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Modeling and simulation to aid in decision making, such as qualification of high 
consequence systems, is becoming more prevalent. With this increased use of models, there 
arises a need to formally assess the accuracy of the model underlying these decisions. This 
process is referred to as model validation. Furthermore an understanding of the uncertainty 
in the model responses is necessary if the model is used to predict the response of internal 
system components for establishing their performance. These responses, presumably, cannot 
be directly measured and/or multiple pieces of hardware are not available to quantify their 
inherent variability and thus the value of the model is heightened. Additionally, 
requirements on component assessment that require quantification of margins, in the 
presence of uncertainty, provide yet another motivation to use modeling and simulation. In 
this paper, we describe a model validation process to assess the accuracy of a system level 
model and perform an assessment of the model relative to existing data.  

Nomenclature 
𝑓𝑋(𝑥) = Probability density function of random variable, X 
𝐹𝑋(𝑥) = Cumulative density function of random variable, X 
𝑓𝑋(𝑥) = Kernel density estimator of random variable, X 
𝜇𝑋,𝜎𝑋 = Mean and standard deviation of random variable X 
H(f) = Frequency response function (FRF) as a function of frequency 
𝑥𝑙𝑖𝑚 = Least favorable response or windowed frequency response function as a function of frequency 
𝛼  = Statistical significance level 
 
 

I. Introduction  
N recent times there has been an increase in the use of modeling and simulation to support high consequence 
decision making such as the qualification of complex aerospace systems for certain use environments. 

Qualification involves the assessment of whether or not a system and its components will operate in its intended 
manner given a set of inputs. Traditionally, this qualification assessment has been based on the results of 
experiments performed on a very limited number of hardware (usually one) which tests the components of interest to 
some predefined threshold of failure. Given today’s economic and political constraints, it is anticipated that the 
availability of physical experiments for use in the qualification of systems and their components will be greatly 
diminished if not completely gone. Under this scenario is where the value of modeling and simulation is realized and 
thus necessitates the careful specification of circumstances under which a prediction from a mathematical model can 
be used in lieu of an experimental result. The use of modeling and simulation to aid in the qualification process is 
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conceptually shown in Figure 1. Notice in the figure the use of a “validated” model. This refers to the use of model 
predictions when the mathematical model is “proven” to be a satisfactory substitute for the experiment. The process 
of “proving” that a prediction from a mathematical model can be used in place of an experiment is referred to as 
model validation.  
 
 

 
Figure 1. Conceptual use of modeling and simulation to aid in component qualification. 

 
 One formal definition of validation is the “process of determining the degree to which a computer model is an 
accurate representation of the real world from the perspective of the intended model applications.”1,2 The definition 
implies that validation is accomplished through comparison of the responses predicted with a mathematical model to 
the responses realized by a physical system during an experiment. Therefore, such comparisons are an integral part 
of the validation process. But, of course, some knowledge of the predictive accuracy of the mathematical model 
away from the points in the parameter/environment space where the comparisons are made is usually sought. This 
knowledge relies on an understanding of the interpolative and extrapolative fidelity of the mathematical model. 
Much remains to be learned about how these types of inferences can be made and are not treated in this paper. 
 An important physical reality that influences the comparisons to be performed in a validation analysis is that real 
systems are stochastic. In a structural dynamic system, this is so for many reasons. Among others, nominally 
identical structures differ randomly from one to the next because of dimension tolerance uncertainties, material 
property differences, and differences in fabrication details. Further, different assemblies of one collection of 
structural parts behave differently because of variations in details of connections, continuous changes in structural 
component behavior during tests, and variations in test conditions. These facts indicate that a validation process 
must accommodate the comparison of deterministic-to-random and random-to-random quantities. The 
experimental/numerical example presented in this paper exercises this requirement. To simulate the stochastic 
variations of structural systems, the mathematical models of these systems have stochastic forms. An application 
problem which revolves around the pictorial representations shown in Figure 2 will be used to demonstrate the 
validation process described in this paper.  
 

A. Physical System 
The schematic shown in Figure 2 refers to a physical system which is made up of components and it is subjected to 
external loads which in turn excite some responses. The details of the physical system shown in the figure are: 

• External loads excite the entire structural system.  
• Entire structure and all the components it contains respond.  
• System responses near input points to system components are component environments.  
• Component environments excite system components.  
• Components respond to inputs. 
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Figure 2. External load excites physical system. System responds, and motions near components are input 

environments for components. Components respond to environments. 
 

