
Approximation algorithms for generalized
hypergraph matching problems

Ojas Parekh1 and David Pritchard2

1 Sandia National Laboratories?, MS 1316, Albuquerque NM 87185, USA
2 University of Waterloo

Abstract. In this paper we examine two generalizations of the matching
problem on hypergraphs: given a collection of sets of size k, we must select
a maximum-profit subcollection subject to certain packing constraints.
Our first result is a k−1+1/k-approximation for b-matching, where the
packing constraints are just degree upper bounds at each vertex; our main
technique is a new degree-balanced variant of iterated packing methods.
An application of this setting is a truthful mechanism for auctions where
each bidder can win a bounded number of items. Our second result is
for k-hypergraph demand matching, where edges have demand values
and each vertex has an upper bound on the demand of selected incident
edges. Previously a 2k-approximation was known via iterated packing,
and we show that a much simpler local ratio algorithm gives the same
result.

1 Introduction

Matching problems laid the foundation of combinatorial optimization over 40
years ago. Since then matching problems have been generalized in several di-
rections; one such natural and classical direction is the notion of matching in
hypergraphs. The matching problem in hypergraphs seeks to find a maximum
size or weight collection of hyperedges such that each vertex may have at most
one hyperedge incident upon it. In particular our focus is on k-uniform instances:
those in which each edge has exactly k vertices. This problem is also known as
the k-set packing problem and has been extensively studied, from the perspec-
tive of both combinatorial optimization and combinatorics (e.g. see Chan and
Lau [4]).

Our focus is on generalizations of hypergraph matching. We consider the case
where each vertex v has a capacity bv, and we allow up to bv hyperedges incident
upon v. This generalizes the well-known b-matching problem in graphs. We also
consider the further generalization in which each hyperedge is endowed with a
demand, which leads to a common generalization of hypergraph matching and
the fundamental knapsack problem.

? Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

SAND2012-3502C

Problem definition. We consider specializations of the hypergraph demand
matching (HDM) problem. More formally, given a weighted hypergraph H =
(V,E) endowed with a demand de ∈ Z+ for each hyperedge e ∈ E and a capacity
bv ∈ Z+ for v ∈ V , the problem may be defined by the following integer program:

Maximize
∑
e∈E

wexe

subject to
∑
e|v∈e

dexe ≤ bv ∀v ∈ V

xe ∈ {0, 1} ∀e ∈ E.

We will use the natural LP relaxation of the above, obtained by replacing the
xe ∈ {0, 1} with 0 ≤ xe ≤ 1. We make the assumption that for each hyperedge
e, de ≤ bv for all v ∈ e. This so-called no-clipping assumption is easy to satisfy
by deleting edges that violate it; however, this assumption is necessary in order
for the natural LP relaxation to have a bounded integrality gap. We note that
the restriction that xe ∈ {0, 1} is for the sake of exposition and that our results
may be extended to apply to multiple copies of edges.

A k-hypergraph is one in which |e| ≤ k for each e ∈ E, and a k-uniform
hypergraph has |e| = k for each e ∈ E. The first problem we study is the b-
matching problem on k-uniform hypergraphs, which is obtained when de = 1 for
every hyperedge. This is a direct generalization of the well-known b-matching
problem in graphs (i.e. k = 2). We will also consider the HDM problem on
k-hypergraphs, which we call k-hypergraph demand matching.

We use mostly standard notation. For a set S ⊆ E and a vector v ∈ RE ,
we use the notation v(S) to refer to

∑
e∈S ve. For a singleton set {e} we let

v(e) = v({e}) = ve. We will use the terms edge and hyperedge interchangeably.

Our technique. We employ a technique called iterative packing which was re-
cently used by Parekh [14] to obtain approximation algorithms for k-hypergraph
demand matching problems. Given a fractional solution, iterative packing iter-
atively constructs an approximate convex decomposition of the fractional solu-
tion by greedily packing each edge into a requisite fraction of integer solutions.
Pseudo-greedy methods similar to iterative packing have been successfully ap-
plied to packing and coloring problems. Chekuri, Mydlarz, and Shepherd [5]
used such a technique to obtain a 4-approximation for multicommodity flows on
trees. Bar-Yehuda et al. [2] gave both an iterative packing like and primal-dual
algorithms for approximating independent sets in t-interval graphs. Feige and
Singh [6] applied this type of technique for weighted edge coloring of bipartite
graphs.

