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ABSTRACT

The uniform strain hexahedral element mesh has long been
a work horse for getting accurate and convergent answers in
high deformation solid mechanics analyses. Obtaining an all-
hexahedral mesh can be difficult and time consuming process and
this has severely limited the element’s use in design phase com-
putations. Unconstrained paving and plastering offers a tech-
nique to get an all-hexahedral mesh automatically but still can
leave un-meshable voids [1]. While degenerated forms of the
uniform strain hexahedral element such as the wedge have been
used sparingly, they have garnered limited general acceptance.
We present a more exhaustive numerical exploration of the de-
generated hexes with the hope of encouraging their use to re-
solve the un-meshable voids. The results of patch tests are used
to numerically demonstrate linear completeness of the degener-
ate elements. A manufactured solution analysis is then used to
show optimal convergence rates for meshes containing degener-
ate elements. Additionally, applications to a torsion bar and high
velocity impact are used to highlight the accuracy and applica-
bility of degenerates for solving more complex problems.

INTRODUCTION

Estimates are that model setup make up the majority (80%)
of the time in a modeling and simulation work flow [2]. Of the
setup time, an obvious place for speed up is through automation
in the meshing of geometry. All-tetrahedral meshing has been
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successful at allowing fast meshing. However, all-tetrahedral
meshes are inefficient for many solid mechanics applications.
Hexahedral meshes are desired for their improved accuracy at
lower fidelity which translates to faster turn around time.

There have been many attempts at accomplishing an auto-
mated all-hexahedral mesh. Attempts like that presented in the
paper “Unconstrained Paving and Plastering: A New Idea for
All Hexahedral Meshing” are able to mesh the vast majority of
a complex domain, but may still encounter small un-meshable
voids [1]. These un-meshable voids arise from the constraints
that are required to get an all-hexahedral mesh [3]. Relaxing
these constraints by allowing some additional element shapes can
lead to further automation of the mesh creation process [4].

In this paper we explore the versatility of the uniform strain
hexahedral to support a family of different element shapes and
topologies. We will try and alleviate some of the fear behind
using these sub-shapes of the hexahedral by showing that they
are convergent and compare favorably with the accuracy of an
all-hexahedral mesh.

FAMILY OF DEGENERATES

There are numerous polyhedral shapes that can be made with
four to eight nodal vertexes. If we limit the shapes to be derived
by collapsing the node of an eight node hexahedral shape then we
get to a manageable set and gain some advantages over starting
from an arbitrary point cloud. The main advantage of collapsing
nodes in the hexahedral shape is that all the shapes can fit in the
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FIGURE 1. HEXAHEDRAL DEGENERATE ELEMENT FAMILY.

same connectivity table by simply allowing repeated node IDs.
This repeated node connectivity may then be processed directly
by the same element numeric implementation that processes the
standard eight node hexahedral element.

Since the hexahedral shape is constructed from six quadrilat-
eral faces, the sub-shapes generated from collapsing points will
result in some combination of quadrilateral and triangular faces.
Quadrilateral and triangular faces are the norm in most finite el-
ement simulations and as such are supported for features like
contact and exact pressure integration. The polygon faces above
quadrilateral do not have as wide spread support. With an eye to-
ward being able to use the elements with features such as contact,
an additional requirement is added: that nodes not be collapsed
across the body diagonals because the resulting shapes would al-
most always have severely warped faces. This leaves the set of
polyhedral shapes shown in Figure 1.

Repeating node IDs in the hexahedral connectivity is com-
monly referred to as a degenerate hex. The wedge, pyramid, and
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FIGURE 2. DEGENERATE ELEMENT INSERTION

tetrahedral degenerated forms sometimes have their own unique
element formulations but, as shown in this paper, can run also
through the same computational machinery as the uniform strain
hexahedral.

DEGENERATE INSERTION

Most current meshing software avoids inserting degenerate
elements. If degenerate elements are created during meshing
they will often error out, not returning any mesh. It was nec-
essary to write a tool for insertion of degenerates in an existing
all-hexahedral mesh to enable these elements to be studied. The
degeneration insertion algorithm first marks elements that do not
share any neighbors. The marked elements are then purposely
degenerated to a target degenerate shape with a random orienta-
tion. Figure 2 shows the torsion bar mesh for h = 0.25 degener-
ated to insert thirty nine tetrahedral degenerate hexes. Degener-
ating a hexahedral element in an existing mesh causes some of
its neighbors to also become degenerates. These incidentally de-
generated elements are also shown in Figure 2. Ultimately about
25% of the elements in the Hex/Tet torsion bar mesh have been
converted to some degenerate form.