B. System Model  
A system model simulates the behavior of a system in pre-established use environments. When inputs are specified, 
system responses can be predicted. The model can be: 

• Deterministic: Represents, in some sense, the average behavior or extreme behavior, of the physical 
system. System identification (calibration) techniques should be used to assure accuracy of model. 

• Stochastic: Represents the spectrum of behaviors that physical system might realize. 
o Normally, collection of components modeled as random. 
o Probability laws of behaviors of components must be identified (calibrated). 
o Realizations of component parameters might be generated via Monte Carlo analysis. 

• External loads obtained from analysis of physical experiments excite the model of the entire structural 
system. (Components in this model constructed to have the resolution required to obtain valid results.) 

• Response computed for entire structure and all the components it contains.  
• Computed system responses near input points to system components are component environments.  
• Computed component environments excite system components in laboratory experiments. 
• Physical components respond to experimental inputs. 

 

II. Validation Procedure 
Model validation is a comparison of some measure(s) of behavior of a mathematical model to the corresponding 

measure(s) of behavior estimated from an experimental system. A widely accepted tenet of model validation is that 
any comparison between a mathematical model calibrated to a physical experiment and a measure of data from the 
same physical experiment cannot form the basis for a meaningful validation. The mathematical model used in the 
comparison must be predictive – built from fundamental principles – or at least calibrated to experimental results 
different from those used in the validation analysis. The comparison would be an easy one if physical systems were 
deterministic and our measurements of their behaviors were noise-free. We would simply compare the outputs of a 
deterministic mathematical model to the deterministic measure of physical system behavior. If they agreed 
“satisfactorily” then the model would be judged valid. However, measurements of physical system behavior are 
always noisy. The boundary conditions and excitations of physical systems are practically always random. 
Unmeasured factors in the environment affect physical system response. And distinct physical systems drawn from 
ensembles of nominally identical structures differ randomly - sometimes substantially3,4. Modern mathematical 
modeling techniques acknowledge this latter source of structural randomness to form stochastic models5,6. These 
factors complicate the comparison of the behaviors of mathematical models to the behaviors of the structures they 
are meant to represent by requiring the use of probability and statistics to perform the comparison. Figure 3 shows 
the conceptual idea behind model validation in the presence of uncertainty. Note that the model needs to agree not 
only in its mean behavior but ideally it should represent the level of uncertainty present in the actual physical system 
is trying to represent (this is represented by the σ’s shown in the figure). Although the figure shows a response that 
follows a Gaussian distribution, this is not a requirement for the methodology described herein to work.  
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Figure 3. The model validation conceptual picture and basic questions. 

 
From a procedural point of view and before a well-structured validation comparison can be performed, there are 

several decisions that must be made and criteria to be defined. A listing of items to be considered and decisions to be 
made before commencement of calibration and validation experiments, and model predictions is given below7: 

• Specify the model use/purpose, and the response measures of interest. Model use/purpose should indicate 
whether the model is intended for use in preliminary/intermediate/advanced analysis and prediction. 
Measures of interest are the quantities the mathematical model was constructed to predict.  

• Specify validation metrics and domain of comparison. The validation metric defines the way in which the 
model/experiment comparison will be made, for example, differences of response measures. Domain of 
comparison indicates ranges of excitation, boundary conditions, etc., within which validation comparisons 
are to be carried out. 

• Specify calibration experiments. Physical experiments to be used to calibrate the mathematical model 
parameters (i.e., identify the model parameters) must be defined. 

• Specify validation experiments. These identify physical system environments, boundary conditions, etc., 
whose responses must be satisfactorily predicted by the mathematical model in order for the model to be 
deemed adequate. They may involve interpolation among and/or extrapolation outside the points in 
environment/parameter space where calibration was performed. 

• Specify adequacy criteria. These define the degree of accuracy the model-predicted measures of interest 
relative to experimentally inferred measures of interest required of the mathematical model. In an ideal 
scenario, these criteria will be specified by the customer and will be relevant to the intended application. In 
practice, specification of this is not a straightforward proposition and most of the times it is an iterative 
process.  

• Perform computational model predictions of validation experiment responses. To maintain the integrity of 
the validation process, results are normally withheld from experimentalists. 

