ We solve the PDE using Galerkin FEM with a piecewise linear basis
@ As the initial guess, we use constant y =1 Pa and k=1 Pa
@ Total number of unknowns is equivalent 161, 202
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Results

Target Shear Modulus Target Bulk Modulus
1 1

-1 -1
-1 0 1 -1 0 1
@ Our domain D is [~1,1]?, the grid is uniform triangular, 200 x 200
@ Data is sampled on a finer grid 400 x 400
@ We solve the PDE using Galerkin FEM with a piecewise linear basis
@ As the initial guess, we use constant 4 =1 Pa and k=1 Pa
@ Total number of unknowns is equivalent 161,202
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Computed Parameters, No Noise

Shear Modulus Bulk Modulus
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Computed Parameters, 3% Noise

Shear Modulus Bulk Modulus
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SQP Performance

Kk f(x_k) |1 cx k) || |IL_x(x_k,lam_k)|| Delta_k || n_k || || t_k || itcg
@ 1.21121e-02 1.418456e-13  1.501655e-03 1.00e+02

1 9.18257e¢-65 8.198400e-03  8.177939e-06 1.75¢+02 7.65e-11 2.50e+01 3
2 1.00124e-05 1.281381e-03  1.438794e-06 2.45e+02 4.52e+00 3,47e+01 4
3 3.00828¢-06 6.600252e-04  3.330121e-07 2.45e+02 8.05e-01 1.85e+01 6
4 1.79307e-06 1.086107e-03  2.008207e-07 1.03e+01 8.05e-02 1.03e+01 6
5 0.72000e-07 1.804024e-04  2.018572e-07 7.20e+01 5.72e-02 1.03e+01 6
6 1.76429¢-08 0.444912e-04  6.134319e-09 7.20e+401 2.24e-02 2.91e+01 21
7 2.34142¢-08 1.540130e-05  2.226323e-08 7.20e+01 8.8le-02 8.96e-01 5
8 0.14361e-09 8.921297e-05  2.967412e-09 6.50e+00 1.38e-04 6.59e+00 19
9 6.09451e-09 4.709693e-05  1.808598e-09 6.50e+00 6.44e-03 5.02e+00 23
10 5.17726e-09 3.097234e-05  6.411598e-10 6.50e+00 2.41e-03 4.14e+00 31
11 5.11002e-09 4.721732e-07  3.776935e-10 6.50e+00 2.41e-03 4,34e-01 17
12 4.97759¢-09 6.350808¢-06  6.916146e-11 3.20e+00 2.98e-05 3.20e+00 62
13 4.97340e-09 1.623117e-07  1.259521e-11 3.86e+00 6.39e-05 5.5le-01 76
14 4.07334e-09 3.230133e-09  1.555454e-12 3.86e+00 3.33e-06 5.25¢-02 66
15 4.97334e-00 1.433930e-18  6.650761le-13 2.37e-02 7.79e-08 1.18¢-82 58
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Further Advances

Precise Embedding of Uncertainty into the
Inverse Problem Formulation

To directly incorporate the notion of uncertainty into the mathematical
formulation of the inverse problem we require

@ Research: Advances in algorithmic research such as new
optimization algorithms, parallel solvers, and numerical methods for
stochastic computation

@ Numerical Tools: Use of the best available numerical tools for a
rigorous implementation of the advances in algorithmic research
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Conclusions

For large-scale PDE-constrained inverse problems:

@ We can successfully apply the SQP to relevant large-scale inverse
problems in solid mechanics

@ We can successfully apply the SQP to large-scale inverse problems in
nonlinear elasticity without using continuation methods

@ Second-order optimization algorithms can achieve quadratic
convergence rates [1]

@ Advances in algorithmic research are required to accomplish a precise
embedding of stochastic discretizations into our mathematical models

1 D. Ridzal, M. Aguild, and M. Heinkenschloss “Numerical study of a matrix-free trust-region
SQP method for equality constrained optimization,” Sandia Technical Report
SAND2011-9346, December 2011
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Computed Displacement Field, No Noise

U, Field U, Field
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Computed Displacement Field, 3% Noise

U, Field U, Field
1

o
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