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What am I going to talk about? 

• Motivation 

– Structures are Random 

• Controller Design for Uncertain Dynamical Systems 

– Stochastic data-based approach with no Sys ID 

• Estimating the Family of Models 

– Karhunen-Loeve Expansion 

– Kernel Density Estimator 

– Markov Chain Monte Carlo 

• Application to Controlled Systems 

• Conclusions 
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Uncertainty is present in all systems 

• Variability (uncertainty) exists: 

– Between nominally identical structures 

– Between test trials of the same structure 

– In models created to capture the dynamics of structures 

– In environmental conditions under which a structure 
operates 

• The uncertainty and variability must be considered 
when analyzing uncertain systems 
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Random variability from a controls 
perspective 

• The system to be controlled is 
stochastic 

• Controller is deterministic (and 
optimized for stability and control of 
one plant in ensemble of stochastic 
plants) 

• How well does the controller perform 
on the ensemble of stochastic 
structures? 
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Uncertainty impacts on controller design 

• A controller for a dynamical system must take into 
account the plant uncertainty 

– Will the ensemble of systems be closed-loop stable? 

– Will controlled systems in the ensemble have 
performance expected from the nominal system? 

• Uncertainty is treated with stochastic and 
deterministic methods 

– Gain and phase margins 

– Deterministic robust control methods (H∞, QFT) 

– Stochastic robust control, stochastic robustness analysis 
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Typical controller design 

• A plant controller needs the plant model 

– Created from 1st principles or identified from test 

– Usually only a “nominal” model from the ensemble 

• Using a plant model in controller design allows for 
optimization for the nominal system  

• If the plant order is high, but controller order is limited, 
the plant must be reduced – this can introduce error 
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Stochastic evaluation methods are more 
flexible than deterministic methods 

• Deterministic methods demand stability for all 
possible uncertainties 

– Hard bounds 

– Often conservative 

• Stochastic methods admit a more realistic, 
population based, evaluation 

– Increased controller flexibility should allow performance 
improvements 
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Stochastic closed-loop performance 
evaluation 

• Ensemble measure of 
stability and performance 
– Stability Margins 

– Performance Cost Functions 

 

• Requires system 
identification (difficult) 
– Model error and uncertainty 

• Requires a large ensemble 
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The new method uses measured FRFs to 
evaluate the closed-loop system 

• Does not require system 
identification 
– Avoids Sys ID errors 

• Does not require a large 
ensemble 

 

• Synthetic plants are “clones” 
– True population 

representation is unknown 

• Underlying source of 
variability is unknown 
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Expanding an ensemble 

• Problem: We rarely have a large ensemble from with 
which to work 

• Solution: Synthetically expand test ensemble in FRF 
space using Karhunen-Loeve expansion (KLE) 
– Note that the expanded ensemble contains only linear 

combinations of the measured ensemble 
It has no knowledge of the physics, so we are constrained by the 
measured ensemble 
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Karhunen-Loeve Expansion 

 fx   fX   
k

k fv 21/
k

w ku

The KL expansion models a random process and its 

realizations as a mean function plus a product of shape 

functions, amplitude functions, and randomizing factors. 

The first three can be 

approximated using 

measured realizations. 

The uk are zero-mean, unit 

variance, uncorrelated. 
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Karhunen-Loeve Expansion 

• The matrix form of the KL expansion is  

 

• The expansion is a straightforward SVD 

• For MIMO FRFs, we vectorize the FRF matrix and 
stack the real and imaginary parts 

• Once realizations can be generated from the 
random vector U, realizations of the random 
process xrp can be generated 

• To generate realizations from U we need to express 
its joint probability density function (PDF) 

xUvwX  21 /
rp

x

1/2

rp μUvwX 
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Markov Chain Monte Carlo 

• We wish to draw samples from a source with the 
joint PDF created with the KDE 

• A generated vector is accepted or rejected as a new 
realization based on its likelihood of occurring 
(calculated with Kernel Density Estimator) 

• When enough randomizing vectors have been 
accepted, they can be turned back into FRF 
realizations using the original decomposition: 
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The KLE method sometimes gives non-
physical results 

• The KLE doesn’t know about the structure… 

– It simply combines basis vectors in random linear 
combinations which can give FRFs that aren’t physical 

• A screening method is described in another paper 
at this conference 
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A spring-mass example 

• A positive 
position feedback 
(PPF) controller 
was implemented 
at the 6th DOF. 

Control Input 

Disturbance 
Input 

Control Sensor 

Performance 
Sensor 

Disturbance 
Input 
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Open-Loop 
Plant Controller 

Stability metric aims to assure Nyquist 
stability 

• This stability metric penalizes curves which are near 
the critical point  

– Maximizes stability  
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Performance metric aims to minimize 
response magnitude  

• This performance metric is proportional to the area 
underneath the FRF magnitude curve 

,  
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Controller 

FRF

Plant FRF

Closed-loop 
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Controller 

Optimization

A combined cost function is created by 
combining metrics 

• Each metric is weighted by its importance in the 
final result 

• This combined metric could be used in controller 
optimization 
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Root-Loci 
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Nyquist Contours 

• Nyquist contours 
show range of closed-
loop performance 

• System variations 
were relatively small 
so the differences are 
small 
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Poor distributions result when     is not 
chosen carefully 
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Conclusions 

• KLE does a reasonable job expanding the test 
ensemble, but it does create some non-physical FRFs 
– This effect seems compounded by closely spaced modes 

• The synthetic realizations yield the expected 
probability density functions from the test data 

• Choosing a good value for the smoothing parameter is 
essential to getting good results 

• Certain problems are inherent to the use of small data 
sets in estimating PDFs 
– A single outlier can skew the estimated distributions 
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