• Perform validation comparisons. Compute measures of interest of experimental system and computational 
model responses, then validation metrics are computed. Judge the adequacy of the computational model.  

 
In the following section, we describe a probabilistic/statistical framework for the comparison of stochastic 

mathematical models and the systems they are meant to represent. The construct demonstrated here permits the 
characterization of the physical systems using the tools of probability and statistics. This part of the framework can 
be used when experimental data are available. In addition, the framework permits the incorporation of results from 
stochastic system analysis into the comparison. We assume that the physical system under consideration and its 
mathematical model will be compared using one of the metrics defined in Table 1. The advantages and 
disadvantages related to each of the metrics are also listed on the table.  
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Table 1.  Metrics for Comparison of Transient Responses of Structural Dynamic Systems 
Metric Advantages Disadvantages 
Time history  Directly measured 

 Easy to interpret 
 Difficult to match, directly 

Fourier transform 
spectrum 

 Easy to compute 
 Does not rely on phase 
 Contains “important” part of 

information from time history 

 May be difficult to match, unless 
smoothed 

 Non-unique 

Temporal moments  Easy to compute 
 Characterizes signal shape 
 Potential for match is reasonable 

 Non-unique 
 Use of few moments may yield 

apparent match that is 
unsatisfactory for some purposes 

Shock response 
spectrum 

 De facto standard in most shock labs 
 

 Insensitive to shock details 
 May yield misleading conclusions 
 Difficult to understand 
 Non-unique 

Choi-Williams 
expansion 

 Estimate of time-varying spectral 
density 

 Mathematically well-founded 

 Theoretical details may be difficult 
 Non-unique 
 Difficult to obtain with few 

measured realizations 
Wavelet 
decomposition 

 Easy to compute 
 Compresses signal information into a 

few important components 

 Phase mismatches may cause 
apparent differences where match 
is good 

 Does not yield moments directly 
(but problem may be 
circumvented) 

Time-varying 
spectral density 

 Fundamental measure of non-
stationary random process 

 Estimates other than Choi-Williams 
available 

 Non-unique 
 Difficult to obtain with few 

measured realizations 

Principal 
components/KL 
expansion 

 Easy to compute 
 Compresses signal information into a 

few important components 

 Requires metric to compare 
principal shapes 

 
The measure to be used in this paper is a measure of the frequency response function (FRF) of a structure. To define 
the FRF let 𝑞(𝑡), 𝑡 ≥ 0 denote the single force excitation applied to a structure at a point, and let 𝑥̈(𝑡), 𝑡 ≥ 0 denote 
the response that the force excites at a point. (The FRF can also be defined for motion inputs.) The Fourier 
transforms of the excitation and response are defined as: 
 

𝑄(𝑓) = ∫ 𝑞(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡∞
0         −∞ < 𝑓 < ∞                                                    (1) 

𝑋2(𝑓) = � 𝑥̈(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
∞

0
        −∞ < 𝑓 < ∞ 

 
where the subscript “2” in the second expression indicates that this is the Fourier transform of a second derivative of 
a function. The FRF relating response to excitation is defined 
 

𝐻(𝑓) = 𝑋2(𝑓)
𝑄(𝑓)

     −∞ < 𝑓 < ∞                                                                (2) 
 
for all 𝑋2(𝑓)  ≠ 0. 
 For the purposes of a validation comparison it is sometimes not convenient to compare one function to another. 
The reason is that in some situations functions may compare quite favorably over most of their domain of 
comparison, but not as well over a small interval. In such a situation it may be difficult to assess the adequacy of the 
comparison. Therefore, we define a measure of the FRF known as the least favorable response (LFR). It is 
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𝑥𝐿𝑖𝑚 = ∫ 𝑊(𝑓)|𝐻(𝑓)|𝑑𝑓∞
0                                                                   (3)       

 
Where 𝑊(𝑓), 𝑓 ≥ 0 is a nonnegative, absolutely integrable function; it is a windowing function. The LFR, 𝑥𝐿𝑖𝑚, is a 
bound on the response of a linear system with FRF H(f) to excitations whose Fourier transform moduli are bounded 
by W(f).  The LFR will be used later in the validation examples where W(f) is a symmetric function, and will be 
associated with the center frequency of W(f).  Conceptually, this process is shown in Figure 4. The LFR is the 
integration shown in Equation 3.  
 

