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GaN HEMTs for High Breakdown Voltage
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Low Al percentage AlGaN required to reduce 2DEG density.
Carbon doping employed in buffer to avoid punch-through.

Wide bandgap GaN —
theoretically has the
highest breakdown voltage
limit for given R,, (among
Si, SiC, GaN)

Greater commercial
capability due to
integration on Silicon.

Degradation mechanisms widely studied for RF HEMTs, with larger Al molefraction.
Low Al molefraction AlGaN has been studied comparitively less.
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The Devices
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4 Device Types
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Alo.1s5Gao.ssN Alo.26Gao 74N
(C - doped buffer - (Undoped Buffer
Vor ~ 1800 V max) Vor ~ 600 V max)
Unpassivated Passivated Passivated Unpassivated

(Al203/Si02/Al203)  (Al203/Si02/Al205)

All devices grown on (111) Silicon
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Difference Between On-
State and Off-State Stress
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Vyo= 10V, V,, = OV Vg = 0V, V, = -11V

On-State drain bias produces much slower recovery than Off-
State gate bias.
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Passivated M Degradation [ | Recovery
Unpassivated @ Degradation ' Recovery
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Passivated vs Unpassivated —
Alg.15GaggsN vs Alg 56Gag 74N

Fractional Recovery

= (I d,post-recovery ~
/ d, post-stress)/ ( / d,pre-stress

-1 d,post-rtress) at Vgs =
1V, V, =5V

Lack of passivation
substantially
increases trapping
with fast recovery in
Alg 15Gag gsN
compared to
Aly6Gag.74N



Passivated vs Unpassivated —
Alg15Gag gsN
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# -t based time constant spectra
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TG1 is temperature
independent — most
likely due to
tunneling into 2DEG
states
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1600

Two peaks — TG1 (Ea ~ 0.62
eV) and TG2 are seen
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Vth

shifts and spatial location of TG1, TG2
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[ Al 1:Ga, gsN devices (carbon
- doped) show Vth shifts, unlike the

Alg,6Ga, 74N Even for more than 50

L % current degradation — no V,; shift
[ in non-carbon implanted devices.

- AlGaN is depleted .

- Gate is fairly long (2 microns) —
. near gate trapping should not

[ induce threshold shifts.

- Vth shift is most likely due trapping

in carbon-doped buffer.
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ICarbon Doped Buffer
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}. V,, shifts and spatial location of TG1, TG2

TG1, TG2 are seen in all devices.

V,, shift in carbon doped
samples — there are enough
buffer carriers in off-state to
induce Vy, shifts.

Should have induced slowly
recoverable V,, shifts in all
devices if they were buffer traps

Consistent with being AlGaN
traps
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On-State Drain Bias and Optical Detrapping
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‘ Conclusions

* Gate and Drain Stress produce trapping with different

detrapping characteristics

* Al;,:GaggsN shows much more vulnerability to gate stress in

absence of passivation than Al,,.Ga, ;,N in absence of
passivation.

* Buffer Carbon doping introduces threshold voltage shifts.
* Two components TG1 (E, = 0.62 eV), TG2 (negligible

temperature dependence observed in detrapping.

* Majority of drain bias induced degradation recovered at

optical illumination with 1.65 eV and higher.
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