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Introduction
Motivation

Direct characterization of material
properties is not always possible or
desirable

Nondestructive/noninvasive material
characterization is important in many
engineering applications, e.g. bio, aero

Variations in structural response can be
induced by

Disease; or
Damage

Challenges

Solution of large-scale inverse problems
with models given by partial differential
equations (PDEs)

Characterization of the uncertainties in
the model inputs for high-dimensional
parameter spaces

Wellington Hospital Cardiac Service

Aloha Airlines Flight 243, 1988
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SQP Summary

Matrix-free full-space SQP algorithm with trust regions.

Handles inequality constraints – control and state constraints.

Linear solver accuracy adjusted dynamically, based on SQP progress.

Approximate Schur preconditioning reuses forward PDE solvers.

Fully scalable – assuming scalable forward PDE solvers.
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Inverse Estimation of Parameters in Linear
Elastodynamics

Problem Overview

NLP Problem

Results
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Problem Overview
Find the shear modulus µ and bulk modulus κ from measurements
{ûi}i=1,...,d related to the solution {ui}i,...,d of the boundary value problem

−σij, j = ω2ρui in Ω,
ui = 0 on Γu,

σijnj = τi on Γτ .

The stress tensor σij is defined as

σij = µCµ
ijklεkl(u) + κCκ

ijklεkl(u)

Cµ
ijkl = δikδjl + δilδjk −

2

3
δijδkl Cκ

ijkl = δijδkl

and the strain tensor is defined to be the symmetric part of the displacement
gradient, as follows,

εij(u) =
1

2
(ui,j + uj,i ).

Here, Ω ⊆ Rd , d = {1, 2, 3} is the computational domain with boundary ∂Ω
and indices i , j , k , and l take on values 1, . . . , d .
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Full-Space L2 Formulation
Problem
We consider the following nonlinear programming problem (NLP):

minimize
(u,µ,κ)∈U×G×B

{
1

2
‖ui − ûi‖2 + R(µ) + R(κ)

}
subject to −σij, j = ω2ρui in Ω

σijnj = τi on Γτ

where U = {ui :ui ∈ H1(Ω), ui = 0 on Γu}, G = {µ :µ ∈ L2(Ω)}, B = {κ :
κ ∈ L2(Ω)}.
Lagrangian

L(ui , µ, κ, λi ) =
1

2
‖ui−ûi‖2+R(µ)+R(κ)+〈λi ,−σij, j−ω2ρui 〉+〈λi , τi−σijnj〉Γτ

First-Order Necessary Optimality Conditions

F (ui , µ, κ, λi ) =


(ui − ûi )− (Cijklεkl(λ)), j − ω2ρui in Ω

∇µR(µ) + εij(λ)Cµ
ijklεkl(u)

∇κR(κ) + εij(λ)Cκ
ijklεkl(u)

−(Cijklεkl(u)), j − ω2ρui in Ω; τi − σijnj on Γτ

 = 0
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Full-Space L2 Formulation

Hessian of the Lagrangian

F ′(ui , µ, κ, λi )(δui , δµ, δκ, δλi ) =


A B C D
E F 0 G
H 0 I J
K L M 0


Jacobian

D = −(Cijklεkl(δ̂λ)), j − ω2ρ δ̂λi G = εij(δ̂λ)Cµ
ijklεkl(u) J = εij(δ̂λ)Cκ

ijklεkl(u)

K = −(Cijklεkl(δ̂u)), j − ω2ρ δ̂ui L = −(δ̂µCµ
ijklεkl(u)), j M = −(δ̂κCκ

ijklεkl(u)), j
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Full-Space L2 Formulation

