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UQ Challenges in Climate Models

Computationally expensive model simulations

High-dimensional input parameter space

Physical constraints and dependencies for some input
parameters

Non-linear dependence of output quantities of interest on
inputs
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Community Land Model

http://www.cesm.ucar.edu/models/clm/

Nested computational grid hierarchy

Represents spatial heterogeneity of the land surface

A single-site, 1000-yr simulation takes ∼ 10 hrs on 1 CPU

Involves ∼ 80 input parameters
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Surrogate Models

What do we need surrogate models for ?

Global sensitivity analysis

Input parameter inference

Optimization

Forward uncertainty propagation

What are surrogate models ?

Input parameter vector λ

Computationally expensive model f (·) (e.g. climate
models)

Given a set of training model runs, (λi , f (λi))
N
i=1,

a surrogate fs(·) ≈ f (·) is a model that is cheap to evaluate
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Polynomial Chaos Representations

To build a surrogate representation for input-output relationship,
Polynomial Chaos (PC) spectral expansions are used; see
Ghanem and Spanos (1991).

Interprets input parameters as random variables

Allows propagation of input parameter uncertainties to
outputs of interest

Serves as a computationally inexpensive surrogate for
calibration or optimization
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Polynomial Chaos Representations

Input parameters are represented via their cumulative
distribution function (CDF) F(·), such that, with
ηi ∼ Uniform[−1, 1], we have:

λi = F−1
λi

(

ηi + 1
2

)

, for i = 1, 2, . . . , d.

If input parameters are uniform λi ∼ Uniform[ai , bi ], then

λi =
ai + bi

2
+

bi − ai

2
ηi .

Output is represented with respect to Legendre polynomials

f (λ(η)) ≈ yc(η) ≡
K
∑

k=0

ckΨk(η).
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Map Constrained Parameters to Unconstrained
Spaces

Given a vector of random
variables λ = (λ1, . . . , λd′)
with known joint cumulative
distribution function (CDF)
F(λ1, . . . , λd′)

Use Rosenblatt
transformation (RT) to
obtain a map η = R(λ) to a
set of ηi ’s that are
independent uniform
random variables on
[−1, 1].
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Bayesian Inference of PC modes

Bayesian inference of PC modes allows surrogate construction
with uncertainties associated with limited sampling

Bayes formula
p(c|D) ∝ LD(c)p(c)

relates the prior distribution p(c) of PC modes to the
posterior p(c|D), where the data D is the set of all training
runs D = (λi , f (λi))

N
i=1.

The likelihood accounts for the discrepancy between the
simulation data and the surrogate model (Sargsyan et al
2011),

LD(c) ∝ exp

(

−
N
∑

i=1

(f (λi)− yc(ηi))
2

2σ2

)
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Iterative Bayesian Compressive Sensing (iBCS)

The number of polynomial basis terms grows fast; a p-th
order, d-dimensional basis has a total of (p+ d)!/(p!d!)
terms.

Dimensionality reduction by using Gaussian sparsity
priors.

p(c) ∝
K
∏

k=0

exp

(

−
c2

k

2s2
k

)

.

The parameters (σ2, s2
0, . . . , s

2
K) are fixed by evidence

maximization, and bases corresponding to small s2
i are

discarded (Ji et al 2008).

Iterative BCS: We implement an iterative procedure that
allows increasing the order for the relevant basis terms
while maintaining the dimensionality reduction (Sargsyan
et al 2011,2012).

SNL Safta Surrogates for Climate Models 11 / 18



challenges surrogates constraints bayes classification adaptive quad summary & futuremethod clm runs

Climate Land Model - Single site mode

N = 10, 000 training runs
based on uniformly LHS
distributed parameter values.

Outputs: steady-state,
10-year averages of 7
quantities
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Name Units Description

TOTVEGC gC/m2 Total vegetation carbon
TOTSOMC gC/m2 Total soil carbon
GPP gC/m2/s Gross primary production
ERR W/m2 Energy conservation error
TLAI none Total leaf area index
EFLX_LH_TOT W/m2 Total latent heat flux
FSH W/m2 Sensible heat flux
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Climate Land Model - 1st order BCS

Ranking of the most important input parameters for each
output

Si =

∑

k∈Ii
c2

k||Ψk||
2

∑

k>0 c2
k||Ψk||2

rank TOTVEGC TOTSOMC GPP

1 r_mort q10_mr leafcn
2 q10_mr leafcn k_s4
3 froot_leaf froot_leaf froot_leaf
4 br_mr br_mr flnr
5 q10_hr fflnr q10_mr
6 leafcn dnp q10_hr
7 k_s4 q10_hr dnp
8 stem_leaf leaf_long rf_s3s4
9 flnr k_s4 leaf_long
10 dnp frootcn br_mr
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Climate Land Model - 2nd order BCS

Most influential input parameter couplings for each output -
enery contained in each parameter pair

Sij =

∑

k∈Iij
c2

k||Ψk||
2

∑

k>0 c2
k||Ψk||2
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Climate Land Model - 2nd order BCS

Most influential input parameter couplings for each output -
enery contained in each parameter pair

Sij =

∑

k∈Iij
c2

k||Ψk||
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Classify Parameter Space

Large regions of the original quasi-hypercube parameter
space lead to simulations with failed vegetation.

Partition the space using a classification algorithm

Cons: Classification will introduce errors

Pros: iBCS algorithm will avoid the “failed vegetation”
plateau. Will only use the “active” simulations.

Will the “active” parameter sets form a continuous region ?
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Classification+iBCS

Classification using Random Decision Forests
Calibrate using 9K samples/Validation using 1K samples
Shift accuracy from “failed vegetation” plateau to “active
vegetation” regions

Apply the iBCS algorithm on “active vegetation” results
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Classification+iBCS
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Adaptive Sparse Quadrature - Future Work

Improve the iBCS surrogate using Galerkin projection →
efficient techniques to avoid or at least delay the curse of
simensionality

For example, an 80D/700-term surrogate employs terms of
the form λ4

i , λ3
i λj , . . ..

An adaptive set of sampling points require about 3200
additional simulations.

How do we position these sample points in the “active
vegetation” region to actually improve the BCS surrogate ?
(80D domain mapping)

(see recent talk by Patrick Conrad/Youssef Marzouk, and
pre-print by Paul Constantine)
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Summary

Surrogate models are necessary for complex climate models

Polynomial Chaos surrogate model is constructed using
Bayesian techniques

Constrained/dependent input parameters are mapped to
an unconstrained input set via Rosenblatt transformation

High-dimensionality is tackled by iterative Bayesian
compressive sensing algorithm

Classification for efficient domain decomposition to relieve
the non-linear effects

Adaptive sparse quadrature for relevant basis terms to
build a more accurate surrogate
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