UNIFORM STRAIN HEXAHEDRON

In this study the eight node uniform strain hexahedron ele-
ment is used [5]. When coupled with hourglass mode control this
under-integrated brick element has proven to be very efficent, ac-
curate, and versatile. The uniform strain hexahedron element is a
workhorse element for most implicit and explicit solid mechan-
ics computations done with the Sierra Solid Mechanics code [6].
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The Sierra Solid Mechanics code was used exclusively in this
study for all the simulation calculations. No additional code ma-
chinery was added to Sierra to handle the degenerate hexahedral
elements either for strain computations or hourglass resistances.
The degenerate elements are formed by simply repeating nodes
in the element connectivity in the mesh file.

MEASURING UP

In order for the degenerated hexahedral elements to be ac-
cepted as part of a mesh it has to be shown that their presence
will not destroy the accuracy or degrade the convergence of an
analysis. The most common competition for the all-hexahedral
mesh is the all-tetrahedral mesh so, when appropriate, compar-
isons are made to the standard tetrahedral formulation. Also,
given that these problems are numerical examples and not meant
for physical interpretation, units are absent since any consistent
set of units could be applied to the numbers presented.

PATCH TEST

Generally, the first thing a new element is tested with is a
patch test. The patch demonstrates that an element can exactly
represent a known constant stress/strain solution. Viewing each
degenerate case of the uniform strain hexahedral element as a
new element, a patch test was performed for each possible degen-
erate shape, serving as the middle element. A version of the patch
test described in the Sierra/SM Verification Tests Manual [7] was
modified to test each degenerate element shape. This patch test
ensures that the element can represent a constant field exactly
without the element having any special shape or alignment to the
field.

The center element in the patch was degenerated by merg-
ing node ID pairs to form a center element with all possible node
pairings. The merging of node 1 into node 2 was considered dif-
ferent than node 2 into node 1 as it gives a different orientation of
the element and is represented by a different element connectiv-
ity array. Figure 3 shows the starting configuration of the original
hexahedral mesh and a degeneration of the hexahedral mesh for
merging node 8 into node 7.

The resulting node pairings while eliminating body diagonal
pairings gave 1824 different configurations to test. All versions
of the test passed the patch test with the same numerical error
as the non-degenerated patch test, a numerical error of roughly
1.0e-12 in the stress resultant for a known applied strain on an
elastic material.

MANUFACTURED QUADRATIC FIELD

After passing the initial patch test, a more complicated el-
ement verification test was performed with all the degenerate
forms. In this element test the convergence rate is examined
to determine how well the degenerated meshes can represent a
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FIGURE 3. HEXAHEDRAL PATCH MESH ALTERATIONS

simple quadratic displacement field over a cube with coordinates
varying from -1 to 1.

The procedure for insertion of the degenerate elements into
the original all-hexahedral mesh is shown in Figure 2. This test
utilizes a simple dicing routine for mesh refinement that produces
a proper refinement (in the sense that the approximate solution
space of a coarser mesh is a subspace for finder meshes). As the
mesh is diced, the volume fraction of degenerates goes down.
This reduction in the volume fraction of degenerates with mesh
refinement is consistent with typical meshing in that the volume
fraction of sub-optimal shapes decreases with refinement.

This test uses a manufactured solution obtained using sym-
bolic calculations in Mathematica. One can think of it as tak-
ing one step past a patch test, since the polynomial representa-
tion of the displacement field is one order higher — quadratic in
the initial coordinates (X) [8]. In the most general case, a com-
plete quadratic polynomial representation of each displacement
component requires 30 arbitrary constants. The simple case pre-
sented here, only has one nonzero constant, with the displace-
ment field given by

uy = aX3,u; =0.0,u3 = 0.0, 1)

where a has units of 1/length. Here we choose to pose the
problem in terms of displacement boundary conditions alone.
Figure 4 depicts the displacement boundary conditions on the
cube with the shading illustrating the x-component of the dis-
placement field.

The material model used for this problem is the St. Venant-
Kirchoff model, with elastic constants of E=1.0e6 psi, and v=0.3.
Starting with the given displacement field, one can determine the
Green strain tensor, use the St. Venant-Kirchoff model to obtain
the 2nd Piola-Kirchoff stresses, determine the Cauchy stress ten-
sor and then use equilibrium to back out the body forces, which
are given by
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fo = —2a[u+6a*(A +2u)X3|E; —da’*(A +2u)X,E;  (2)

where 1 and A are the Lame constants.

The symmetry in the body load vectors about the y=0 plane
is consistent with the expected response. Note that these are the
body loads per initial volume. It is interesting to note, in the
context of evaluating elements, that the boundary value problem
that is implied by the above equations, lacks any volume change
independent of the shape of the domain (i.e., cube or otherwise).
As such this test only exercises the elements for distortional de-
formation.

Figure 5 shows the relative error in terms of an L2-norm
of the displacement field. Note that the optimal rate of conver-
gence, quadratic, is obtained for each degenerate element case,
and that the accuracy of each case is almost identical to the non-
degenerate element.