Iterative packing can be seen as an extension and unification of the above
type of techniques into a single framework. Moreover, akin to the iterative round-
ing method for covering problems, iterative packing explicitly identifies elements
with large fractional values to obtain better approximation ratios. Other aspects
of the framework include leveraging a specific ordering the elements and start-
ing with a nontrivial convex decomposition. This combination of ideas allows

2

iterative packing to obtain approximation ratios approaching the integrality gap
of the underlying LP formulation. Iterative packing yields a 2k-approximation
for k-hypergraph demand matching [14], nearly matching the best known lower
bound of 2k − 1 [1] on the integrality gap of the natural LP relaxation. For
the special case of demand matching (i.e. k = 2), iterative packing was able to
resolve the integrality gap at 3 [14].

Our results. In the present work we extend iterative packing to give a (k −
1 + 1/k)-approximation for the b-matching problem in k-uniform hypergraphs,
which settles the integrality gap of the natural LP relaxation; our technique also
yields an improved (k− 1)-approximation on k-partite instances. Our main idea
is explicitly specifying excluded solutions when elements are packed; previously
only solutions that would be rendered infeasible were excluded. This allows iter-
ative packing to retain a simple greedy flavor while providing more control over
resulting approximate convex decomposition.

We also show that the iterative packing 2k-approximation for k-hypergraph
demand matching from [14] can be reinterpreted as a primal-dual algorithm.
This significantly simplifies the algorithm and vastly improves its running time
by avoiding solving the LP relaxation and maintaining an approximate convex
decomposition.

Related work. Matching problems in k-uniform hypergraphs are well-studied.
A celebrated result of Füredi, Kahn, and Seymour [8] established the integrality
gap of the natural relaxation at k−1+1/k for hypergraph matching in k-uniform
hypergraphs, with an improvement to k−1 for k-partite k-uniform hypergraphs.
On the algorithmic side, the problem is NP-hard for k ≥ 3, and for any fixed
ε > 0 the best known approximation ratios are (k2 + ε) for the unweighted

version by Hurkens and Schrijver [10] and (k+1
2 + ε) for the weighted version by

Berman [3]. On the other hand, Hazan, Safra and Schwartz [9] showed that the
problem is hard to approximate within a factor of Ω(k

log k) unless P = NP.
The above algorithms are based on local search and do not provide a bound

on the integrality gap of the natural relaxation. Chan and Lau [4] recently gave
a (k− 1 + 1/k)-approximation based on the fractional local ratio method, which
matches the integrality gap of the natural relaxation and gives an improvement
for k = 3. They also give linear and semidefinite formulations with an improved
gap.

Unfortunately, none of the above results extend to b-matching in k-uniform
hypergraphs. For this problem fewer approximation results are known. Most
relevant to our work are a greedy k + 1-approximation by Krysta [12] and a
primal-dual k-approximation by Young and Koufogiannakis [11]. An algorithm
with guarantee (k+3

2 + ε) is implicit in the recent work of Feldman et al. [7]
and Ward [15] on k-exchange systems; however, its running time has a pseudo-
polynomial dependence on b; even so, our result provides a better approximation
for k ≤ 4.

For k-hypergraph demand matching 2k is the best known approximation
guarantee [14]; however, Bansal et al. [1] devised a deterministic 8k-approximation

3

and randomized (ek + o(k))-approximation for the more general problem of ap-
proximating k-column-sparse packing integer programs.