Hessian of the Lagrangian

F ′(ui , µ, κ, λi )(δui , δµ, δκ, δλi ) =


A B C D
E F 0 G
H 0 I J
K L M 0


Hessian Operator

A = β δ̂ui B = −(δ̂µCµ
ijklεkl(λ)), j C = −(δ̂κCκ

ijklεkl(λ)), j

E = εij(λ)Cµ
ijklεkl(δ̂u) F = ∇2

µR(µ)δ̂µ

H = εij(λ)Cκ
ijklεkl(δ̂u) I = ∇2

κR(κ)δ̂κ
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Results

Undeformed Grid Deformed Grid

Our domain D is [−1, 1]2, the grid is uniform triangular, 128× 128
Data is sampled on a finer grid 256× 256
We solve the PDE using Galerkin FEM with a piecewise linear basis
As the initial guess, we use constant µ = 1 Pa and κ = 1 Pa
Total number of unknowns is equivalent 99, 330
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Results

Target Shear Modulus Target Bulk Modulus

Our domain D is [−1, 1]2, the grid is uniform triangular, 128× 128
Data is sampled on a finer grid 256× 256
We solve the PDE using Galerkin FEM with a piecewise linear basis
As the initial guess, we use constant µ = 1 Pa and κ = 1 Pa
Total number of unknowns is equivalent 99, 330
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Computed Parameters, No Noise

Shear Modulus Bulk Modulus
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Computed Parameters, 3% Noise

Shear Modulus Bulk Modulus
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SQP Performance

We observed quadratic convergence in all numerical studies
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Inverse Estimation of Parameters in Nonlinear
Elastostatics

Problem Overview

NLP Problem

Results
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M. Aguiló, D. Ridzal, J. Young Inverse Estimation of Parameters in large-scaled PDE models 13



Problem Overview
Find the shear modulus µ and bulk modulus κ from measurements
{ûi}i=1,...,d related to the solution {ui}i,...,d of the boundary value problem

−(FiKSKL),L = 0 in Ω0,
ui = 0 on Γ0

u,
(FiKSKL)n

0
L = τ 0

i on Γ0
τ .

For a Saint Venant-Kirchhoff Material, the second Piola-Kirchhoff stress
tensor SKL is defined as

SKL = µCµ
IJKLEIJ + κCκ

IJKLEIJ

Cµ
IJKL = δIKδJL + δILδJK − (2/3)δIJδKL Cκ

IJKL = δIJδKL

The deformation gradient FiK and Green-Lagrangian strain tensor EKL are
respectively defined as

FiK =
1

2

(
∂ui

∂X 0
K

+ δiK

)
EIJ =

1

2
(FiKFiL + δKL) .

Here, Ω0 ⊆ Rd , d = {1, 2, 3} is the computational domain on the reference
configuration with boundary ∂Ω0 and indices i,I,J,K and L take on values
1, . . . , d .
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Full-Space L2 Formulation
Problem
We consider the following NLP:

minimize
(u,µ,κ)∈U×G×B

{
1

2
‖ui − ûi‖2 + R(µ) + R(κ)

}
subject to −(FiKSKL),L = 0 in Ω0

(FiKSKL)n
0
L = τ 0

i on Γ0
τ

Lagrangian

L(ui , µ, κ, λi ) =
1

2
‖ui−ûi‖2+R(µ)+R(κ)+〈λi ,−(FiKSKL),L〉+〈λi , τ

0
i −(FiKSKL)n

0
L 〉Γ0

τ

First-Order Necessary Optimality Conditions

F (ui , µ, κ, λi ) =
β (ui − ûi )− (λi,KSKL),L − (FiK(CIJKL (FjKλj,L + λj,KFjL))),L in Ω0

∇µR(µ) + λi,LFi,KC
µ
IJKLEIJ

∇κR(κ) + λi,LFi,KC
κ
IJKLEIJ

−(FiKSKL),L in Ω0 ; τ 0
i − (FiKSKL)n

0
L on Γ0

τ

 = 0
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Full-Space L2 Formulation

