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UQ Challenges in Climate Models

@ Computationally expensive model simulations
@ High-dimensional input parameter space

@ Physical constraints and dependencies for some input
parameters

@ Non-linear dependence of output quantities of interest on
inputs
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Community Land Model

http://www.cesm.ucar.edu/models/cim/

@ Nested computational grid hierarchy

@ Represents spatial heterogeneity of the land surface

@ A single-site, 1000-yr simulation takes ~ 10 hrs on 1 CPU
@ Involves ~ 80 input parameters
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surrogates
Surrogate Models

What do we need surrogate models for ?
@ Global sensitivity analysis
@ Input parameter inference
@ Optimization
@ Forward uncertainty propagation

What are surrogate models ?

@ Input parameter vector A

@ Computationally expensive model f(-) (e.g. climate
models)

@ Given a set of training model runs, (i, f(A))N.,,
a surrogate fs(-) ~ f(-) is a model that is cheap to evaluate
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surrogates
Polynomial Chaos Representations

To build a surrogate representation for input-output relationship,
Polynomial Chaos (PC) spectral expansions are used; see
Ghanem and Spanos (1991).

@ Interprets input parameters as random variables

@ Allows propagation of input parameter uncertainties to
outputs of interest

@ Serves as a computationally inexpensive surrogate for
calibration or optimization
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surrogates
Polynomial Chaos Representations

Input parameters are represented via their cumulative
distribution function (CDF) F(-), such that, with
ni ~ Uniform[—1, 1], we have:

Aizpml(”‘;ly fori=12,....d.

If input parameters are uniform A; ~ Uniform[a;, by], then

g+b bi—g
Ai = 2'+'2 i

Output is represented with respect to Legendre polynomials

K
f(A(m) = ye(n) =D ali(n).
k=0
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constraints

Map Constrained Parameters to Unconstrained

Spaces

@ Given a vector of random
variables A = (A1, ..., Ay)
with known joint cumulative
distribution function (CDF)
F(A, ..., A\g)

@ Use Rosenblatt
transformation (RT) to
obtainamap n = R(A\) toa
set of »’s that are

Mg < Az,
independent uniform N )\18 B 22
random variables on 3t+Az+Azz = 1
[—1,1]. A3+ A+ = 1
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bayes method clm runs

Bayesian Inference of PC modes

Bayesian inference of PC modes allows surrogate construction
with uncertainties associated with limited sampling

@ Bayes formula
p(c|D) o Lp(c)p(c)

relates the prior distribution p(c) of PC modes to the
posterior p(c|D), where the data D is the set of all training
runs D = (A, f(A)),

@ The likelihood accounts for the discrepancy between the
simulation data and the surrogate model (Sargsyan et al
2011),

O(@(D( i (Ai) yC"l)))

i=1
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bayes method clm runs

Iterative Bayesian Compressive Sensing (iBCS)

@ The number of polynomial basis terms grows fast; a p-th
order, d-dimensional basis has a total of (p + d)!/(p!d!)
terms.

@ Dimensionality reduction by using Gaussian sparsity
priors.

The parameters (02,5, ..., s%) are fixed by evidence
maximization, and bases correspondlng to small & are
discarded (Ji et al 2008).

@ lterative BCS: We implement an iterative procedure that
allows increasing the order for the relevant basis terms
while maintaining the dimensionality reduction (Sargsyan
et al 2011,2012).
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bayes

method clm runs

Climate Land Model - Single site mode

@ N = 10, 000 training runs
based on uniformly LHS

distributed parameter values.

@ Outputs: steady-state,
10-year averages of 7
guantities

TOTVEGC

. CLM
. BCS

0 200 400 600

Sample #

[ Name [ Units Description |
TOTVEGC gC/m? Total vegetation carbon
TOTSOMC gC/m? Total soil carbon
GPP gC/m?/s | Gross primary production
ERR W/m? Energy conservation error
TLAI none Total leaf area index
EFLX_LH_TOT | W/mZ2 Total latent heat flux
FSH W/m? Sensible heat flux
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bayes

method clm runs

Climate Land Model - 1% order BCS

@ Ranking of the most important input parameters for each

output
- > ieer, Sl Wi 12
> k0 il Pkl [?
[ rank [l TOTVEGC [ TOTSOMC | GPP |

1 r_mort leafcn
2 leafcn k_s4
3 froot_leaf froot_leaf froot_leaf
4 br_mr br_mr flnr
5 gl10_hr fflnr
6 leafcn dnp gl10_hr
7 k_s4 ql0_hr dnp
8 stem_leaf leaf_long rf_s3s4
9 flnr k_s4 leaf_long
10 dnp frootcn br_mr
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bayes method clm runs

