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MicroCT imaging of porous sandstone and 
limestone: Implications on permeability 
evolution and mechanical damage

Gaithersburg DOE Geosciences Symposium (2012)

 Effect of porosity and connectivity on permeability 
and formation factor of porous sandstone.

 MicroCT imaging of Fontainebleau sandstone and 
simulation of hydraulic and electrical transport.

 Limestone as a dual porosity material: Elastic and 
inelastic behavior

 MicroCT imaging of Indiana limestone and damage 
evolution: partitioning of macro- and micro-porosity, 
macropore statisitics and micropore connectivity.



Fontainebleau sandstone: pore geometry, 
permeability and formation factor

Gaithersburg DOE Geosciences Symposium (2012)

 Laboratory measurements
Bourbie & Zinszner (1985); Doyen (1988); David and Darot
(1989); Ruffet et al. (1991); Fredrich et al. (1993); Gomez (2009)  

 Network and percolation modeling
Yale (1984); Zhu et al. (1995); Mavko and Nur (1997); Bernabe
et al. (2011) 

 MicroCT imaging and numerical simulation
Auzerais et al. (1996); Lindquist et al. (2000); Arns et al. (2004)
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Multi-scale framework for analyzing pore geometry and 
transport properties
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Porosity= 7.43% Porosity= 19.2%



Lattice Boltzmann simulation of fluid flow

Porosity= 7.43%
k = 0.0316 darcy;  FF = 332

Isolated/Connected Pore Volume = 0.5
Connected Pore Volume/Surface Area = 8.9 m

Porosity= 19.2%
k = 3.08 darcy; FF = 8.5

Isolated/Connected Pore Volume = 0.036
Connected Pore Volume/Surface Area = 12  m



Comparisons of lattice Boltzmann simulation 
results with laboratory measurement

• 8 subvolumes (190X190X190, voxel size  5.7 m) of 4 Fontainebleau sandstone 
samples with nominal porosities of  7.5, 15, 15 and 22% were analyzed.

• 32 Lattice Boltzmann (Navier Stokes and diffusion) simulations were conducted.
• Permeability and formation factor results are in good agreement with published 

experimental data, and previous simulation of Auzerais et al. (1996). 
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Direct geometrical measurements of pore 
geometry in CT images
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• Measurement obtained from 32 1mm3 cubic 3D pore geometry in 
Fontainebleau Sandstone.

• Specimen with lower porosity tends to contain more isolated volume and lower 
connected volume per surface area. 
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Fontainebleau =7.5%(current study)

Fontainebleau =13%(current study)

Fontainebleau =15%(current study)

Fontainebleau =22%(current study)
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Shape Factor = 2 (circular tubes)

Shape Factor = 3 (cracks)

Shape Factor = 8.3 (current study)

Permeability, Formation Factor and Hydraulic Radius

b=2

b=8.3

 In the equivalent channel model, paths for hydraulic and electrical transport have 
identical “tortuosity” which can be canceled out by multiplying permeability and 
formation factor (Paterson, 1983; Walsh and Brace, 1984).
 That the product kF spans over 1 order of magnitude in the 7.5% sample indicates 
that the hydraulic and electrical hydraulic tortuosities are significantly different.
 The geometric factor b depends not only on the geometric shape, but also statistical 
variation of aperture and shape of the conduits (Bernabe et al., 2011).


