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We consider an unsteady one-dimensional detonation with diffusion and simple one-step kinetics. The
advective terms from the Navier-Stokes equations are calculated using a combination of a fifth order WENO
scheme and Lax- Friedrichs. The diffusive terms are treated with sixth order central differences. The diffusive
effects remove the discontinuities from the system by smoothing the shock. It is shown that the bifurcation
path to chaos, well-established for the inviscid analog of the same equations, is significantly modulated by the
presence of physically realistic mass, momentum, and energy diffusion. Moreover, when physical diffusion is
captured with an appropriately fine grid, a fifth order central difference of advective terms works as well as
a WENO method in capturing the detonation dynamics.
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Introduction

e Standard result from non-linear dynamics: small scale
phenomena can influence large scale phenomena and vice

versa.

e What are the risks of using reactive Euler instead of reactive

Navier-Stokes?

e Might there be risks in using numerical viscosity, LES, operator
splitting, and turbulence modeling, all of which filter small scale

physical dynamics?

e Do we really need WENO methods if the problem demands

resolved diffusive length scales?




Introduction-Continued

e |t is often argued that viscous forces and diffusion are small
effects which do not affect detonation dynamics and thus can be

neglected.

e Tsuboi et al.,, (Comb. & Flame, 2005) report, even when using

micron grid sizes, that some structures cannot be resolved.

e Powers, (JPP, 2006) showed that two-dimensional detonation
patterns are grid-dependent for the reactive Euler equations, but
relax to a grid-independent structure for comparable

Navier-Stokes calculations.

® This suggests grid-dependent numerical viscosity may be

problematic.




Introduction-Continued

e Powers & Paolucci (AIAA J, 2005) studied the reaction length
scales of inviscid H5-O5 detonations and found the finest
length scales on the order of sub-microns to microns and the
largest on the order of centimeters for atmospheric ambient

pressure.
e This range of scales must be resolved to capture the dynamics.

® |n a one-step kinetic model only a single chemical length scale

IS iInduced compared to the multiple scales of detailed kinetics.

e By choosing a one-step model, the effect of the interplay
between chemistry and transport phenomena can more easily
be studied.




Review

e |n the one-dimensional inviscid limit, one step models have

been studied extensively.

e Erpenbeck (Phys. Fluids, 1962) began the investigation into the

linear stability almost fifty years ago.

® | ee & Stewart (JFM, 1990) developed a normal mode

approach, using a shooting method to find unstable modes.

e Bourlioux et al. (SIAM JAM, 1991) studied the nonlinear

development of instabilities.




Review-Continued

e Kasimov & Stewart (Phys. Fluids, 2004) used a first order

shock-fitting technique to perform a numerical analysis.

e Ng et al. (Comb. Theory and Mod., 2005) developed a coarse
bifurcation diagram showing how the oscillatory behavior
became progressively more complex as activation energy

increased.

e Henrick et al. (J. Comp. Phys., 2006) developed a more detailed

bifurcation diagram using a fifth order mapped WENO

shock-fitting technique.




One-Dimensional Unsteady Compressible Reactive
Navier-Stokes Equations
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Constitutive Relations
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Case Examined

Let us examine this one-step kinetic model with:

e a fixed reaction length, L /o = 1075 m, which is similar to the

finest length scale of Hy-Os5.

e an ambient pressure, P, = 101325 Pa, ambient density,
po = 1 kg/m?3, heat release ¢ = 5066250 m? /s, and

v =6/5.

e a fixed the diffusion length, L, = 10~7 mM; mass, momentum,

and energy diffusing at the same rate.

e a range of activation energies were examined (25 < E < 32)

and thus a range for the collision frequency factor
(1.145 x 109 1/s < a < 3.54 x 1019 1/5).




Numerical Method

e Finite difference, uniform grid

(Az = 2.50 x 107%m, N = 8001, L = 0.2 mm) .

Computation time = 192 hours for 10 us onan AMD 2.4 GH z
with 512 kB cache.

A point-wise method of lines aproach was used.

Advective terms were calculated using a combination of fifth
order WENO and Lax-Friedrichs.

Sixth order central differences were used for the diffusive terms.

Temporal integration was accomplished using a third order

Runge-Kutta scheme.




e I|nitialized with inviscid
ZND solution.

e Moving frame travels at

the CJ velocity.

e Integrated in time for

long time behavior.




