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Testing a Alternative Singles Rate Dead Time Correction Algorithm for use in Neutron 
Multiplicity Analysis 

S. Croft, L.G. Evans, D. Hauck, M.T. Swinhoe, and P. Santi 
Safeguards Science and Technology Group, N-l, Los Alamos National Laboratory 

Email: scroft@ Ian!. gov 

ABSTRACT 
Neutron multiplicity analysis based on multiplicity shift register (MSR) logic applied to the pulse 
train in hardware or to list mode data is an established non-destructive assay technique for the 
quantification of spontaneously fissile materials. To obtain accurate results requires the data to 
be corrected for dead time losses. Dead time also influences the observed variance. Dead time 
correction algorithms are being evaluated at Los Alamos National Laboratory (LANL) as part of 
a strategic R&D program to enable correlated neutron measurements to be applied with 
confidence to ever more demanding scenarios, for example; reflective or highly mUltiplying 
items. One can treat dead time as part of the detector characteristics in a forward calculation. 
The most cornmon assay solution or inversion involves first correcting the observed rates and 
adopting the simple algebraic point-model) rather than running complex forward calculations 
iteratively. 

In examining the present day expressions for the dead time corrected singles, doubles and triples 
rates derived from MSR histograms according to the widely deployed dead time correction 
scheme developed by Dytlewski, we find that implicit within them is an alternative form of the 
singles dead time correction. The correction is assay item specific in that it derives from the 
dead time perturbed histograms themselves rather than being a function only of the observed 
singles rate. This means that the simplistic approximate correction for the trigger (singles) rate 
employed by Dytlewski may be replaced so that an internally self-consistent formalism covering 
all three multiplicity rates is obtained. A correction factor that depends on the concentration of 
correlated events present on the pulse train, as encoded in the histograms is to be expected and 
deals with the in-burst dead time losses. In this work we present the alternative singles 
correction factor. 

Dytlewski is not the only deadtime correction scheme in cornmon use and we examine other 
approximations and important results to shed light on the bigger problem. 

INTRODUCTION 

At high counting rates the correction for dead time losses can contribute a significant uncertainty 
to plutonium assay by passive neutron coincidence counting. Even at low rates biases creep in 



because current dead time correction methods do not account for 'within burst' losses. Re­
examining dead time treatment to obtain a self consistent formulation therefore forces one to 
reconsider the foundations of multiplicity analysis and push back the state of the art. 

To obtain precise results in a reasonable time neutron multiplicity counters have been developed 
with exceptionally high efficiency (>0.65 counts per neutron emerging from the item) which is 
necessary since the probability of observing a multiplet of order n depends on the efficiency 
raised to the n-th power. In tandem the trend has been to design for exceptionally short effective 
lIe-dieaway time «25~s for polyethylene moderated 3He proportional counter based systems) 
which minimizes the accidental (chance pile-up) coincidence rate which must be subtracted and 
otherwise severely limits the statistical precision on the higher moments. Together these two 
achievements have allowed the envelope of measurement problems to be expanded considerably 
and mean that for highly multiplying metallic items, as one example, the instantaneous counting 
rate within a fission chain is extremely high and also that the pulse trains are densely correlated 
and can no longer be approximated as random for the purposes of applying reliable dead time 
corrections. This work is part of a larger effort directed at understanding and providing practical 
solution to this challenge [1]. In this work we review the standard approaches and examine the 
theoretical underpinnings. 

REVIEW OF COMMON METHODS 

In Passive Neutron Coincidence Counting (PNCC) the most widely applied means of making 
corrections for dead time losses to the Singles (Totals or gross) and Doubles (Reals or pairs) 
rates is to use empirical relationships. The idea of using exponential factors in terms of effective 
dead time parameters chosen to correct characterization test data was established long ago in 
the safeguards arena [2] and has served the community extremely well. The form of the Dead 
Time Correction Factors (DTCFs) is as follows: 

The Reals DT parameter, OR, was initially measured by plotting the normalized logarithm of the 
net (i.e. Accidentals corrected) Reals rate as a function of Totals rate varied by adding AmlLi 
sources which boost the random (non time correlated) neutron rate. This approach naturally 

suggests parameterising OR in terms of low order polynomial of Sm, the observed or measured 
singles rate (i.e. not DT corrected), to accommodate deviations from linearity. The two free 
parameters a and b may also be obtained by counting 252Cf sources of various strengths and 

requiring the ratio of DTC doubles to the DTC singles, De/Se, to be constant as it should because 
the fissioning system is constant. 