 
Figure 4. Top Figure: Some FRFs of a system response; Bottom Figure: An example of windowing functions 

centered at some selected frequencies 
 

One or more FRFs of a structure can be computed for experimentally measured and model-predicted responses. 
When the FRFs of some model-predicted responses are satisfactorily near the FRFs of experimentally measured 
responses, then the mathematical model is a satisfactory representation of the physical system with respect to force 
in/acceleration out FRF measures. The latter statement is what the model validation process seeks to address. The 
next section shows a specific approach to perform this assessment in a probabilistic framework.  
 

III. Validation assessment based on Test of Hypothesis  
During the performance of every model validation analysis, there is a need to establish a framework and 

procedure for comparing measures of system response obtained from the model to corresponding measures of 
system response obtained from validation experiments on the structure that is the object of the model. There are less-
formal approaches for performing the comparison including, for example, simply observing whether or not the 
model-predicted measures of response are within some arbitrary, customer-selected, distance of the experimental 
measures of response. However, more formal approaches may be desired. In the case where the model and/or 
experiment are stochastic and the measure of response is discrete, methods of fundamental statistics might form the 
basis for validation comparisons. This section summarizes a formal approach to validation comparisons with roots in 
statistical test of hypothesis8 (TOH). 

The idea underlying TOH is to establish whether or not a particular statistic of computed data might plausibly 
have arisen from a particular random source. In a validation analysis we would establish a hypothesis: A measure of 
structural dynamic response obtained from a model is a realization of the random source of the corresponding 
measure of structural dynamic response obtained from experiment. We would then proceed to establish whether or 
not the hypothesis can be rejected. If not, and if the comparison has been fairly specified, then we would pronounce 
the model validated, at least, for the measure of response considered, at the location where the comparison was 
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performed, in the frequency range considered, etc. (Of course, we acknowledge that the model-predicted measure of 
response cannot actually come from the experimental random source – the model produces, at best, accurate 
simulations of the experimental source. Still, the comparison can work, in practice.) 

In order to develop the method mathematically, denote a random measure of experimental structural dynamic 
response 𝑀(𝑒); the quantity is a random variable. Assume that we know (or can obtain, approximately) the 
probability distribution of 𝑀(𝑒); its probability density function (PDF) is 𝑓𝑀(𝑒)(𝛽),−∞ < 𝛽 < ∞. For now, assume 
that the model is deterministic. Denote the model-generated prediction of the measure of response of the experiment 
𝑚(𝑎). (The superscript “𝑎” indicates that the value comes from analysis.) Our hypothesis is: The model-predicted 
measure of response, 𝑚(𝑎), comes from the random source 𝑀(𝑒). In order to test the hypothesis at the 𝛼-level of 
significance, we establish the (1 − 𝛼) × 100% probability interval surrounding the mean of 𝑀(𝑒), then observe 
whether or not the quantity 𝑚(𝑎) lies within the interval. If it does, then we cannot reject the hypothesis; otherwise, 
we can. We establish the probability interval �𝐸�𝑀(𝑒)� − ∆(1−𝛼 2⁄ ),𝐸�𝑀(𝑒)� + ∆(1−𝛼 2⁄ )� by solving for ∆(1−𝛼 2⁄ ) in 
the relation 
 

 𝑃�𝐸�𝑀(𝑒)� − ∆(1−𝛼 2⁄ )< 𝑚(𝑎) ≤ 𝐸�𝑀(𝑒)� + ∆(1−𝛼 2⁄ )�           
= 𝐹𝑀(𝑒)�𝐸�𝑀(𝑒)� + ∆(1−𝛼 2⁄ )� − 𝐹𝑀(𝑒)�𝐸�𝑀(𝑒)� − ∆(1−𝛼 2⁄ )� = 1 − 𝛼     (4) 

 
where 𝐹𝑀(𝑒)(𝛽),−∞ < 𝛽 < ∞ is the cumulative distribution function (CDF) of the random variable, 𝑀(𝑒). 
Depending on the form of the CDF, the interval may be established via closed-form calculation, or numerically. This 
is the simple basis for TOH-based validation analysis. When a model “passes” the validation comparison, it is 
judged valid for the measure of response considered, at the time or frequency considered, at the location considered, 
etc. 
 It is typical, however, that multiple measures of structural dynamic response are generated by the model, for 
multiple locations, multiple times or frequencies, and/or multiple physical measures of response. In such a situation 
we are confronted with the need to simultaneously validate the model with respect to a collection of measures, 
𝑀𝑘

