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U N C L A S S I F I E D 

Abstract 

 The mathematical theory of inverse problems has been intensely explored for 
many years. One common solution to inverse problems involves analysis by 
synthesis, where a forward model produces a synthetic data set, given model 
inputs, and optimization is used to find model inputs that minimize the 
difference between the real data and the synthetic data. Some beautiful 
mathematical results demonstrate that under ideal situations, this procedure 
returns the MAP estimate for the parameters of the model. However, many 
practical considerations exist which makes this procedure much harder to 
actually use and implement. In this presentation, we will evaluate some of 
these practical considerations, including: Hypothesis testing over confidence, 
overfitting systematic errors instead of overfitting noise, optimization 
uncertainties, and complex measurement system calibration errors. The 
thrust of this work will be to attempt to qualitatively and quantitatively assess 
the errors in density reconstructions for the Dual Axis Radiographic Hydrotest 
Facility (DARHT) and LANL. 
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U N C L A S S I F I E D 

What is Hydrodynamic Testing? 

 High Explosives (HE) driven experiments to study nuclear weapon 
primary implosions. 
• Radiographs of chosen instants during dynamic conditions. 
• Metals and other materials flow like liquids under high temperatures and pressures 

produced by HE. 
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U N C L A S S I F I E D 
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U N C L A S S I F I E D 

THE FTO 
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U N C L A S S I F I E D 

Challenges: 
Dose/Dynamic Range 
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U N C L A S S I F I E D 

Static Test Objects (e.g. FTO) 

 Allow us to calibrate against 
objects with known geometry. 

 Comparison of machines 
(microtron, PHERMEX, DARHT) 

Benchmark radiographic codes 
(e.g. SYN_IMG, the BIE) 

Benchmark scatter codes 
(MCNP). 

Develop understanding and train 
experimentalists. 
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U N C L A S S I F I E D 

Collimation  

 
Rough collimation controls 
angular extent and direction of 
radiation fan. 
Shields from source scatter. 
A Graded collimator is an 
approximate pathlength inverse 
of object and flattens field for 
reduced dynamic range and 
reduced scatter. 
An exact graded collimator 
would produce an image with no 
features! 
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U N C L A S S I F I E D 

Challenges 

Dose/Dynamic Range 
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U N C L A S S I F I E D 

(FTO+Collimator+Fiducial+plates) 
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U N C L A S S I F I E D 

A forward modeling approach is currently used in 
analysis of (single-time) radiographic data 

True  
radiographic 
physics 

? 

True density 
(unknown) 

Inverse approach 
(approximate 
physics)  

Transmission (experimental) 
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U N C L A S S I F I E D 

 Bayesian Analysis 
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U N C L A S S I F I E D 

Assumptions 

 Where n is some independent , additive noise. 

 If n is Gaussian then: 
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U N C L A S S I F I E D 

Plug that in: 

 If I assume a uniform prior then: 
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U N C L A S S I F I E D 

The Solution 

 Building h(m) 

 Optimizing parameters m 
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U N C L A S S I F I E D 

Using the Prior 

 Computer vision is notoriously under constrained. 

 Penalty terms on the function to be optimized can often overcome this 
problem. 

 These terms can be seen as ill-posed priors 
• GGMRF 
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U N C L A S S I F I E D 

Dealing with Scatter 
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U N C L A S S I F I E D 
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U N C L A S S I F I E D 

Example, approximating scatter 
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U N C L A S S I F I E D 

Beautiful, Yes! 
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U N C L A S S I F I E D 

Practical Considerations 
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U N C L A S S I F I E D 

 Axis 2, Time 
1 Flat Field 
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U N C L A S S I F I E D 

Flatfield Components 


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U N C L A S S I F I E D 

Necessary Assumptions 
Axis 2 Time 1 FTO 
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U N C L A S S I F I E D 


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U N C L A S S I F I E D 

Learning Fields 
 Treat entire known chain 

(FTO+collimator+fiducial 
plate) as a fiducial 

 Examine fields Produced 
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U N C L A S S I F I E D 

4df s 4df g 
FTO 
Residuals 

 5% residuals 
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U N C L A S S I F I E D 

Nov 2012 FTO Data Scatter and Gain Analysis (5 plates) 

 4DF S 4DF G 

           48%      8% 
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U N C L A S S I F I E D 

 Axis 2, Time 
1 Flat Field 
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U N C L A S S I F I E D 

Center Camera 
Only FTO 
Residuals 
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U N C L A S S I F I E D 

Inferred Scatter, 
FTO 
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U N C L A S S I F I E D 

So What? 

 Simulation is broken, 

 Just learn whatever the field is… 
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U N C L A S S I F I E D 

Width of the Known Ring for FTO 

 5.4-4.5 

 5.4-4.25 

 5.4-3.5 

 5.4-0 
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U N C L A S S I F I E D 

Additional synthetic fiducials in FTO graded collimator, 
with FTO 
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U N C L A S S I F I E D 

Width of the Known Ring for FTO 

 5.4-4.5 

 5.4-4.25 

 5.4-3.5 

 5.4-0 

 Fiducials 
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U N C L A S S I F I E D 

Density in the FTO Ta 
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U N C L A S S I F I E D 

Conclusion 

 Scatter is more curved than previously thought 

 Curved fields can’t be learned accurately in existing thin fiducial ring 

 Fiducials inside unknown objects don’t perfectly solve the problem 

 But they can help 
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U N C L A S S I F I E D 

Questions 
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