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Practical Considerations for
Analysis By Synthesis, a Real
World Example using DARHT

Radiography.

By James L. Carroll
2013
LA-UR-13-XXXX
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Abstract

= The mathematical theory of inverse problems has been intensely explored for
many years. One common solution to inverse problems involves analysis by
synthesis, where a forward model produces a synthetic data set, given model
iInputs, and optimization is used to find model inputs that minimize the
difference between the real data and the synthetic data. Some beautiful
mathematical results demonstrate that under ideal situations, this procedure
returns the MAP estimate for the parameters of the model. However, many
practical considerations exist which makes this procedure much harder to
actually use and implement. In this presentation, we will evaluate some of
these practical considerations, including: Hypothesis testing over confidence,
overfitting systematic errors instead of overfitting noise, optimization
uncertainties, and complex measurement system calibration errors. The
thrust of this work will be to attempt to qualitatively and quantitatively assess
the errors in density reconstructions for the Dual Axis Radiographic Hydrotest
Facility (DARHT) and LANL.
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What is Hydrodynamic Testing?

= High Explosives (HE) driven experiments to study nuclear weapon
primary implosions.
« Radiographs of chosen instants during dynamic conditions.
 Metals and other materials flow like liquids under high temperatures and pressures
produced by HE.

Static Cylinder Set-up Static Cylinder shot Static Cylinder Radiograph
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THE FTO
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Challenges:

Dose/Dynamic Range
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Static Test Objects (e.q. FTO)

« Allow us to calibrate against
objects with known geometry.

« Comparison of machines
(microtron, PHERMEX, DARHT)

.Benchmark radiographic codes
(e.g. SYN_IMG, the BIE)

«Benchmark scatter codes
(MCNP).

«Develop understanding and train
experimentalists.
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Collimation

«Rough collimation controls
angular extent and direction of
radiation fan.

«Shields from source scatter.
«A Graded collimator is an
approximate pathlength inverse
of object and flattens field for
reduced dynamic range and
reduced scatter.

«An exact graded collimator
would produce an image with no
features!
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Challenges

Dose/Dynamic Range
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(FTO+Collimator+Fiducial+plates)
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A forward modeling approach is currently used in
analysis of (single-time) radiographic data

True
radiographic
physics
L2
Inverse approach
(approximate
physics)
True density - a5 _ al
(unknown) ransmission (experimental)
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A forward modeling approach is currently used in
analysis of (single-time) radiographic data

True
radiographic
physics How do we
P, | | extract density
[  PET TP PPTT P PPT TP PPTT PP PPTT PP PPTTPTPPTTPPPPTTY & 3 .
Inverse approach from th.IS _
(approximate transmission?
physics)
True density - ab. : tal
(unknown) ransmission (experimental)
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A forward modeling approach is currently used in
analysis of (single-time) radiographic data

True
radiographic
physics How do we
P | extract density
| | 4 .............................................. 3 ) .
Inverse approach from th.IS _
(approximate transmission?
physics)
True densit ab. _
(unknown) y Transmission (experimental) Comp_are
statistically
Simulated
radiographic
physics
Model density Transmission (simulated)

(allowed to vary)
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A forward modeling approach is currently used in
analysis of (single-time) radiographic data

True
radiographic
physics

f)

True density
(unknown)

u <

Inverse approach
(approximate
physics)

Transmission (experimental)

Simulated
radiographic
physics

Model density
(allowed to vary)

Transmission (simulated)

UNCLASSIFIED

How do we
extract density
from this
transmission?

Compare
statistically

We develop a parameterized
model of the density
(parameters here might be edge
locations, density values)
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A forward modeling approach is currently used in
analysis of (single-time) radiographic data

True
radiographic
physics

f)

True density
(unknown)

u <

Inverse approach
(approximate
physics)

Transmission (experimental)

Simulated
radiographic
physics

Model density
(allowed to vary)
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Transmission (simulated)

How do we
extract density
from this
transmission?

Compare
statistically

We develop a parameterized
model of the density
(parameters here might be edge
locations, density values)

Model parameters are varied so that the

simulated radiograph matches the experiment
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A forward modeling approach is currently used in
analysis of (single-time) radiographic data

True
radiographic
physics

2

Inverse approach
(approximate

physics)
True density - ) 3 : al
(unknown) ransmission (experimental)
Simulated
radiographic
physics
h(m)

Model density

Transmission (simulated)

How do we
extract density
from this
transmission?

