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What am | going to talk about? \./

Motivation
— Structures are Random

Controller Design for Uncertain Dynamical Systems
— Stochastic data-based approach with no Sys ID

e Estimating the Family of Models
— Karhunen-Loeve Expansion
— Kernel Density Estimator
— Markov Chain Monte Carlo

* Application to Controlled Systems
e Conclusions
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i Uncertainty is present in all systems \ ./
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e Variability (uncertainty) exists:
— Between nominally identical structures
— Between test trials of the same structure
— In models created to capture the dynamics of structures

— In environmental conditions under which a structure
operates

* The uncertainty and variability must be considered
when analyzing uncertain systems
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Random variability from a controls

~RL

_perspective =

s G(f)

—_—

* The system to be controlled is

stochastic

e Controller is deterministic (and

optimized for stability and control of
one plant in ensemble of stochastic
plants)

 How well does the controller perform

on the ensemble of stochastic
structures?

K(f)
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>
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Uncertainty impacts on controller design \./
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e —————
* A controller for a dynamical system must take into

account the plant uncertainty

— Will the ensemble of systems be closed-loop stable?

— Will controlled systems in the ensemble have
performance expected from the nominal system?

* Uncertainty is treated with stochastic and
deterministic methods
— Gain and phase margins
— Deterministic robust control methods (H_,, QFT)
— Stochastic robust control, stochastic robustness analysis
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Typical controller design N7

* A plant controller needs the plant model
— Created from 1t principles or identified from test
— Usually only a “nominal” model from the ensemble

e Using a plant model in controller design allows for
optimization for the nominal system

* If the plant order is high, but controller order is limited,
the plant must be reduced - this can introduce error

Plant Model

Test Data [—»

T

Acceptable | VES - Updated Nominal
Correlation? Plant Model Controller
—
NO

Update Model
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tochastic evaluation methods are more ,

ol flexible than deterministic methods 57
d

* Deterministic methods demand stability for all
possible uncertainties

— Hard bounds
— Often conservative

e Stochastic methods admit a more realistic,
population based, evaluation

— Increased controller flexibility should allow performance
improvements
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Stochastic closed-loop performance \
[ J \ /
o evaluation oz
—_——————
Measurements
from Ensemble
|—> Sys Id —l /‘\L
Plant from Stability < Pass: JHf | |
Ensemble Assessment Fail: ||
Closed-loop . Accept
Plant i
Nominal - Performance T Pass: JHf |l Rejedt
Controller Assessment Fail: ||
Advantages Disadvantages

 Ensemble measure of
stability and performance
— Stability Margins

— Performance Cost Functions

* Requires system
identification (difficult)

— Model error and uncertainty

* Requires a large ensemble
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%The new method uses measured FRFs to

o evaluate the closed-loop system NF
e ————

Ensemble of FRF
Measurements

!

Ensemble
Expansion
Pass: Ji ||

SIS AR AsSst:sbs”rir?ént TE . |
Closed-loop Fail: 1l o Accept
Plant FRF : Reject
Nominal Performance Pass: Jf |
Controller Assessment 4 .
FRE Fail: ”l
Advantages Disadvantages
* Does not require system e Synthetic plants are “clones”
identification — True population
— Avoids Sys ID errors representation is unknown
* Does not require a large * Underlying source of
ensemble variability is unknown
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;i Expanding an ensemble
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* Problem: We rarely have a large ensemble from with

which to work

e Solution: Synthetically expand test ensemble in FRF
space using Karhunen-Loeve expansion (KLE)

— Note that the expanded ensemble contains only linear
combinations of the measured ensemble

Ensemble of FRF
Measurements

Ensemble
Expansion

It has no knowledge of the physics, so we are constrained by the
measured ensemble

"

L.

Plant FRF

Nominal
Controller
FRF

Closed-loop
Plant FRF

/N

Stability Pass: JHf Il |
Assessment -
Fail: ||| Accept
4 Reject
- ejec
Performance PaSS'J'm I
Assessment Fail: ||

(™)
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Karhunen-Loeve Expansion \~Z
4%
-
x(f) m(f) + 2 wl(f)  x w2 oy
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| ] -2
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jo=1 [ Index U,
L L The first three can be
P ed T approximated using
i b=t measured realizations.
l The u, are zero-mean, unit
ML A R variance, uncorrelated.
o The KL expansion models a random process and its
realizations as a mean function plus a product of shape
E functions, amplitude functions, and randomizing factors.
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Karhunen-Loeve Expansion N\~

 The matrix form of the KL expansion is

X, =WU + p,
* The expansion is a straightforward SVD
 For MIMO FRFs, we vectorize the FRF matrix and

stack the real and imaginary parts

* Once realizations can be generated from the
random vector U, realizations of the random
process x,, can be generated

* To generate realizations from U we need to express
its joint probability density function (PDF)
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Markov Chain Monte Carlo N\~

 We wish to draw samples from a source with the
joint PDF created with the KDE

* A generated vector is accepted or rejected as a new
realization based on its likelihood of occurring
(calculated with Kernel Density Estimator)

* When enough randomizing vectors have been
accepted, they can be turned back into FRF
realizations using the original decomposition:

v
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> S Amnd

}' The KLE method sometimes gives non- = .
physical results S E

 The KLE doesn’t know about the structure...
— It simply combines basis vectors in random linear
combinations which can give FRFs that aren’t physical
* A screening method is described in another paper
at this conference

Imag. Component of Open-Loop FRFs: input, ¢ = 0.2

x10° (output: 6, input: 6)
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A spring-mass example N\~

2

* A positive
position feedback (1 ﬁ<— Performance
(PPF) controller m1 Sensor

was implemented
at the 6th DOF.

YC
—T<-— Control Sensor

Faj
\ Disturbance

Input
Disturbance

s Input Control Input @ Sandia
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stability
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* This stability metric penalizes curves which are near
the critical point
— Maximizes stability

Open-Loop
Plant

Controller

Imaginary

Nyquist Plot
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/
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% Performance metric

response magnitude

AFRL

\/

.

aims to minimize

—_—

* This performance metric is proportional to the area
underneath the FRF magnitude curve

¥ Frequency Response Function
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A combined cost function is created by

combining metrics
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final result

e This combined metric could be used in controller

optimization

Ensemble of FRF
Measurements

'

Ensemble
Expansion

R

J

T ap]p + ag/s

Pass: U || /‘\L

Stability

Plant FRF
Controller |

FRF

Assessment
Closed-loop
Plant FRF
Performance
>

— e —— — ——— —— ]

Controller
Optimization

—
Fail: ||| Accept
< Reject
Pass: U || ejlec
|
Assessment Fail: || |
|
|

(™)

e ————
* Each metric is weighted by its importance in the
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The loci of eigenvalues for the open-loop and closed-loop
systems of randomly generated plants
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FRF Magnitude \Z
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Nyquist Contours N7

=~

* Nyquist contours
show range of closed- °©  — . )
loop performance \

* System variations
AR
were relatively small e

so the differences are / Sy
small

====Nominal

Stability Maximum

Stability Minimum
I
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Poor distributions result when £ is not

chosen carefully \/
—————
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Conclusions \~Z
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KLE does a reasonable job expanding the test
ensemble, but it does create some non-physical FRFs

— This effect seems compounded by closely spaced modes

The synthetic realizations yield the expected
probability density functions from the test data

Choosing a good value for the smoothing parameter is
essential to getting good results

Certain problems are inherent to the use of small data
sets in estimating PDFs

— A single outlier can skew the estimated distributions
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