This doubles DTCF has a specific functional form which one would like to justify at a more 

fundamental level. Also we would like to understand the assumed factor of ~ applied to DR to get 
4 

Dr as this is generally not questioned. 

In multiplicity counting, where the triples rate is extracted from a shift-register histogram, the 
most widely used DTC approaches are rooted in the work of Dytlewski [3]. Although Dytlewski 
shows how, under certain simplifying assumptions, how to derive DTCs for doubles and triples 
form the histograms given the effective extending dead time, d, of the system he does not 
explicitly address the singles rate loss. Instead he assumes a simple first order form, namely: 

There are a number of reasons to seek an alternative DT correction formulation for singles 
counting. For one, the classical empirical form is at least suggestive, through experience, that 
inclusion of a higher order term would be a beneficial whereas Dytlewski ad hoc suggestion 
uses only a linear term in the exponent. Also we'd ideally like to develop a consistent treatment 
between traditional PNCC and conventional multiplicity analysis approaches. The doubles and 
triples rates are derived from signal (single or event) triggered histograms and so the ratio of 
rates appearing in quantitative assay are independent of the trigger losses BUT it is important to 
remember that the absolute mass assay is directly dependent on the singles rate correction so it 
behooves us to get it right. 

There is another short coming however and that is for a random neutron source where the DTC 
doubles and triples rates are zero (Dc=O, T c=O) for an ideal counter with a fixed extending 
deadtime these simple forms in terms only of the measured singles rate do not reproduce the 
known theoretical result. For an ideal counting system described by a constant extending 
deadtime of duration d per event, it is well known [4] that for a pure Poisson emission neutron­
source (and hence pulse train) the deadtime corrected singles event rate Sc is obtained from Sm' 

the singles event rate uncorrected for deadtime, as follows: 

This form differs from that suggested by Dytlewski in that Sc replaces Sm in the exponent. If the 
correction factor is not too severe we can replace Sc in the exponent by Sm and obtain an 
approximate form: 

although we shall present a much better polynomial approximation later. 



Because the form of the exact expression is transcendental a convenient general iterative solution 
for applications is to form a nest of exponential functions. For the range of practical applications 

of interest here the singles dead time correction factor, CFs, is not expected to exceed about 

1.2214 (say, which would correspond to d =100 ns and Sc = 2 MHz which would yield what 

would be considered by an instrument designer to be a somewhat high d. Sc product) and so the 

order of the nesting to ensure adequate convergence is not high, seven is the value we have used 
successfully over a number of years, which yields essentially exact numerical results (better than 

0.00023% deviation over the range quoted). So, for practical applications we may write for the 

ideal random source and extending deadtime case: 

Sc 
CFs(random) = S = exp (x. exp(x. exp(x. exp(x. exp(x. exp(x. exp(x))))))) 

m 

where x = d. Sm 

From the exact solution for the random source case we are also able to write an exact Taylor 

series expansion. This follows from well known results for the Lambert W -function for real­
valued W on the main (unique valued) branch. That is we may write: 

CFs = exp(d. Sc) 

_ ( 2 3 3 8 4 125 5 54 6 16807 7 
- exp x + x + 2". x + 3· x + 24 x + 5· x + 720 . x + ... 

n-l ) 
+ ~.xn+ ... 

n! 

This provides an alternative means to numerical iteration for the exact evaluation in the case of a 

truly random pulse train subject to DT that obeys the mathematics of ideal extending behavior. 