Compare
statistically

p(mir)

We develop a parameterized
model of the density
(parameters here might be edge
locations, density values)

(allowed to vary)

Model parameters are varied so that the
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simulated radiograph matches the experiment
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p(rim)p(m)
J p(rim)p(m)dm

p(m|r) =

p(m|r) < p(r|m)p(m)

—In[p(m|r)] < —In[p(r|lm)] — In [p(m)]
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Assumptions

r=h(m)+n
= Where nis some independent , additive noise.

m If nis Gaussian then:

1
—In[p(r|m)] « e lr — h(m)|?
g

n
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Plug that in:

—In[p(m|r)] o< —In[p(rim)] — In [p(m)]

1
—In[p(m|r)] « 52 |r — h(m)|* — In[p(m)]

n

m If lassume a uniform prior then:

a1
min , _max
——|r — h(m mlr
m 257 T = RGmI? =T Fp(mir)
/'\
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A forward modeling approach is currently used in
analysis of (single-time) radiographic data

True
radiographic
physics

2

Inverse approach
(approximate

physics)
True density - ) 3 : al
(unknown) ransmission (experimental)
Simulated
radiographic
physics
h(m)

Model density

Transmission (simulated)

How do we
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from this
transmission?

Compare
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p(mir)

We develop a parameterized
model of the density
(parameters here might be edge
locations, density values)

(allowed to vary)

Model parameters are varied so that the
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simulated radiograph matches the experiment

T YA a9’
VA =



The Solution

= Building h(m)

s Optimizing parameters m
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Using the Prior

=  Computer vision is notoriously under constrained.

s Penalty terms on the function to be optimized can often overcome this
problem.

m Theseterms can be seen as ill-posed priors

« GGMRF
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Dealing with Scatter
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Scatter level (Norm. by Avg. Total Signal)

MCNP calculations of scatter fields for fiducial object,
with and without coherent scatter (calc. by M. Klasky).
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Example, approximating scatter

T =Ie #Pli 4+ §
T =]e #Pl2 4 §
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Beautiful, Yes!
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Practical Considerations
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Axis 2, Time
1 Flat Field
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Flatfield Components

B F=BpDr+Sf
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Necessary Assumptions

Axis 2 Time 1 FTO
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Necessary Assumptions

Axis 2 Time 1 FTO
Image = B,D,Ie ' + D,S;
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Necessary Assumptions
Axis 2 Time 1 FTO
Image = B,D,Ie ' + D,S;

Image BpD,-Ie_PI+D,.Si
flatfield B,D,+D,S¢
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Necessary Assumptions
Axis 2 Time 1 FTO
Image = B,D,Ie ' + D,S;

Image BpD,-Ie_PI+D,.Si
flatfield B,D,+D,S¢

Image  BpD,I e PlyD,s;
flatfield B,D,
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Necessary Assumptions
Axis 2 Time 1 FTO
Image = B,D,Ie ' + D,S;

Image BpD,-Ie_PI+D,.Si
flatfield B,D,+D,S¢

Image  BpD,I e PlyD,s;

flatfield B,D,
Image —pl
_mage _ el 4 3i
flatfield Bp
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s Produce Low Frequency

Fit to Flat Field /
Image _ , _pl , Si
flatfield e ™+ B

p
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Learning Fields

m Treat entire known chain
(FTO+collimator+fiducial
plate) as a fiducial

m Examine fields Produced
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4df s 4df g
FTO
Residuals

5% residuals
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Nov 2012 FTO Data Scatter and Gain Analysis (5 plates)

= 4DF S4DF G

48% 8%
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m AXxis 2, Time
1 Flat Field
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Inferred Scatter,
FTO
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So What?

=  Simulation is broken,

m Justlearn whatever the field is...
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Width of the Known Ring for FTO

m 5.4-45
m 5.4-4.25
m 5.4-35
m 5.4-0
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Additional synthetic fiducials in FTO graded collimator,
with FTO

=i Y,
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Width of the Known Ring for FTO

m 5.4-45
m 5.4-4.25
m 5.4-35
m 5.4-0
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Density in the FTO Ta

With Fiducials: Without Fiducials:




Conclusion

m Scatter is more curved than previously thought
s Curved fields can’t be learned accurately in existing thin fiducial ring
s Fiducials inside unknown objects don’t perfectly solve the problem

s But they can help
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Questions
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