Hessian of the Lagrangian

F ′(ui , µ, κ, λi )(δui , δµ, δκ, δλi ) =


A B C D
E F 0 G
H 0 I J
K L M 0


Jacobian

D = −(FiKCIJKL(FjK
cδλj,L + cδλj,KFjL)),L G = cδλiLFiKC

µ
IJKLEIJ J = cδλiLFiKC

κ
IJKLEIJ

−(cδλi,KSKL),L

K = −(FiKCIJKL(FjK
cδuj,L + cδuj,KFjL)),L L = −(cδµFiKC

µ
IJKLEIJ),L M = −(cδκFiKC

κ
IJKLEIJ),L

−(cδui,KSKL),L
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Full-Space L2 Formulation

Hessian of the Lagrangian

F ′(ui , µ, κ, λi )(δui , δµ, δκ, δλi ) =


A B C D
E F 0 G
H 0 I J
K L M 0


Hessian Operator

A = cδui − (λi,KCIJKL(FjK
cδuj,L + cδuj,KFjL)),L − (cδui,KCIJKL(FjKλj,L + λj,KFjL)),L

−(FiKCIJKL(cδuj,K λj,L + λj,K
cδuj,L)),L

B = −(cδµ Fi,KC
µ
IJKL(FjKλj,L + λj,KFjL)),L C = −(cδκ Fi,KC

κ
IJKL(FjKλj,L + λj,KFjL)),L

−(cδµ λi,KC
µ
IJKLEIJ),L −(cδκ λi,KC

κ
IJKLEIJ),L

E = λi,LFi,KC
µ
IJKL(FjK

cδuj,L + cδuj,KFjL) + λi,L
cδui,KC

µ
IJKLEIJ F = ∇2

µR(µ)

H = λi,LFi,KC
κ
IJKL(FjK

cδuj,L + cδuj,KFjL) + λi,L
cδui,KC

κ
IJKLEIJ I = ∇2

κR(κ)
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Results

Undeformed Grid Deformed Grid

Our domain D is [−1, 1]2, the grid is uniform triangular, 200× 200
Data is sampled on a finer grid 400× 400
We solve the PDE using Galerkin FEM with a piecewise linear basis
As the initial guess, we use constant µ = 1 Pa and κ = 1 Pa
Total number of unknowns is equivalent 161, 202
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Results

Target Shear Modulus Target Bulk Modulus

Our domain D is [−1, 1]2, the grid is uniform triangular, 200× 200
Data is sampled on a finer grid 400× 400
We solve the PDE using Galerkin FEM with a piecewise linear basis
As the initial guess, we use constant µ = 1 Pa and κ = 1 Pa
Total number of unknowns is equivalent 161, 202
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Computed Parameters, No Noise

Shear Modulus Bulk Modulus
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Computed Parameters, 3% Noise

Shear Modulus Bulk Modulus
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SQP Performance
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Further Advances

Precise Embedding of Uncertainty into the
Inverse Problem Formulation

To directly incorporate the notion of uncertainty into the mathematical
formulation of the inverse problem we require

Research: Advances in algorithmic research such as new
optimization algorithms, parallel solvers, and numerical methods for
stochastic computation

Numerical Tools: Use of the best available numerical tools for a
rigorous implementation of the advances in algorithmic research
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Conclusions

For large-scale PDE-constrained inverse problems:

We can successfully apply the SQP to relevant large-scale inverse
problems in solid mechanics
We can successfully apply the SQP to large-scale inverse problems in
nonlinear elasticity without using continuation methods
Second-order optimization algorithms can achieve quadratic
convergence rates [1]
Advances in algorithmic research are required to accomplish a precise
embedding of stochastic discretizations into our mathematical models

1 D. Ridzal, M. Aguiló, and M. Heinkenschloss “Numerical study of a matrix-free trust-region
SQP method for equality constrained optimization,” Sandia Technical Report
SAND2011-9346, December 2011
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Computed Displacement Field, No Noise

U1 Field U2 Field
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Computed Displacement Field, 3% Noise

U1 Field U2 Field
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