2 Iterative packing for b-Matching on k-uniform
hypergraphs

We begin by describing the basic version of iterative packing. Given a feasible
fractional solution x for the natural LP relaxation, the iterative packing produces
an α-approximate convex decomposition of x:

α · x =
∑
i∈I

λiχ
i , (1)

for some α ∈ (0, 1], where each χi is a feasible integral solution (and
∑
i λi = 1;

λi ≥ 0 for all i).
Iterative packing typically starts with the empty hypergraph on V , for which

χ1 = 0, λ1 = 1 is a trivial decomposition of the LP solution x = 0. Edges are
iteratively packed according to an ordering e1, e2, . . . em, where m = |E|. At
iteration j, the edge e = ej is greedily packed into any solution χi which feasibly
accommodates it until e has been packed into an α · xe fraction of the solutions.
We will see that this requires increasing the number of solutions by at most
one for each iteration. Thus iterative packing produces a sparse decomposition,
namely one with |I| ≤ m+ 1. This property will not directly hold for the efined
version of iterative packing we will use; however, one may apply elementary
linear algebra to retain at most m+ 1 solutions. A procedure to accomplish the
latter is related to Carathéodory’s Theorem; we leave this as an exercise for the
reader.

The construction of the decomposition (1) implies that one can find an in-
tegral solution with weight at least α · (w · x∗); the resulting approximation
guarantee is ρ ≤ 1

α . A nice feature is that the decomposition gives us a weight-
oblivious representation of an approximate solution.

Proposition 1. Iterative packing is a 1
α -approximation.

Here we briefly outline an argument using iterative packing that yields a
(k−1+1/k)-approximation for b-matching on k-uniform hypergraphs; this result
establishes the integrality gap of the natural linear programming relaxation at
k − 1 + 1/k (e.g. Chan and Lau [4] for the corresponding lower bound). An
interesting feature of the approach is that it combines a slightly refined iterative
packing approach whose edge ordering is obtained from the following lemma,
which may be derived from the proof of Lemma 2.3 in Chan and Lau [4].

Lemma 1. (Chan and Lau [4]) For any extreme point x of the natural relaxation
of the k-hypergraph b-matching problem, there exists an ordering of the edges,
e1, e2, . . . , em such that for each i, there exists a vertex vi ∈ ei with:

xei ≥
x(δ(vi) ∩ Ei)

k
,

4

where Ei = {e1, e2, . . . , ei}.
This lemma is proven by using linear-algebraic extreme point arguments to

show that a vertex of degree at most k exists. Although the lemma is proven
for the case of 1-matching in k-uniform hypergraphs by Chan and Lau, their
argument readily extends to our context of b-matching. We note that for conve-
nience, the ordering specified above is the opposite of the ordering as specified in
their paper. Unfortunately their fractional local ratio algorithm does not extend
to hypergraph b-matching; however, we show that iterative packing is able to
produce an approximation algorithm matching the worst-case integrality gap.
We do require refinements over the standard iterative packing approach in order
to obtain our bound.

Algorithm 1 Iterative packing iteration

Require: A collection {(µi, χ
i)}1≤i≤l of multipliers and solutions with

– each µi > 0 and
∑

i µi = 1,
– each χi a feasible integer solution not containing e, and
– a set of indices of excluded solutions, Xu for each u ∈ e.

1: . (Ie is the index set of solutions χi which contain e)
2: Ie ← ∅, i← 1
3: while λ(Ie) < α · xe and i ≤ l do
4: λi ← µi

5: if i /∈
⋃

u∈eXu then
6: if λi > α · xe − λ(Ie) then
7: l← l + 1
8: . (Add a new copy of the solution χi)
9: χl ← χi

10: . (λl and λi are set so that µi = λl + λi and λl, λi > 0)
11: λl ← µi − (α · xe − λ(Ie))
12: λi ← α · xe − λ(Ie)

13: Pack e into χi

14: Ie ← Ie ∪ {i}
15: i← i+ 1

Iterative packing for hypergraph b-matching. Algorithm 1 captures an
iteration of iterative packing, in which we seek to insert the hyperedge e = ej
into an existing approximate convex combination of solutions over the edges
e1, . . . , ej−1. The iteration succeeds if the algorithm terminates with λ(Ie) =
α · xe. Note that the algorithm will never terminate with λ(Ie) > α · xe, since
in order to do so the conditional on Line 6 must be taken, which ensures that
λ(Ie) = α ·xe and that the algorithm will terminate after the current iteration. If
we start with the collection {(λ1 = 1, χ1 = ∅)}, and iterative packing suceeds at
every iteration, then it terminates with a convex decomposition α·x =