(𝑒), 𝑘 = 1, … ,𝑛𝑒, where 𝑛𝑒 denotes the number of measures. In this case we simply determine a collection of 𝑛𝑒 
intervals as in (1) for each 𝑀𝑘

(𝑒). Clearly, with increasing 𝑛𝑒 the chances of passing all the validation comparisons 
diminishes, no matter how accurate the model.  
 To accommodate that tendency, we note that level of significance, 𝛼, in the TOH corresponds to the chance that 
an accurate model will satisfy the requirement that 𝑚𝑘

(𝑎) will lie within the interval �𝐸�𝑀𝑘
(𝑒)� − ∆(1−𝛼 2⁄ ),𝑘,𝐸�𝑀𝑘

(𝑒)� +
∆(1−𝛼 2⁄ ),𝑘�. If the model is an accurate representation of the experiment, then in approximately (1 − 𝛼) × 100% of 
the comparisons performed, 𝑚𝑘

(𝑎) will lie within the interval. Whether or not 𝑚𝑘
(𝑎) falls within the interval is a binary 

event, therefore, we note that successful satisfaction of the requirement, “𝑚𝑘
(𝑎) lies within the interval �𝐸�𝑀𝑘

(𝑒)� −
∆(1−𝛼 2⁄ ),𝑘,𝐸�𝑀𝑘

(𝑒)� + ∆(1−𝛼 2⁄ ,𝑘)�,” is the outcome of a Bernoulli trial. Denote by 𝑁𝑠 the random variable that defines 
the number of times in 𝑛𝑒 comparisons that 𝑚𝑘

(𝑎) lies within the interval �𝐸�𝑀𝑘
(𝑒)� − ∆(1−𝛼 2⁄ ),𝑘,𝐸�𝑀𝑘

(𝑒)� +
∆(1−𝛼 2⁄ ,𝑘)�. The random variable 𝑁𝑠 has a binomial probability distribution with probability of success (1 − 𝛼), and 
range of realizations (0,1, … ,𝑛𝑒). 
 During a validation analysis we would, normally, not simply wish to accept a model that is “good on average,” 
but rather, we might wish to accept a model that cannot be rejected in a second-level TOH. To develop such a TOH, 
we first establish the second-level hypothesis: Each comparison performed in the first TOH is a Bernoulli trial with 
the probability of success (1 − 𝛼); the collection of 𝑛𝑒 comparisons is mutually, statistically independent. To test 
the second-level hypothesis at the 𝛾 level of significance, we form the CDF of an 𝑛𝑒-trial, binomial random variable 
with probability of success, (1 − 𝛼). That CDF is 
 

 𝑃(𝑁𝑠 ≤ 𝑛) = 𝐹𝑁𝑠(𝑛) = ∑ �𝑛𝑒𝑖 � (1 − 𝛼)𝑖𝛼(𝑛𝑒−𝑖)𝑛
𝑖=1         0 ≤ 𝑛 ≤ 𝑛𝑒    (5) 

 
where �𝑛𝑒𝑖 � is the binomial coefficient. We find the (1 − 𝛾) × 100% percentage point, 𝑛𝛾, of the binomial 
distribution through numerical inversion of (2). (The percentage point will, normally, not be an integer, so we round 
the result to the nearest integer.) If the number of positive comparisons (i.e., comparisons in which 𝑚𝑘

(𝑎) lies within 
the interval �𝐸�𝑀𝑘

(𝑒)� − ∆(1−𝛼 2⁄ ),𝑘,𝐸�𝑀𝑘
(𝑒)� + ∆(1−𝛼 2⁄ ,𝑘)�) is smaller than 𝑛𝛾, then the hypothesis is rejected; 
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otherwise, the hypothesis is not rejected. In the latter case, the model “passes” the validation comparison and it is 
judged valid for the measures of response considered, at the times or frequencies considered, at the locations 
considered, etc.  We can reverse the framework when the model is stochastic and there is only one experiment or a 
few experiments. 
 

