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MicroCT imaging of porous sandstone and
limestone: Implications on permeability
evolution and mechanical damage

L1 Effect of porosity and connectivity on permeability
and formation factor of porous sandstone.

L1 MicroCT imaging of Fontainebleau sandstone and
simulation of hydraulic and electrical transport.

L1 Limestone as a dual porosity material: Elastic and
Inelastic behavior

L1 MicroCT imaging of Indiana limestone and damage
evolution: partitioning of macro- and micro-porosity,
macropore statisitics and micropore connectivity.

Gaithersburg DOE Geosciences Symposium (2012)



Fontainebleau sandstone: pore geometry,
permeability and formation factor

[l Laboratory measurements

Bourbie & Zinszner (1985); Doyen (1988); David and Darot
(1989); Ruffet et al. (1991); Fredrich et al. (1993); Gomez (2009)

[1 Network and percolation modeling

Yale (1984 ); Zhu et al. (1995); Mavko and Nur (1997); Bernabe
et al. (2011)

1 MicroCT imaging and numerical simulation
Auzerais et al. (1996); Lindquist et al. (2000); Arns et al. (2004)

Gaithersburg DOE Geosciences Symposium (2012)
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Virtual permeametry on microtomographic images

Christoph H. Arns®*, Mark A. Knackstedt®, W. Val Pinczewski®, Nicos S. Martys®
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Fig. 2. Comparison of the numerical prediction of the permeability
simulations for the Fontainebleau sandstone with experimental data.
The lines indicate best fits to the numerical data.
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Multiscale method for characterization of porous microstructures
and their impact on macroscopic effective permeability

W. C. Sun!. I. E. Andrade!* ¥ and J. W. Rudnicki?

Direct Pore-Scale
Simulations
(required
significant
computational
resource)
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Multi-scale framework for analyzing pore geometry and
transport properties

Crofton formula (for Medial axis of pore space
surface area)

Flood-fill algorithm
(for connected

porosity) Start with pore

rrrnnansanneaaee} Geometrical tortuosity
: geometry

Connectivity analysis

Macroscopic Lattice Boltzmann Homogenization Scheme
transport

properties

Hydraulic permeability

hydraulic
tortuosity

Formation factor

Electrical and Electrical conductivity /
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Pore and throat size distributions measured from
synchrotron X-ray tomographic images
of Fontainebleau sandstones

W. Brent Lindquist and Arun Venkatarangan
John Dunsmuir Teng-fong Wong
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Lattice Boltzmann simulation of fluid flow

Porosity=7.43% Porosity= 19.2%

k =0.0316 darcy; FF =332 k =3.08 darcy; FF =8.5
Isolated/Connected Pore Volume = 0.5 Isolated/Connected Pore Volume = 0.036
Connected Pore Volume/Surface Area = 8.9 um Connected Pore Volume/Surface Area =12 um




Comparisons of lattice Boltzmann simulation
results with laboratory measurement
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8 subvolumes (190X190X190, voxel size 5.7 um) of 4 Fontainebleau sandstone
samples with nominal porosities of 7.5, 15, 15 and 22% were analyzed.

32 Lattice Boltzmann (Navier Stokes and diffusion) simulations were conducted.
Permeability and formation factor results are in good agreement with published
experimental data, and previous simulation of Auzerais et al. (1996).



Direct geometrical measurements of pore
geometry in CT images
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Measurement obtained from 32 1mm3 cubic 3D pore geometry in
Fontainebleau Sandstone.

Specimen with lower porosity tends to contain more isolated volume and lower
connected volume per surface area.




Permeability, Formation Factor and Hydraulic Radius
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» |[n the equivalent channel model, paths for hydraulic and electrical transport have
identical “tortuosity” which can be canceled out by multiplying permeability and
formation factor (Paterson, 1983; Walsh and Brace, 1984).

» That the product kF spans over 1 order of magnitude in the 7.5% sample indicates
that the hydraulic and electrical hydraulic tortuosities are significantly different.

» The geometric factor b depends not only on the geometric shape, but also statistical
variation of aperture and shape of the conduits (Bernabe et al., 2011).