∑
i≤l λiχ

i.
For the hyperedge e being packed, the sets Xu define the excluded solutions

at the vertex u with respect to e. Let Su = {i | χi(δ(u)) = bu}, which is simply

5

the set of solutions that are saturated at u. If we were to set Xu = Su for u ∈ e,
iterative packing would produce a collection of feasible solutions since the above
algorithm would only pack e into solutions with χi(δ(u)) ≤ bu − 1 for all u ∈ e.
Taking Xu = Su is the standard approach with iterative packing; however, for
the case of k-hypergraph b-matching this yields a poor approximation guarantee.
Surprisingly this is true of the standard b-matching problem (i.e. k = 2) as well.
Our main contribution is giving sets Xu ⊇ Su which allow us to set α ≥ 1

k−1+1/k ,

establishing the integrality gap of the standard relaxation.
We define the Xu we will use in the process of proving the following lemma.

For the remainder of this section we assume that α is chosen so that iterative
packing succeeds. We will bound α and consequently derive our approximation
guarantee in the next section.

Lemma 2. Given a fractional solution x, our iterative packing algorithm pro-
duces an approximate convex decomposition into integer solutions χi,

α · x =
∑
i∈I

λiχ
i,

which satisfies some additional properties. Let βu = dx(δ(u))e and Tu = {i ∈
I | χi(δ(u)) = βu} for each vertex u ∈ V . For each u ∈ V , the decomposition
satisfies:

(i) χi(δ(u)) ≤ βu (as opposed to χi(δ(u)) ≤ bu) for each solution χi, and
(ii) λ(Tu) ≤ α · (x(δ(u))− (βu − 1)), if βu 6= 0.

Intuitively this type of condition ensures that the number of edges packed
at a vertex u does not vary too much across the solutions χi; otherwise packing
becomes more troublesome in future iterations. This type of condition is neces-
sary to obtain an approximation guarantee matching the natural integrality gap
even for the standard b-matching problem.

Proof. Suppose we are given a fractional solution x to k-hypergraph b-matching
instance on a graph G = (V, {e1, . . . , em}), where the edge ordering is that in
which iterative packing is performed. We appeal to induction and hypothesize
the existence of an approximate convex decomposition as specified by Lemma 2
of the residual fractional solution x̂ on the graph G− {em}:

α · x̂ =
∑
i∈J

λ̂iχ̂
i.

Our goal is to show that we may pack e = em into an α · xe fraction of these
solutions to obtain a decomposition of x satisfying the conditions of Lemma 2.
The base case of x = χ1 = 0 and λ1 = 1 trivially satisfies these conditions for any
α. Observe that the functions x(δ(·)) and x̂(δ(·)) are identical on vertices outside

of e. For each u ∈ e we have x(δ(u)) = x̂(δ(u)) + xe, and we let β̂u = dx̂(δ(u))e.
Suppose for some u ∈ e we have βu = β̂u. In order to satisfy the strengthened

feasibility condition, (i) we may pack e only into solutions χ̂i with χ̂i(δ(u)) ≤

6

βu − 1. Letting T̂u = {i ∈ J | χ̂i(δ(u)) = β̂u}, we take the excluded solution set,
Xu to be precisely T̂u in this case. If α is chosen so that we are able to pack e,
we see that condition (ii) is easily satisfied:

λ(Tu) ≤ α · xe + λ̂(T̂u)

≤ α · (xe + x̂(δ(u))− (β̂u − 1)) [by (ii) of inductive hypothesis]

= α · (x(δ(u))− (βu − 1)).