Figure 6 shows the relative error in terms of an L2-norm
of Voight notation form of the stress tensor (meaning that only
one of the equal, off-diagonal, symmetric terms is included in
the norm calculation). Again the optimal rate of convergence (in
this case linear) is obtained for each degenerate element case,
with the accuracy being almost identical to the non-degenerate
element.

STATIC TORSION OF ROD

After successful completion of the element tests, the degen-
erate element family was tested on two application oriented prob-
lems. In these application problems engineering quantities of in-
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FIGURE 6. MANUFACTURED PROBLEM STRESS FIELD CON-
VERGENCE PLOT

terest provided by the finite element analysis are examined for
accuracy as well as convergence. The geometries of these ap-
plication problems are simple enough to allow straight forward
all-hex meshing. However, the same accuracy implications seen
in use of degenerate elements for these problems should carry
over to more complex domains where the availability of degen-
erate elements may ease meshing. For the purpose of examin-
ing degenerate forms of the hexahedral in a static simulation, a
twisted rod simulation is performed. This simulation exercises
the elements in shear, though due to Poisson’s ratio a variety of
mixed mode deformations will be present. An elastic cylinder
with a radius of 1 and height of 3 is kinematically twisted 15 de-
grees to ensure the elements undergo a deformation beyond the
infinitesimal deformation range that was exercised in the patch
tests.

For the refinement levels, a value of h = 1 corresponds to an
element edge length of 0.75. Degenerate meshes were created
by using the degenerate insertion shown in Figure 2 on each re-
finement level of the all-hexahedral meshes rather than dicing an
earlier degenerate mesh. This was done to make the test more
difficult by keeping the volume fraction of degenerate elements
closer to constant during refinement as opposed to decreasing
with each refinement. Also, this can make the accuracy inter-
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FIGURE 7. TORSION ROD TORQUE CONVERGENCE PLOT

pretation at each mesh size more relevant to a design calcula-
tion where a mesh refinement may not be possible. In addition
the inserting various types of degenerate elements a final “RAN-
DOM” mesh type is tested. In the “RANDOM” mesh types a
mixed variety of all different topologies of degenerate elements
are inserted.

The two engineering quantities chosen to examine in this
test are the required torque and the maximum Von Mises stress.
The generated torque is affected most by the approximation of
the cross-sectional area, and the shear stiffness of the elements.
Since for a given mesh density both hexahedral and standard
tetrahedral elements have the same outer edge lengths and no
mid-side nodes, their cross-sectional areas should be equivalent.
Thus, the only factor affecting the results is how stiff the ele-
ments behave. The standard tetrahedral is known to be a stiffer
element than the uniform strain hexahedral. This is clear in Fig-
ure 7, where the standard tetrahedral element (Tet 4) converge
to the exact torque solution from the stiff side (i.e., from above)
and the uniform strain hexahedral (UG Hex) converges from the
compliant side.

Results for the degenerate element meshes are much closer
to those of the uniform strain hexahedral elements but exhibit a
stiffer response in an expected pattern, as they degenerate down
to a tetrahedral form (UG Hex TET). The fact that the degenerate
forms are bracketed by the standard tetrahedral and the uniform
strain hexahedral, combined with the two converging from above
and below, serendipitously results in all the degenerate forms
having a more accurate answer than the standard element. Fig-
ure 8 also shows that the slope corresponding to the convergence
rate is approximately 3.5 for all the hexahedral forms, which is
close to the expected slope of 4 for a quadratic convergence rate.

A contour plot of the resulting Von Mises stress for the all-
hexahedral mesh with a h = 0.25 is shown in Figure 9. As ex-
pected, the maximum values appear on the outer edge of the
cylinder. The maximum Von Mises stress is a more difficult test
for the degenerate forms because a badly shaped element could
potentially cause a spurious stress concentration, if the degen-
erate element appeared stiffer than the adjacent elements. Fig-

h
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ure 10 shows the error in the infinity norm of the Von Mises
stress (maximum error anywhere in the model). The degenerate
forms again perform well, no spurious stress spikes are observed
in the degenerate mesh solutions. The degenerate mesh stress
solutions appear smooth and accurate. The slopes for stress con-
vergence for all the mesh types are are 1.9 or larger, which is
close to the expected slope of 2 corresponding to a linear conver-
gence rate for stress. Ultimately with refinement the maximum
Von Mises stress will converge to the stress at the outer cylinder
surface. Some of the more aggressively degenerated mesh forms
such as the Hex/Tet, Hex/Pyramid, and Random appear to show
lower than expected levels of error in the stress. Possibly this
lower error is due to the presence of a degenerated element mov-
ing at least one stress integration point further out radially in the
cylinder in these aggressively degenerated meshes.
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TAYLOR BAR IMPACT