IV. Demonstrative Example  

A. Overview 
 To demonstrate the validation methodology described in the previous section, we use a structural dynamics 
example for a system that schematically shown in Figure 5. The system is excited on the right end with a low level 
impact from a soft-tipped, instrumented hammer and acceleration responses are measured at 3 locations: 1) at mid-
span on an interior point (location not shown in the Figure), 2) at mid-section on an exterior location and on the left 
most end. The measurements are made using triaxial accelerometers. To perform an analysis, a 3D model using 
solid elements was constructed and analyzed using Sandia National Laboratories’ (Sandia) developed structural 
dynamics code, Salinas9. This model has on the order of 1 million degrees of freedom and to perform linear transient 
analysis, the run times are in excess of 12 hours each. In order to enable uncertainty quantification, multiple runs are 
necessary and thus a more efficient model needed to be created. 
 

  
Figure 5. Schematic of system used to demonstrate validation methodology. 

 
 
As described in the paper by Ross at el10, the full 3D model shown in Figure 5 was reduced using a Craig-Bampton 
reduction approach and a schematic of this reduction is shown in Figure 6. This reduced order model will be referred 
to as the high efficient model (HEM). Details on how the reduction was done are in Reference 10. For comparison, 
the computational time to run this model was on the order of 6-8 hours on a computer cluster.  
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Figure 6. Craig-Bampton reduction of full model. 

 
 
For completeness, an acceleration time history comparison of the full 3D model to the reduced order model is shown 
in Figure 7. This figure shows that the HEM model is a good surrogate of the 3D model, at least from a visual 
comparison. A more quantitative comparison between the full 3D model and the HEM model is given in Reference 
10 
 
 

 
Figure 7. Acceleration time history comparison of full model to HEM model. 

 
 
From the basic understanding of the relevant physical phenomena controlling the response of interest coupled with a 
sensitivity analysis based on modal responses, a set of model parameters was selected and a probability model for 
each one was chosen. For this example, only bounding information on the selected parameters was available; 
therefore, a uniform distribution was selected as the probability model for all parameters. The parameters and their 
bounds are shown in the table below. In all, 22 random variables were considered in this example. 
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Table 2. Model parameters of interest and their bounds 
Parameter Lower bound Upper bound 

Damping – mass proportional stiffness 5.0e-7 5.0e-6 
Damping – stiffness proportional stiffness 1.0e-4 1.0e-3 

Silicon material – modulus of elasticity 100 psi 1300 psi 
Silicon material – Poisson’s ratio 0.45 0.4999 

Translational stiffness at interfaces (3 directions @ 3 locations) 7.0e6 lb/in 1.3e7 lb/in 
Rotational stiffness at interfaces (3 directions @ 3 locations) 7.0e6 lb/in 1.3e7 lb/iin 

 

B. Analysis and Results 
 To propagate parametric uncertainty through the model, 80 Latin hypercube sample sets were generated using 
Sandia’s DAKOTA11 software. Each sample set consisted of 22 realization of each of the parameters shown in Table 
2. For each sampled parameter set, a model output consisting of accelerations at the 3 response locations of interest 
were obtained. From the acceleration responses, the FRFs and the LFRs were calculated using Equations 1 through 
3. These results as well as the measured response from one physical system are shown in Figure 8 through Figure 
10. By observing these figures, it is noted that the system model in general captures the main characteristics of the 
actual physical system. The beating phenomena, the principal modes of vibration and the decay in the acceleration 
time history, albeit at a different rate are present in the model results as compared to the experimental data. The 
effect of parametric uncertainty is also observed, especially in the LFRs (shown in Figure 8 through Figure 10 part 
c), where the cluster of dots at each frequency of interest span a large range. It is worthwhile to point out that the 
location and width of the windows used to calculate the LFR are determined based on the specifics of the problem. 
For this example, the locations (center frequencies) correspond to the modes of interest of the system. The window 
widths were either narrow or wide depending on how many features (i.e. modes) we felt were appropriate to include. 
This is a judgment call and it is problem dependent. The windows selected for this example are for illustration of the 
method only.  
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Figure 8. Results of middle section - inner point  

a) Acceleration time history, b) Frequency response function (FRF) and windows, c) Least Favorable 
Response (LFR)  
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Figure 9. Results of middle section – outside  

a) Acceleration time history, b) Frequency response function (FRF) and windows, c) Least Favorable 
Response (LFR) 
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Figure 10. Results of left end  

a) Acceleration time history, b) Frequency response function (FRF) and windows, c) Least Favorable 
Response (LFR) 