If βu 6= β̂u we must have βu = β̂u + 1, since 0 < xe ≤ 1. In this case
property (i) is trivially satisfied by any successful packing of e since our inductive
hypothesis gives us χ̂i(δ(u)) ≤ βu − 1 for all i. However we must be a bit more
careful in order to satisfy (ii). The only way we can produce a solution with

χi(δ(u)) = βu is by packing e into a solution with χ̂i(δ(u)) = β̂u. Thus if

min{α · xe, λ̂(T̂u)} ≤ α · (x(δ(u))− (βu − 1)), (2)

any choice of Xu satisfies (ii), and we set Xu = ∅. Note that this is particularly

important for the case when β̂u = 0 and βu = 1, for which (2)) holds (i.e.
α ·xe ≤ α ·x(δ(u))). The fact that there is constraint on Xu allows us to progress
from the base case, whose inductive hypothesis gives us only trivial conditions
(i) and (ii).

If (2) does not hold, we have λ̂(T̂u) > α · (x(δ(u)) − (βu − 1)). In this case

we select Xu ⊂ T̂u such that λ̂(Xu) = λ̂(T̂u)− α · (x(δ(u))− (βu − 1)), ensuring
that (ii) is satisfied. Such an Xu may not exist; however, we may remedy this by

creating a clone of at most one solution χ̂i and distributing the value of λ̂i among
the multipliers of the copies as on Lines 7–12 of the algorithm. Since we may
have to perform such a cloning operation for each u ∈ e, packing e may create
up to k + 1 new solutions rather than 1 as with standard iterative packing. ut

In the sequel we will require bounds on λ̂(Xu), which we state now:

β̂u = 0, βu = 1 : λ̂(Xu) = 0 = α · (x̂(δ(u))− (βu − 1)),

β̂u = βu : λ̂(Xu) = λ̂(T̂u)

≤ α · (x̂(δ(u))− (β̂u − 1))

= α · (x̂(δ(u))− (βu − 1)), and

0 6= β̂u 6= βu : λ̂(Xu) = max{λ̂(T̂u)− α · (x(δ(u))− (βu − 1)), 0}

≤ α · (x̂(δ(u))− (β̂u − 1))− α · (x(δ(u))− (βu − 1))

= α · (1− xe).

Selecting α. We are now in a position to derive a universal bound on α such
that our iterative packing algorithm will succeed. We must ensure that each
edge e is successfully packed satisfying the conditions of Lemma 2. In the proof
of this lemma we provided requisite excluded solution sets Xu for each u ∈ e.

7

Algorithm 1 packs e at a fractional value of λi ≤ µi for each i /∈
⋃
u∈eXu. Thus

Algorithm 1 succeeds precisely when α ·xe+µ(
⋃
u∈eXu) ≤ 1. Since each µi ≥ 0,

a union bound yields µ(
⋃
u∈eXu) ≤

∑
u∈e µ(Xu), hence we may select α such

that
α · xe +

∑
u∈e

µ(Xu) ≤ 1, (3)

for the Xu as given in the proof of Lemma 2. The values µ(Xu) are equivalent to

λ̂(Xu) in the parlance of the proof of Lemma 2, and we appeal to the previously

derived bounds on λ̂(Xu). Let us partition the hyperedge e into sets of vertices

e′ = {u ∈ e | β̂u = βu or β̂u = 0, βu = 1} and e′′ = e− e′. In particular we have

α · xe +
∑
u∈e

µ(Xu) ≤ α · xe + α ·
∑
u∈e′

(x̂(δ(u))− (βu − 1)) + α ·
∑
u∈e′′

(1− xe)

= α ·

(
xe +

∑
u∈e′

(x(δ(u))− xe − (βu − 1)) +
∑
u∈e′′

(1− xe)

)

= α ·

(
(1− |e|) · xe + |e′′|+

∑
u∈e′

(x(δ(u))− (βu − 1))

)
.

Thus we may satisfy (3) by selecting α so the last quantity above is 1. Recall
that ρ ≤ 1/α (Proposition 1), where ρ is our approximation guarantee, hence

ρ ≤ (1− k) · xe + |e′′|+
∑
u∈e′

(x(δ(u))− (βu − 1)), (4)

since |e| = k.