Convergence of the series is not especially fast for finite values of x however, as can be seen by 

the trend in the value of the coefficients. However, for an operational range of practical concern 
(x < 0.25, say) including terms up to the tenth power agreement between the Taylor series 

expansion and the seven nested exponential form is better than about 0.032% at the top end of 
the range and this should not limit assay accuracy. However, we have elected to use the nested 
exponential form in our work. Note that if we compare the functions in the exponents directly 
we may write the corrected rate in terms of a (better) polynomial in terms of the measured rate as 
follows: 

It is both interesting and necessary to consider the consequence of when the DT is of the 

extending type but sampled from a distribution rather than being fixed for all detector pulses. 

We shall consider a simple single channel counting system, for example a cluster of 3He gas 

filled proportional counters serviced by a single amplifier-discriminator module where the 



variation in DT may be conceptually attributed to the distribution of the width of the analog 
voltage signals feeding the discriminator threshold. We may expect the DT to have a complex 

distribution of values between some minimum value d and some maximum value d governed by 

the convolution of the internal detector response and the action of the electronics. The pulse 

shapes from the 3He gas filled proportional counters exhibit a wide variation. The shaper in the 

amplifier and whether unipolar or bipolar circuits are used also plays it part. Recall that in the 
paralyzable (extending) model of dead time losses for an event to be recorded it must arrive at 

least a dead time after the pulse preceding it so that the observed singles rate is a consequence of 
pairs of detection events spaced by at least a dead time apart. The inter-pulse separation, 

restricting our discussion for simplicity to the case of a Poisson source, is governed by the 

interval distribution normalized [4] over all positive time, t: 

Let us define the probability of observing a DT of duration r after a given event by per). dr. 

Then the probability of intervals> r, which is also the probability that an event will be observed, 

is then obtained from the following combination of probabilities: 

To proceed we need the distribution of DT values. For illustrative purposes only let us pick a 
simple rectangular distribution, namely: 

dr 
p(r).dr = -A-V 

d-d 

Given this distribution we may define the mean DT according to a = ~. (d + d) and the half 
2 

spread given by .1 = ~. (d - d). Evaluating the integral using standard forms we obtain upon 
2 

rearranging the DT loss factor as follows: 

We see that for this special case the form of the DT loss is the same as for the fixed DT scenario 

but in terms of the mean DT and modified by the function in terms of the variable Sc . .1. Since 

the half spread value .1 is likely to be of the same order as the mean value a for 3He proportional 

counters we see from the expansion in the [ ] brackets that the modifier is fortuitously of second 

order smallness meaning that even though in real life the dead time is not fixed we are justified 

in using the ideal functional form - at least over some operational range to achieve adequate 



correction for many purposes. For illustration consider a single proportional counter connected 
to a amplifier-discriminator operating within the vicinity of the existing demonstrated limit of 

performance for a single amplifier-discriminator. Thus, let us assume Sc = 100 kHz and further 

let us take notional values of 2j.!s for a and 1 j.!S for Ll. The value of 1/ CFs then takes on the 

value of 0.819. [1 + 0.006666 + 0.000013 + ... ]. Thus the bias introduced in this somewhat 

extreme example of using the mean DT value is only about 0.7% and by picking an effective DT 

value (a little higher than true) better agreement over a narrow range of interest can be expected. 
We now have an appreciation of why the results of simple DT loss theory, but with fixed 

effective parameters to take the place of what are in fact physical parameters that follow some 
distribution have been found to work adequately provided the DT losses are modest. 

The simple discussion presented here needs to be extended, of course, to the case of correlated 
pulse trains and once we step outside first order approximation we lack solid guidance which is 

why our new studies are needed. Theoretical, experimental and simulation methods may all be 
gainfully employed in the evaluation. Space prohibits discussion here. 

Returning to the classical empirical form 

1 1 

C1;' e-48.sm = e-4·(a+b.Sm ).Sm rs :::::: 

where we emphasize that the effective Doubles deadtime parameter 0 is distinct from d. If we 

equate terms in this approximate form with those of equal order in the exact expansion for the 
random (Poisson) source case we find from writing: 

where as previously x = d. Sm that we can relate b to a and both to d and is so doing reduce the 
classic empirical form to a single parameter form. Explicitly we obtain: 

a b 
- = d and - = d 2 

4 ' 4 

or alternatively these relations for the reals DTC model parameters in terms of the paralyzable 
DT can be re-expressed as: 

a2 

a = 4. d, and b = -
4 

With this exact pick of parameters the approximate correction factor formula using this particular 

definition of 0 will, however, for a mathematically ideal counter, will always underestimate the 

exact value because of the neglect of the higher order terms in the exponent. Of course over a 

limited range the values of a and b can be chosen empirically so that the bias between the true 

value and the approximate estimate is reduced. Bearing in mind that a closer fit is needed at the 



higher end of the counting rate range where the correction differs from unity the most one can 
choose to emphasis agreement in this region since the magnitude of the absolute deviations in the 

extreme x < < 1 region is not important. 

