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Random Variables or Random Fields?

Often propagation of uncertainty can be done using scalar
parameters, for bulk material properties.
However, uncertainty can be distributed within a material, along a
boundary, etc.

Figure: Random fields enable spatial/temporal stochastic variables.
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Motivation

Karhunen-Loeve (KL) series are general-purpose random field
models
Exact solutions are known only for simple geometries (bricks) and
covariance kernels
Goal of our library: provide a numerical KL solver that can
generate KL series from

I general domains D that have been meshed
I general covariance kernel r(x, y) for any x, y ∈ D× D

Assemble realizations of RFs (KL, PCE) for uncertainty
propagation
Support large scale parallelism (MPI)
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Non-intrusive UQ with Random Fields
RF Simulator added to traditional non-intrusive UQ coupling
RV coeffs {ξj} are now DoFs for random field α(x, ξ), such as
through a Karhunen-Loeve (KL) series

Figure: Overview of non-intrusive UQ coupled multiphysics.
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Overview: KL Series Representations
The Karhunen-Loeve expansion of a random field takes the form

α(x, ω) = m(x) +
∞∑

j=1

ξj(ω)
√

λj φj(x) (1)

It requires the solution of the KL eigenproblem: find {λj, φj}

K φj = λj φj, (2)

(K v)(x) ≡
∫

D
r(x, y) w(y) dy, x ∈ D (3)

The covariance function r is defined by

r(x, y) ≡ E[(α(x)− m) (α(y)− m)]

The uncorrelated RV coefficients ξj are defined by

ξj ≡
1√
λj

∫
D
(α(x)− m) φj(x) dx
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Discrete KL Solver

We discretize the spatial domain into Ne elements.
A basis for Vh ⊂ L2(D) is made from discontinuous polynomials.
FE approximation in Vh leads to generalized eigenproblem:

A Φ = λ BΦ

Dense matrix A, sparse matrix B (both SPD)

Aij ≡
∫

D

∫
D

r(x, y) vi(y) vj(x) dy dx, Bij ≡
∫

D
vi(x) vj(x) dx

Assembly of B matrix is standard (mass matrix)
Assembly of dense A matrix requires double element loop
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Eigensolver and Preconditioner

The eigensolver is an iterative block Davidson solver 1

Implemented in the Trilinos/Anasazi library 2

Requires only matvec operation
Computes only a subset of eigenvalues (largest)
Can leverage preconditioner of dense matrix A
Matrix free option to prevent memory overflow

I Avoid O(N2) storage (recall: sparse storage is O(N)).

1Arbenz et. al., “A Comparison of Eigensolvers for Large-scale 3D Modal Analysis
Using AMG-Preconditioned Iterative Methods”, IJNME, 64 (2005)

2trilinos.sandia.gov
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KL Eigensolver: Parallel Scaling Study

Figure: Strong/weak scaling of KL eigensolver (2048 procs, 1.6M elems) on
2D domains using matrix-free implementation and iterative eigensolver

Strong scaling Weak scaling
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KL Eigensolver: Verification Test (1/2)

We used a 1D problem on D = (−1, 1) with r(x, y) ≡ exp(−|x− y|).
The exact KL eigensolution can be computed.
The RV coefficients ξj are assumed to be independent standard
Gaussians.

Figure: Eigenfunctions 3, 7, and 10.
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KL Eigensolver: Verification Test (2/2)

Eigenfunctions converge O(h2) with midpoint integration.
Midpoint values can be average to continuous nodal functions.
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RF Realizations: KL and PCE

RF realizations can be output to disk using ExodusII files
This uses existing mesh partitions if the same as KL solver
We provide for a workset level assembly of RFs over a collection
of mesh elements
This enables integration with the application code for performance
We also can assemble Polynomial Chaos expansions using
orthogonal polynomials from the DAKOTA/Pecos library 3.

3http://dakota.sandia.gov/
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A Posteriori Error Estimation for KL Eigenproblem

The residual (for a given eigenpair) is

R ≡ R(φh, λh) ≡ −K φh + λh φh

Defining errors e ≡ φ− φh and µ ≡ λ− λh, we have derived
estimates for individual eigenvalue/eigenfunction pairs:

‖e‖ ≈ ‖R‖
λ

, µ ≈ ‖R‖2

λ

These estimates capture both the dependence on mesh size h
and on the eigenvalues.
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A Posteriori Error Estimation for KL Series

The numerical KL solver creates approximation error.
The truncated approximate KL series is

A(x, ω) = M(x) +
N∑

j=1

ξj(ω)
√

Λj Φj(x)

For non-intrusive UQ, we are given a realization of the RVs {ξj}.
The error estimation problem is then deterministic and can be
solved as a preprocessor step.
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A Posteriori Error Estimation for KL Series (2)

The error eα = α− A can be linearized as:

‖eα‖ ≈ E ≡

∥∥∥∥∥
N∑

i=1

ξi

(
1

2
√

Λi
µi Φi +

√
Λi ei

)∥∥∥∥∥
The simplest estimate is to use the triangle inequality:

E ≤
N∑

i=1

|ξi|
(

1
2
√

Λi
|µi|+

√
Λi ‖ei‖

)
(drop µi)

≈
N∑

i=1

|ξi|
√

Λi ‖ei‖ ≈
N∑

i=1

|ξi|
‖Ri‖√

Λi
(apply ei estimate)
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An Optimal Error Estimate

The previous error estimate significantly overestimates the error
for large N.
We can improve on this by approximating all (ei, ej) terms and
allowing for cancellation:

‖E‖2 ≈
N∑

i,j=1

ξi ξj
(Ri, Rj)√
Λi

√
Λj

=

∥∥∥∥∥
N∑

i=1

ξi
Ri√
Λi

∥∥∥∥∥
2

The estimate requires storage of the Ri or (Ri, Rj) since cannot be
evaluated without the ξi’s.
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Effectiveness of KL Error Indicator

We test the error indicator using the 1D verification test.
Error in φ is asymptotically exact; error in λ overestimates by
factor of 3 to 6.

Figure: Ratio of error indicator to true error for eigenvalues/eigenvectors.
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Effectiveness of KL Error Indicator
We test the KL error indicator also using the 1D verification test.
Here we take ten terms with ξi = 1 for all terms.

Figure: Ratio of error indicator to true error for 1D random field realization.
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Application: Flow in Heterogeneous Porous Media

The permeability RF had anisotropic correlation length scales.
A CDF curve for average well pressure was computed using
DAKOTA’s sparse grid integrator.

Figure: Sample realization of permeability, convergence of CDF under
sparse grid level and number of KL terms. Simulations done using
SIERRA/Aria.
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Application: Heterogeneous Foam Structural Analysis

A random field models the Young’s Modulus of a foam component.
The expansion uses 12 terms with 0.138 ≤ λ ≤ 26.59.
A CDF curve for maximum acceleration was computed using
DAKOTA’s sparse grid integrator.

Figure: Problem domain (foam in light blue), RF realization, and
computed acceleration. Calculations were done in the Salinas code.
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Summary

We have presented a parallel library for RF discretization using KL
series.
A posteriori error estimation techniques for the KL preprocessor
and realizations have been demonstrated.
Future work:

I Interface to experimental data for end-to-end RF discretization
I Release of Open Source code (Trilinos or DAKOTA/Pecos)
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