Approximation Guarantee.

Theorem 1. Iterative packing on an extreme point of the natural LP relaxation
in the order provided by Lemma 1 with Xu as derived in the proof of Lemma 2
is a k − 1 + 1/k approximation algorithm.

Proof. Lemma 1 gives us the existence of a v ∈ e such that xe ≥ x(δ(v))/k,
which in conjunction with (4) yields:

ρ ≤ (1/k − 1) · x(δ(v)) + |e′′|+
∑
u∈e′

(x(δ(u))− (βu − 1)), (5)

since k ≥ 1. If v ∈ e′ then we see that

ρ ≤ 1/k · x(δ(v))− (βv − 1) + |e′′|+
∑

u∈e′\{v}

(x(δ(u))− (βu − 1))

≤ 1/k · x(δ(v))− (βv − 1) + k − 1

≤ 1/k · x(δ(v))− 1/k · (βv − 1) + k − 1 [since βv ≥ 1]

≤ k − 1 + 1/k,

8

which follow from k = |e′| + |e′′| and x(δ(u)) − (βu − 1) ≤ 1 for all u ∈ V . On
the other hand, if v ∈ e′′ then (5) implies:

ρ ≤ (1/k − 1) · x(δ(v)) + k < k − 1 + 1/k;

to see the latter inequality note that k ≥ 1 and x(δ(v)) > 1, since v ∈ e′′ implies

βv = β̂v + 1 ≥ 2. ut

Improvement for k-partite instances. If our k-uniform hypergraph is k-
partite, then we may appeal to a strengthening of Lemma 1 from Chan and Lau
which sharpens the lemma to produce

xei ≥
x(δ(vi) ∩ Ei)

k − 1
,

instead of xei ≥ x(δ(vi) ∩ Ei)/k. This directly implies the existence of a v ∈ e
with xe ≥ x(δ(v))/(k−1) above, and making the appropriate substitutions above
yields ρ ≤ k − 1.

3 Application: Allocations

Consider the following general auction setting: you have a set of n bidders and
a set of m items, with the only restriction being that each bidder can win at
most t items, where t is a fixed constant. Observe that for this simple setting, we
can even explicitly specify each bid in polynomial space, since each bidder has
only

(
m
t

)
+
(
m
t−1
)

+ · · · outcomes. What kind of truthful, approximately-efficient
mechanisms exist for this setting?

We will take advantage of the Lavi-Swamy framework [13], which is a frac-
tional version of the well-known Vickrey-Clarke-Groves (VCG) mechanism. We
cannot directly use VCG in this setting, because one of the steps in VCG is
to compute the allocation which maximizes the total utility of all players, and
this problem is NP-complete in our setting for t ≥ 2, by a reduction from 3-
dimensional matching. The main result of Lavi and Swamy is that once we
have an LP-relative α-approximation algorithm with respect to the natural LP,
we can get a truthful-in-expectation mechanism, which also maximizes the ex-
pected overall utility within a factor of α. Minimizing this factor means we are
coming closer to a VCG-like mechanism, whereas allocating everyone the empty
set is truthful but is a bad approximation.

First we define the natural LP relaxation for the allocation problem. Let xiS
be a fractional indicator variable indicating whether player i will win exactly the
set S of items. Then the LP requires that each player wins one set of items, and
that each item is allocated at most once, fractionally. Write viS as the valuation
of player i for set S. Then the fractional allocation LP is:

max
∑
i,S

xiSv
i
S : 0 ≤ x ≤ 1;∀i ∈ [n] :

∑
S

xiS = 1;∀s ∈ [m] :
∑
i

∑
S:s∈S

xiS ≤ 1.

(A)

9

Note that in our sample application xiS and viS are defined only for sets S of
size at most t, and so the LP has polynomial size.

Definition 1. An LP-relative α-approximation algorithm for the allocation prob-
lem is one that, for all nonnegative v, outputs an integer feasible solution to (A),
such that its value is at least 1/α times the LP optimum of (A).