To illustrate the accuracy of the exact series expansion consider the case at the upper end of our 

posited counting range namely d. Sc = 0.2 which corresponds to x ~ 0.1634 and a true singles 

deadtime correction factor of about 1.2214. If we include only the first two terms in the 

exponent (which is roughly equivalent to the ~ 8. Sm approximation discussed above) the 
4 

correction factor is underestimated by about 0.94% (= 100. (1 - APproXimation)). With the 
Exact 

inclusion of each additional higher order term the magnitude of the underestimation decreases 
becoming successively 0.29%,0.094%,0.032% and so on. The convergence and agreement is 

worse for higher x values (which is typically beyond our range of concern). The extent to which 

the deviations identified matter in practice is of course not just a consequence of formal 
mathematical analysis since in the real world the behavior of the system will not obey the simple 
extending DT theory perfectly and for the pulse trains of interest to PNCC and multiplicity 
analysis the pulse train is not random. But for completeness it is useful to understand the 

2 

underlying mathematics presented. For example using b = ~ is a useful starting point for 
4 

empirical iterative work. 

We may take this approximation as means to estimate the dead time correction bias in the reals 
rate for assay item 2 relative to a reference case item 1 due to uncertainty in the dead time 

parameter, a. Assuming the dominant reals dead time loss can be corrected by the factor 
(adopting shorthand notation for convenience): 

CF = exp[(a + h.S).S] ~ exp [(a + :' .s). s] 
We may write the relative correction factor as follows: 

The fractional deviation in the relative correction factor due to a change in the value of the dead 

time parameter a may then be expressed as: 

If we take a1 as our best estimate of the dead time parameter and set a2 = a1 + (Tal' that is to the 

value of a1 incremented by the experimental uncertainty at the one standard deviation level, (Tal' 



then the given expression gives an estimate of the bias in the reals rate for item 2 relative to item 

1 due solely to the dead time parameter uncertainty. In an assay based on a linear reals 
calibration curve this will propagate directly about the reference case. This type of analysis has 

value when for example comparing the reals rate from two notionally similar fresh fuel 

assemblies measured with an active collar containing an AmlLi source to induce fission in the 
LEU. If one assembly contains poison rods or has had rods removed we are interested in 
detecting the change relative to the base case as accurately as possible and quantifying the 

associated dead time loss uncertainty. We see immediately that when a is well determined 

(a2-a1) and the totals rates are also similar (52-51) the relative reals dead time correction bias 

will be small. This can be quantified using actual values on a case by case basis. However, for 

illustrative purposes, suppose we are operating in the somewhat extreme regime of a. 5-0.25 

corresponding to a reals DT correction factor of about exp (a.5 + ~. (a. 5)2) ~ 1.304. If the 
4 

DT parameter a is determined to about 5% meaning (a2 - a1)-0.05. a1 and the difference in 

rates (52 - 51)-0.1.51 and we make the approximation ~. (a2 + a1)' (52 + 51)-a1' 51 then we 
4 

see by inspection that in our expression for (l/J2/l/J1 - 1) the mantissa in the exponential takes 

on a value of about 0.05xO.1x1.25 times or 0.63% of the value used to make the full DT 

correction. This corresponds to about a (100xO.0063xO.266=) 0.17% potential bias in this 
worked and somewhat contrived example. In practice active collar measurements on fresh fuel 

is a low counting rate application and does not tax the counting system. But for measurements of 
spent nuclear fuel for pin diversion the situation could well be quite different in future 
applications. Additionally we recognize that when we determine the effective dead time 

parameters a and b experimentally the limitations of the dead time correction model cancel out 

to some extent, and further the parameters are dependent on the dynamic range picked to 
determine then. How much this might affect the estimates of systematic bias is unclear and 
would require a case by case assessment. 

