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Random Variables or Random Fields?

@ Often propagation of uncertainty can be done using scalar
parameters, for bulk material properties.

@ However, uncertainty can be distributed within a material, along a

boundary, etc.
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Figure: Random fields enable spatial/temporal stochastic variables.
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Motivation

@ Karhunen-Loeve (KL) series are general-purpose random field
models

@ Exact solutions are known only for simple geometries (bricks) and
covariance kernels

@ Goal of our library: provide a numerical KL solver that can
generate KL series from

» general domains D that have been meshed
» general covariance kernel r(x,y) for any x,y € D x D

@ Assemble realizations of RFs (KL, PCE) for uncertainty
propagation
@ Support large scale parallelism (MPI)
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Non-intrusive UQ with Random Fields

@ RF Simulator added to traditional non-intrusive UQ coupling
@ RV coeffs {¢;} are now DoFs for random field a(x, &), such as
through a Karhunen-Loeve (KL) series
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Figure: Overview of non-intrusive UQ coupled multiphysics.
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Overview: KL Series Representations
@ The Karhunen-Loeve expansion of a random field takes the form

a(x,w) =m) + Y &(w) VA d5(x) (1)
j=1
@ It requires the solution of the KL eigenproblem: find {\;, ¢;}
Koj = Ao 2)
0@ = [ rewi)dy xeD @)
D

@ The covariance function r is defined by

r(x,y) = El{(a(x) —m) (a(y) — m)]

@ The uncorrelated RV coefficients ¢; are defined by

= 1 ixX)dax
szxémw—MQUd
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Discrete KL Solver

@ We discretize the spatial domain into N, elements.
@ A basis for v, ¢ L?(D) is made from discontinuous polynomials.
@ FE approximation in V,, leads to generalized eigenproblem:

Ad = \B®
@ Dense matrix A, sparse matrix B (both SPD)
Aj = / / r(x,y)vi(y) vi(x)dydx, Bj= / vi(x) vj(x) dx
DJD D

@ Assembly of B matrix is standard (mass matrix)
@ Assembly of dense A matrix requires double element loop
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Eigensolver and Preconditioner

@ The eigensolver is an iterative block Davidson solver '
@ Implemented in the Trilinos/Anasazi library 2

@ Requires only matvec operation

@ Computes only a subset of eigenvalues (largest)

@ Can leverage preconditioner of dense matrix A
@ Matrix free option to prevent memory overflow
» Avoid O(N?) storage (recall: sparse storage is O(N)).

"Arbenz et. al., “A Comparison of Eigensolvers for Large-scale 3D Modal Analysis
Using AMG-Preconditioned lterative Methods”, IUINME, 64 (2005)
2trilinos.sandia.gov
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KL Eigensolver: Parallel Scaling Study

Figure: Strong/weak scaling of KL eigensolver (2048 procs, 1.6M elems) on
2D domains using matrix-free implementation and iterative eigensolver
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KL Eigensolver: Verification Test (1/2)

@ We used a 1D problem on D = (—1, 1) with r(x,y) = exp(—|x — y|).
@ The exact KL eigensolution can be computed.

@ The RV coefficients ¢; are assumed to be independent standard
Gaussians.
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Figure: Eigenfunctions 3, 7, and 10.
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KL Eigensolver: Verification Test (2/2)

@ Eigenfunctions converge O(k?) with midpoint integration.

@ Midpoint values can be average to continuous nodal functions.
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RF Realizations: KL and PCE

@ RF realizations can be output to disk using Exodusl| files
@ This uses existing mesh partitions if the same as KL solver

@ We provide for a workset level assembly of RFs over a collection
of mesh elements

@ This enables integration with the application code for performance

@ We also can assemble Polynomial Chaos expansions using
orthogonal polynomials from the DAKOTA/Pecos library °.

3http://dakota.sandia.gov/
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A Posteriori Error Estimation for KL Eigenproblem

@ The residual (for a given eigenpair) is
R = R(¢h7 )\h) = -K ¢h -+ >\h ¢h

@ Defining errors e = ¢ — ¢, and u = A — A, we have derived
estimates for individual eigenvalue/eigenfunction pairs:

IR IRI[>
||e” ~ )\ ) l’L ~ )\

@ These estimates capture both the dependence on mesh size &
and on the eigenvalues.
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A Posteriori Error Estimation for KL Series

@ The numerical KL solver creates approximation error.
@ The truncated approximate KL series is

N
Alx,w) = M(x) + ) &i(w) /A B(x)
j=1

@ For non-intrusive UQ, we are given a realization of the RVs {¢;}.

@ The error estimation problem is then deterministic and can be
solved as a preprocessor step.
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A Posteriori Error Estimation for KL Series (2)

@ The error e, = a — A can be linearized as:

N

Z (2\/_u,<1> +\/_e, H

@ The simplest estimate is to use the triangle inequality:

1
g (m || + VA ||el||) (drop ;)
S IR
Z & /A el ~ ZI&\ L (apply e; estimate)

lleal| ~ E =

=z

\/_
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An Optimal Error Estimate

@ The previous error estimate significantly overestimates the error
for large N.

@ We can improve on this by approximating all (e;, ¢;) terms and
allowing for cancellation:

N

2
R;
Zfi\TAj,

i=1

R,,R)

2

ij=1

@ The estimate requires storage of the R; or (R;, R;) since cannot be
evaluated without the &;’s.
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Effectiveness of KL Error Indicator

@ We test the error indicator using the 1D verification test.

@ Errorin ¢ is asymptotically exact; error in A overestimates by
factor of 3 to 6.
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Figure: Ratio of error indicator to true error for eigenvalues/eigenvectors.
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Effectiveness of KL Error Indicator

@ We test the KL error indicator also using the 1D verification test.
@ Here we take ten terms with & = 1 for all terms.
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Figure: Ratio of error indicator to true error for 1D random field realization.
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Application: Flow in Heterogeneous Porous Media

@ The permeability RF had anisotropic correlation length scales.

@ A CDF curve for average well pressure was computed using
DAKQOTA's sparse grid integrator.
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Figure: Sample realization of permeability, convergence of CDF under
sparse grid level and number of KL terms. Simulations done using
SIERRA/Aria.
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Application: Heterogeneous Foam Structural Analysis

@ A random field models the Young’s Modulus of a foam component.

@ The expansion uses 12 terms with 0.138 < A\ < 26.59.
@ A CDF curve for maximum acceleration was computed using
DAKQOTA's sparse grid integrator.
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Figure: Problem domain (foam in light blue), RF realization, and
computed acceleration. Calculations were done in the Salinas code.
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Summary

@ We have presented a parallel library for RF discretization using KL
series.

@ A posteriori error estimation techniques for the KL preprocessor
and realizations have been demonstrated.

@ Future work:

» Interface to experimental data for end-to-end RF discretization
» Release of Open Source code (Trilinos or DAKOTA/Pecos)
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