Often this is equivalently described as an α-approximation algorithm which also
bounds the integrality gap of (A) by α.

Definition 2. An α-approximate truthful-in-expectation mechanism for the al-
location problem is a randomized algorithm of the following form. It takes the
values v as inputs; its outputs are a valid allocation of items to players together
with prices pi charged to each player i. It has the following two properties. First,
where S(i) denotes the set of items allocated to player i, we have

∑
i v
i
S(i) is

at least
∑
i v
i
T (i)/α for every valid allocation T . Second, for every fixed v−i, a

player who gives insincere valuations v̂i as their input, resulting in random vari-
ables p̂, Ŝ compared to the original ones p, S, does not increase their expected net
utility:

E[vi
Ŝ(i)
− p̂i] ≤ E[viS(i) − pi].

Moreover, 0 ≤ E[pi] ≤ E[viS(i)] for all i.

Theorem 2 (Lavi-Swamy [13]). Given a polynomial-time LP-relative α-approximation
algorithm for an allocation problem, we can obtain a polynomial-time α-approximate
truthful-in-expectation mechanism.

We note that the LP-relative property is essential. Our allocation problem is a
set packing problem with sets of size at most t + 1, and there is a t

2 + 2 + ε-
approximation for this problem [15], but we cannot use it with the Lavi-Swamy
theorem because it is not LP-relative. Our previous results, and the work of
Chan and Lau [4], give an LP-relative (k − 1 + 1/k)-approximation. We will
show that this can be improved to a (k − 1)-approximation.

Chan and Lau observe that for a general k-uniform hypergraph, any extreme
point solution of the matching LP has a value with degree at most k in the
support; and in Lemma 2.3 they show that for the special case of k-dimensional
hypergraphs, the k can be tightened to k-1. However, their proof immediately
implies that a more general result holds: it is enough that there exists a set W1

of vertices so that every hyperedge intersects W1 exactly once. This coincides
with the setting needed for our application, where W1 is the set of bidders and
all other vertices correspond to items that are up for auction.

4 A primal-dual approach for k-hypergraph demand
matching

In this section we reinterpret the 2k-approximation for k-hypergraph demand
matching from [14] as a simple primal-dual algorithm. Although the analysis of

10

our algorithm bears resemblance to the original, it does not require solving the
LP relaxation or maintaining an approximate convex decomposition. The inspi-
ration for our algorithm is a similar connection between a primal-dual algorithm
and an iterative packing like algorithm from Bar-Yehuda et al. [2].

Algorithm 2 ALG(V,E, d, b, w)

1: For each e ∈ E with we ≤ 0, remove e from E.
2: Pick e ∈ E such that de is minimum.
3: Define a new weight function w1 ∈ RE by

w1(f) =

{
1, iff = e∑

v∈e∩f df/max{bv − de, de}, otherwise.

and multiply it by the scalar w(e) to get the weight function w(e) · w1.
4: Recurse: F ′ := ALG(V,E − e, d, b, w − w(e) · w1).
5: Return {e} ∪ F ′ if it’s feasible, else return F ′.

The primal-dual algorithm. We use the following local ratio lemma (we skip
the proof): if some feasible F is an ρ-approximately optimal solution for weight
function w1, and also for weight function w2, then it is ρ-approximately optimal
for any nonnegative linear combination of w1 and w2. The analysis of Algorithm 2
is comprised of the following two lemmas.

Lemma 3. For each w1 constructed by the algorithm, the final result ALG of
the top-level call is 2k-approximately optimal.

Proof. We will show that w1(ALG) ≥ 1 and w1(OPT) ≤ 2k.

Claim. w1(ALG) ≥ 1.

Proof. On the one hand, if we return {e} ∪ F ′ this is obvious as w1(e) = 1, and
w1 is non-negative. On the other hand, if {e} ∪ F ′ is not feasible, it means
that the constraint of some vertex v is preventing the inclusion of e. Thus
de +

∑
f∈F ′:v∈f df > bv, so

∑
f∈F ′:v∈f df > bv − de. Furthermore, since e was

chosen to have minimal demand, each edge in {f ∈ F ′ | v ∈ f} has df ≥ de.
Consequently

∑
f∈F ′:v∈f df ≥ de. Now look at the definition of w1 — we defined

it precisely so that these two conditions together imply w1(F ′) ≥ 1. ut

Claim. Every feasible F0 has w1(F0) ≤ 2k.