Another simple yet important result is note worthy of mentioning. It is to do with the benefit of 
distributing the count rate between a number, n, of counting chains in order to reduce the overall 

dead time losses. For simplicity consider a system in which the true count rate 5c is obtained 
from a given array of 3He gas filled proportional counters serviced by an ideal single amplifier­
discriminator. Assume for illustration a fixed extending DT, d, and a Poisson source. The 

relation between the true or correct singles rate and the observed or measured rate, 5m : 

Suppose that the array can be divided into a number n of equivalent counting chains each with its 

own amplifier-discriminator which is the dominant manifestation of DT. In this case the 

observed rate for the system is: 



Sm = I (;). e -d.(~) = Sc. e -(*).Sc 
n 

Written this way we see that the effective DT parameter for the distributed system is just the DT 

of a single element divided by the number of equivalent elements in the system, that is to say the 

effective DT is for the system is (din). In practice detectors may be ganged together in various 

numbers to try and get a near even count rate loading given that the efficiency per 3He tube 
varies from inner ring to outer ring or in the case of a non cylindrical moderator location in 

general. But since we are dealing with small integers the matching is often imperfect. 
Furthermore, some items, such as inhomogeneous waste and scrap do not give a symmetrical 

output and this can be emphasized if the item is rotated during the measurement because the rates 
in each detector bank will not be steady. These effects and the consequence of combining 
unmatched counting banks on correlated DT losses needs to be examined further both 

theoretically and experimentally and via empirical numerical simulation. 

EXTENSIONS 

When correlations are present on the pulse train we might expect the singles DTCF to not only 
depend on the true (DTC) singles rate but also to be governed in part by the degree of 
correlation. This is because the higher the proportion of time correlated events on the pulse train 

the greater will be the fraction of events with shorter inter-pulse separation and hence the greater 
the chance of dead time (pileup) loss. Another way to think about this is to consider what we 

refer to as "within-burst" DT losses. Imagine a weak source of correlated neutrons - for 

example a spontaneous fission source that decays with the emissions of bursts of neutrons. In 
the limit that the burst rate tends to zero, that is d. Sc ~ 0 we still expect DT losses because the 

neutron bursts are detected over a short period of time commensurate with the characteristic 

lifetime of neutrons in the system. A DTCF that depends solely on Sc and not on the item 
specific density distribution (inter-pulse spacing distribution), that is to say the multiplicity 

histograms or put another way the (Dclfd)/Sc-ratio (where fd is the PNCC coincidence gate 
utilization factor) must only be approximate even within the theoretical construct of the rest of 
the DT correction formalism (developed for doubles and triples). It follows therefore that to fit 
into the Dytlewski DTC scheme an approach which is dependent on the accidentals or B j -

histogram would seem 'natural' . Recognizing the deficiency and ultimately the empirical natural 
of the Dytlewski approach provision is made for additional factors (of the type -1 + 
c. Sm or ec.sm ), that effectively increase the DTCF for the trigger rate for doubles and triples. 

In work recently presented elsewhere [5] we have developed an item specific singles DTC 

derived from the accidentals histogram using Dytlewski's assumptions and a-functions. By item 



specific we mean the correction will be specific to the degree of correlation and not just the totals 
rate. On simulated test data for an AWCC (lCC-51) detector we demonstrated this form worked 
extremely well. The form of the correction is: 

Sc 
CFs =-= 

Sm 
where Tg is the coincidence gate width. 

We have also revisited what we consider to be seminal but overlooked work of Mattes and Hass 
[6] to obtain DTC easily implementable expressions for a detector with 1/e-dieaway time T of: 

We reserve detailed discussion and application of this result for another time but point out it goes 
a long way to justifying the success of the classical empirical DTC expressions at modest rate 
while not being a complete solution to the problem. 

CONCLUSION 

We have reviewed some important dead time correction theory for neutron coincidence counting 
applications which as far as we are aware has been applied empirically by the NDA community 
but never explicitly explained to the user. 
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