A second application study of degenerate hex elements is
performed based on the Taylor bar impact test. The model setup
is shown in Figure 11. In the Taylor bar impact test, a cylinder
of ductile material is shot against a wall at a high rate of speed.
Experimentally measured deformations of the rod can be corre-
lated to elastic plastic material properties. The Taylor bar impact
test was selected to determine how well the degenerate elements
perform in a dynamic problem with very large material defor-
mation. The simulated setup is similar to a 3.3 cm long brass
cylinder with an impact speed of 277 m/s. This impact veloc-
ity caused substantial deformation at the impact point, with the
largest strains in the model approaching 400%. For this study
we only investigated how efficiently the different mesh setups
converge to the numerical solution; no comparison is made to
experimental data.

Two global quantities are measured with the computational
model: (1) shortening of the rod during impact, and (2) final aver-
age radius at the impacting cylinder face. Four mesh refinement
levels were used to measure convergence. The coarsest mesh,
h=0.25, has four elements though the bar radius and is shown
in Figure 11. The “exact” solution for the problem, (i.e., refer-
ence solution) used to measure the error, was computed by using
Richardson extrapolation between a h=0.03125 (the finest mesh
plotted) and an even finner h=0.015625 all-hexahedral mesh so-
lution.

Results for convergence of bar shortening and the bar end
radius are shown in Figures 12 and 13. Both convergence plots
show the same features. For both deformation metrics the all-
hex mesh appears to be somewhat more accurate than the de-
generate meshes for a given refinement level. The all-hex mesh
and the various degenerate meshes appear to be converging to
the exact solution at roughly the same rate. Generally it appears
that the less aggressively degenerated mixed meshes, such as the
“rock”, perform somewhat better then meshes that contain hexes
degenerated all the way to tetrahedral topologies. The accuracy
of all the mixed degenerate meshes is always within a factor of
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two of the all-hex mesh, while the accuracy of the all-tetrahedral
mesh trails far behind either the all-hexahedral mesh or any of
the mixed degenerate meshes.

For explicit dynamic computations a second important fac-
tor for efficent solution is the critical integration time step size.
Table shows the explicit time steps computed on the h=0.0625
meshes. The element time step column shows the result of the el-
ement local time step computation. This element time step com-
putation can be quickly done local to an element and produces a
conservative estimate of models maximum possible explicit time
step. The global time step column shows the actual system model
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maximum critical time step as computed via computation of the
maximum system stiffness matrix Eigenvalue. This global time
step is the maximum explicit time step that the finite element
analysis can actually take while remaining stable. A large criti-
cal time step is preferable as the larger the time step that can be
taken the faster a computation can be completed.

Mesh Computed Min | Actual Model Min
Element Time | Time Step(ns)
Step(ns)

Hex 19.4 19.5

Hex/Rock 16.8 18.8

Hex/Ngon 16.8 17.9

Hex/Bowtie | 16.8 17.8

Hex/Axe 13.3 16.8

Hex/Pyramid | 13.1 16.7

Hex/Wedge | 11.5 16.1

Hex/Tet 10.5 15.0

All-tet 8.0 9.1

TABLE 1. Degenerate Element Mesh Explicit Time Steps

Without any modifications to the base element formula-
tion, the degenerate elements are able to compute a conservative
element-based explicit time step. The computed time step value
on the mixed degenerate meshes, tends to be more overly conser-
vative than an all-hex mesh. This over-conservative element time
step tendency is likely due to the construction of the mesh with
relatively stiffer degenerate elements adjacent to somewhat softer
full hex elements. The degenerate elements require a mildly

smaller time step than the standard hex elements but may take
larger time steps than equivalently sized all-tet meshes.

The Taylor bar results indicate that though the all-hex mesh
is ideal for this problem, use of a mixed degenerate mesh incurs
only a minor loss in computational solution efficiency. The ac-
curacy of the results for all of the mixed degenerate meshes are
within a factor of two of the all-hex mesh results, and the explicit
time step of mixed degenerate meshes is no worse than 25% less
than the critical time step on an all-hex mesh. All of the mixed
degenerate meshes perform vastly superior to all-tet mesh. All
of the degenerate mesh elements were as robust as the hex and
tet elements and showed no tendency towards instability or in-
version even at very large deformation levels.

CONCLUSIONS

Running the standard hex element computations on a wide
variety of degenerate element connectives appears to be a viable
computational strategy. Computational results on mixed degen-
erate meshes appeared to be first order complete, convergent, sta-
ble, and relatively efficent. Pursuit of meshing algorithms that
mesh the majority of the domain with hex elements while al-
lowing use of a variety of degenerate hex elements as needed to
facilitate meshing appears to be a fruitful endeavor.
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