Proof. Note that max{bv − de, de} ≥ bv/2. Consequently, for f 6= e we have

w1(f) ≤
∑
v∈e∩f

2df
bv

. Moreover, for each v the sum
∑
e∈F0|v∈e df is at most bv.

Reversing the order of summation and using |e| ≤ k gives the claim. ut

This proves the lemma. ut

11

Lemma 4. Let w′ be the original weight function minus all the w(e) ·w1’s pro-
duced by the algorithm. Then the final result ALG of the top-level call is 2k-
approximately optimal for w′.

Proof. We have w′ ≤ 0. Moreover, for each e picked in Line 2 of the algorithm,
w′e = 0, and ALG returns a subset of these. ut

Combining the lemmas and using the “local ratio lemma,” proves the 2k-
approximation. We may extend the analysis to show that the algorithm gives a
bound on the integrality gap of the natural relaxation.

References

1. N. Bansal, N. Korula, V. Nagarajan, and A. Srinivasan. On -column sparse packing
programs. In F. Eisenbrand and F. B. Shepherd, editors, IPCO, volume 6080 of
Lecture Notes in Computer Science, pages 369–382. Springer, 2010.

2. R. Bar-Yehuda, M. M. Halldórsson, J. Naor, H. Shachnai, and I. Shapira. Schedul-
ing split intervals. SIAM J. Comput., 36(1):1–15, 2006.

3. P. Berman. A d/2 approximation for maximum weight independent set in d-claw
free graphs. In M. M. Halldórsson, editor, SWAT, volume 1851 of Lecture Notes
in Computer Science, pages 214–219. Springer, 2000.

4. Y. Chan and L. Lau. On linear and semidefinite programming relaxations for
hypergraph matching. Mathematical Programming, pages 1–26, 2011.

5. C. Chekuri, M. Mydlarz, and F. B. Shepherd. Multicommodity demand flow in a
tree and packing integer programs. ACM Transactions on Algorithms, 3(3), 2007.

6. U. Feige and M. Singh. Edge coloring and decompositions of weighted graphs.
In D. Halperin and K. Mehlhorn, editors, ESA, volume 5193 of Lecture Notes in
Computer Science, pages 405–416. Springer, 2008.

7. M. Feldman, J. Naor, R. Schwartz, and J. Ward. Improved approximations for
k-exchange systems - (extended abstract). In Proc. 19th ESA, pages 784–798,
2011.

8. Z. Füredi, J. Kahn, and P. D. Seymour. On the fractional matching polytope of a
hypergraph. Combinatorica, 13(2):167–180, 1993.

9. E. Hazan, S. Safra, and O. Schwartz. On the complexity of approximating -set
packing. Computational Complexity, 15(1):20–39, 2006.

10. C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which
have an sdr, with an application to the worst-case ratio of heuristics for packing
problems. SIAM J. Discrete Math., 2(1):68–72, 1989.

11. C. Koufogiannakis and N. E. Young. Distributed fractional packing and maximum
weighted b-matching via tail-recursive duality. In DISC, pages 221–238, 2009.

12. P. Krysta. Greedy approximation via duality for packing, combinatorial auctions
and routing. In MFCS, pages 615–627, 2005.

13. R. Lavi and C. Swamy. Truthful and near-optimal mechanism design via linear
programming. In FOCS ’05: Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, pages 595–604, Washington, DC, USA, 2005.
IEEE Computer Society.

14. O. Parekh. Iterative packing for demand and hypergraph matching. In Proc. 15th
IPCO, pages 349–361. 2011.

15. J. Ward. A (k + 3)/2-approximation algorithm for monotone submodular k-set
packing and general k-exchange systems. In Proc. 29th STACS, pages 42–53, 2012.

12