 
One final set of results that can be obtained from the analysis is the relative contribution of different sources of 
uncertainty to the response quantity of interest. In this case, we examine two sources, 1) due to parametric 
uncertainty and 2) due to use of the HEM  model. Their contribution is shown relative to the measure of interest, in 
this case, the LFR and these are plotted in Figure 11. The 3 plots represent the 3 locations of interest. Shown in these 
figures is evidence that for this particular measure of response, the parametric uncertainty encompasses the error due 
to using a reduced order model. It is interesting to note that on one of the response locations (shown in the upper left 
hand plot in Figure 11), particularly in window location #5, the reduced order model has the larger error when 
compared to all other window locations within the same response locations and among the other locations. This 
brings up the fact that the model might not have the same uncertainty at all locations and thus this fact will have to 
be included in the validation assessment, which will be examined in the following section.   
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Figure 11: Sources of uncertainty and their relative contribution 

 
 

C. Model validation assessment 
 To demonstrate the validation methodology shown in Section III, we use the result obtained in the previous 
section. We are provided with a collection of FRFs such as those shown in Figure 8 through Figure 10 part b. Shown 
there are FRFs predicted with a collection of model responses (blue lines), and one FRF modulus obtained from test 
data (red line). The objective in this validation assessment is to use statistical test of hypothesis (TOH) to establish 
whether the experimental LFR can be rejected as arising from the random source of the model LFR. From Figure 12, 
the blue dots show the results for the model-generated LFRs and the red square shows the result for the experimental 
LFR as calculated using Equation 3. To illustrate the method, the first window is shown at left, bottom plot. The 
blue dots have the CDF approximator shown at right, bottom. The LFR of the experimental FRF occurs at the 
location identified with the red line. The hypothesis is that the experimental datum arises from the random source 
that produced the model data. To test the hypothesis at the 𝛼 level of significance 𝛼 = 0.05%, we do the following: 
 

• Compute the 𝛼 2⁄  and 1 − 𝛼 2⁄  percentage points from the CDF. The percentage points are shown by the 
black lines 

• When the experimental result lies within the interval indicated by the black lines, the hypothesis cannot be 
rejected 

• Otherwise the hypothesis is rejected 
• When a sufficient number of tests yield “non-rejection” results the model is validated 
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Figure 12. Validation comparison 

 
 
From Figure 13, tests of hypothesis were performed for seven sets of data with 𝛼 = 0.05 (Top figure). These seven 
sets correspond to the 7 center frequencies used to calculate the LFR. At one of these frequency center locations, the 
model was rejected (REJ); in six it was not (DNR). If the experiment data arise from the random source of the model 
data, probability of “Do Not Reject” is: 
 

 𝑝 = 1 − 𝛼 = 0.95             (7) 
 
Further, if we treat the TOH as seven Bernoulli trials with two possible outcomes, the probability of j “success” is 
Binomial. The binomial CDF is shown in the bottom plot of Figure 13. A key question that arises is: How many 
outcomes must be DNR to validate the model? To determine this, we choose a probability, 𝛼2, acceptable for 
rejecting the correct model. This represents the significance level of this second test. In this case and for illustration 
purposes, 𝛼2 = 0.05 which then says, j=5 positive results would be necessary to validate the model. There are six 
DNRs, so the model is deemed validated using this criterion. In an actual application, the level of significance will 
be determined by the end use of the model and the context in which this model is being use (i.e. to support design 
trade off studies will require a lesser level of rigor in the specification of the significance level relative to the case in 
which the model is directly used to support certification of a component in a large system). 
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Figure 13. Validation assessment @ 7 window locations 

 
 

V. Summary 
In this paper, we demonstrate a model validation process to assess the accuracy of a model of a complex 

mechanical system relative to a specific use environment. The assessment process entails: (1) the definition of 
suitable response measures that are relevant in the anticipated use environment; (2) a criteria to assess whether the 
model is adequate or not; and (3) a metric by which to assess the difference in the model versus experiments. Of 
major importance in this assessment is the examination of the uncertainty captured by the modeling and simulation 
process. The total uncertainty predicted by the modeling and simulation effort is the “sum” (not necessarily a linear 
combination) of different sources of uncertainty, such as that arising from parametric uncertainty, model form, 
solution inadequacy, etc. These need to be accounted for if we sought to make the best informed decision relative to 
qualification of a system to a given environment.  
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