Climate Land Model - 2™ order BCS

@ Most influential input parameter couplings for each output -
enery contained in each parameter pair

. Zkeﬂij CZkH\IijZ

§ =
A

Total Soil Carbon

Total Vegetation Carbon

Input Parameter

30 40 50
Input Parameter

40 50
Input Parameter
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bayes method clm runs

Climate Land Model - 2™ order BCS

@ Most influential input parameter couplings for each output -
enery contained in each parameter pair

. Zkeﬂij CZkH\IijZ

§ =
A

Total Leaf Area Index

Gross Primary Production

Input Parameter

50
arameter

40 50
Input Parameter

0 30
Input P:
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classification

Classify Parameter Space

@ Large regions of the original quasi-hypercube parameter
space lead to simulations with failed vegetation.

@ Partition the space using a classification algorithm

@ Cons: Classification will introduce errors

@ Pros: iBCS algorithm will avoid the “failed vegetation”
plateau. Will only use the “active” simulations.

@ Will the “active” parameter sets form a continuous region ?
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classification

Classification+iBCS

@ Classification using Random Decision Forests
@ Calibrate using 9K samples/Validation using 1K samples
@ Shift accuracy from “failed vegetation” plateau to “active
vegetation” regions
@ Apply the iBCS algorithm on “active vegetation” results

.. CLM ] ] ] ] «. CLM
voonalls+ BCS : ool BCS
“Failed” misclassified 2
o as “active” ) o1 4
= 2
° =
aes S 2o Susrned e *

O i
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Sample #
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classification

Classification+iBCS

@ Classification using Random Decision Forests
@ Calibrate using 9K samples/Validation using 1K samples
@ Shift accuracy from “failed vegetation” plateau to “active
vegetation” regions
@ Apply the iBCS algorithm on “active vegetation” results

+« CLM . .« CLM
voonalls+ BCS : ool BCS
“Active” misclassified * ‘
o as “failed” H o
g . 2
< =
2 f‘ 2
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classification
Classification+iBCS

@ Classification using Random Decision Forests
@ Calibrate using 9K samples/Validation using 1K samples
@ Shift accuracy from “failed vegetation” plateau to “active
vegetation” regions
@ Apply the iBCS algorithm on “active vegetation” results
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adz

Adaptive Sparse Quadrature - Future Work

@ Improve the iBCS surrogate using Galerkin projection —
efficient techniques to avoid or at least delay the curse of

simensionality
@ For example, an 80D/700-term surrogate employs terms of
the form Af, A3, ...

@ An adaptive set of sampling points require about 3200
additional simulations.

(see recent talk by Patrick Conrad/Youssef Marzouk, and
pre-print by Paul Constantine)
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adz

Adaptive Sparse Quadrature - Future Work

@ Improve the iBCS surrogate using Galerkin projection —
efficient techniques to avoid or at least delay the curse of

simensionality

@ For example, an 80D/700-term surrogate employs terms of
the form A}, A2\, .. ..

@ An adaptive set of sampling points require about 3200
additional simulations.

@ How do we position these sample points in the “active
vegetation” region to actually improve the BCS surrogate ?

(80D domain mapping)

(see recent talk by Patrick Conrad/Youssef Marzouk, and
pre-print by Paul Constantine)
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Surrogate models are necessary for complex climate models

Polynomial Chaos surrogate model is constructed using
Bayesian techniques

Constrained/dependent input parameters are mapped to
an unconstrained input set via Rosenblatt transformation

High-dimensionality is tackled by iterative Bayesian
compressive sensing algorithm

Classification for efficient domain decomposition to relieve
the non-linear effects

Adaptive sparse quadrature for relevant basis terms to
build a more accurate surrogate
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