Effect of Diffusion on Limit Cycle Behavior

E=26.64 e Lee and Stewart revealed for
E < 25.26 the steady ZND

wave is linearly stable.

For the inviscid case Henrick

et al. found the stability limit at
Eo = 25.265 £ 0.005.

In the viscous case b =

26.60 is still stable; however,

above Fy =~ 27.14 a period-

1 limit cycle can be realized.




Period-Doubling Phenomena

Cem0 g Ag in the inviscid limit, the

]
’

7 | viscous case goes through a
4 |

period-doubling phase.

® For the inviscid case the

period-doubling began at

e |n the viscous case the begin-
ning of this period doubling is
delayed to 1 ~ 29.32.




Effect of Diffusion on Transition to Chaos

e In the inviscid limit, the point where bifurcation points
accumulate is found to be £, ~ 27.8324.

e For the viscous case, L, /Lo = 1/10, the accumulation

point is delayed until £, ~ 30.0327.

e For i > 30.0327, a region exists with many relative maxima

in the detonation pressure; it is likely the system is in the chaotic

regime.




Approximations to Feigenbaum’s Constant
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oo = lim 9,, = lim !

n— 00 n— 00 En+1 — E,,

Feigenbaum predicted 0., ~ 4.669201.
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Chaos and Order

® The period-doubling behavior and transition to chaos predicted in the

inviscid limit is also observed in the diffusive case.

e Within this chaotic region, there exist pockets of order with periods of 5,

6, and 3 present.

Viscous Detonations:

| 9 T
Period-5 _ Chaotic |

85 ¢ 75 85

Period-6 [ Period-3 |




Bifurcation Diagram

(a) Inviscid model
using shock-fitting




WENOS5M Shock-Capturing (Inviscid)

e At lower activation energies where the behavior is simpler,
shock-capturing compares well with shock-fitting with similar

resolutions.

o At I/ = 26.64, shock-fitting predicts a period-1 oscillating detonation
(Pma,g; — 5.48 MPCL).

e® Shock-capturing using N1/2 = 20, yields an relative difference of

2.1% and using N1 /2 = 40 this relative difference is reduced to
0.34%




WENOS5M Shock-Capturing (Inviscid)
e At a higher activation energy,
(FE = 27.82), shock-fitting predicts
a period-8 detonation, where as
shock-capturing using N1 ,0 = 40
predicts a period-4 detonation. To
reconcile this difference, the resolu-

tion of the shock-capturing technique

must be increased to V1 /o & 160.

Numerical diffusion is playing an im-

portant role in determining the behav-
ior of the system. Let’'s add physical
diffusion and see how that affects the

behavior of the system.




WENO5M & Central Differencing (Viscous)

E=30.02

e Even when a complex behavior is
predicted by the WENO scheme

(period-8 detonation), the central dif-

ference predicts the same behavior.

e The values of the detonation pres-

sure match minus a time-shift which

Relative Difference

orginates at the initialization.
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WENOS5M & Central Differencing (Viscous)
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Effect of Diminshing Viscosity (£ = 27.64)

6.5

(a) High

t (us)

15 2

(b) Inte.r;ediaté _

The system undergoes
transition from a stable
detonation to a period-1
limit cycle, to a period-2

limit cycle.

The amplitude of pulsa-

tions increases.

The  frequency  de-

creases.




Conclusions

Dynamics of one-dimensional detonations are influenced
significantly by mass, momentum, energy diffusion in the region

of instability.
In general, the effect of diffusion is stabilizing.

Bifurcation and transition to chaos show similarities to the

logistic map.

For physically motivated reaction and diffusion length scales not

unlike those for H»-air detonations, the addition of diffusion

delays the onset of instability.




Conclusions-Continued

When physical diffusion is captured with an appropriately fine
grid a central difference of advective terms works as well as a
WENO method in capturing the detonation dynamics.

As physical diffusion is reduced, the behavior of the system

trends towards the inviscid limit.

If the dynamics of marginally stable or unstable detonations are
to be captured, physical diffusion needs to be included and

dominate numerical diffusion or an LES filter.

Results will likely extend to detailed kinetic systems.

Detonation cell pattern formation will also likely be influenced by

the magnitude of the physical diffusion.




