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Introduction 

• Standard result from non-linear dynamics: small scale 

phenomena can influence large scale phenomena and vice 

versa. 

• What are the risks of using reactive Euler instead of reactive 

Navier-Stokes? 

• Might there be risks in using numerical viscosity, LES, operator 

splitting, and turbulence modeling, all of which filter small scale 

physical dynamics? 

• Do we really need WEND methods if the problem demands 

resolved diffusive length scales? 



Introduction-Continued 

• It is often argued that viscous forces and diffusion are small 

effects which do not affect detonation dynamics and thus can be 

neglected. 

• Tsuboi et al., (Comb. & Flame, 2005) report, even when using 

micron grid sizes, that some structures cannot be resolved. 

• Powers, (JPP, 2006) showed that two-dimensional detonation 

patterns are grid-dependent for the reactive Euler equations, but 

relax to a grid-independent structure for comparable 

Navier-Stokes calculations. 

• This suggests grid-dependent numerical viscosity may be 

problematic. 



Introduction-Continued 

• Powers & Paolucci (AIAA J, 2005) studied the reaction length 

scales of inviscid H 2-02 detonations and found the finest 

length scales on the order of sub-microns to microns and the 

largest on the order of centimeters for atmospheric ambient 

pressure. 

• This range of scales must be resolved to capture the dynamics. 

• In a one-step kinetic model only a single chemical length scale 

is induced compared to the multiple scales of detailed kinetics. 

• By choosing a one-step model, the effect of the interplay 

between chemistry and transport phenomena can more easily 

be studied. 



Review 

• In the one-dimensional inviscid limit, one step models have 

been studied extensively. 

• Erpenbeck (Phys. Fluids, 1962) began the investigation into the 

linear stability almost fifty years ago. 

• Lee & Stewart (JFM, 1990) developed a normal mode 

approach, using a shooting method to find unstable modes. 

• Bourlioux et al. (SIAM JAM, 1991) studied the nonlinear 

development of instabilities. 



Review-Conti nued 

• Kasimov & Stewart (Phys. Fluids, 2004) used a first order 

shock-fitting technique to perform a numerical analysis. 

• Ng et al. (Comb. Theory and Mod., 2005) developed a coarse 

bifurcation diagram showing how the oscillatory behavior 

became progressively more complex as activation energy 

increased. 

• Henrick et al. (J. Compo Phys., 2006) developed a more detailed 

bifurcation diagram using a fifth order mapped WENO 

shock-fitting technique. 



One-Dimensional Unsteady Compressible Reactive 
Navier-Stokes Equations 
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Constitutive Relations 
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Case Examined 
Let us examine this one-step kinetic model with: 

• a fixed reaction length, L 1/ 2 == 10-6 m, which is similar to the 

finest length scale of H 2-02 . 

• an ambient pressure, Po == 101325 Pa, ambient density, 

Po == 1 kg / m 3 , heat release q == 5066250 m 2 
/ s2, and 

r == 6/5. 

• a fixed the diffusion length, LJ-t == 10-7 m; mass, momentum, 

and energy diffusing at the same rate. 

• a range of activation energies were examined (25 < E < 32) 

and thus a range for the collision frequency factor 

(1.145 x 1010 l/s < a <3.54 x 1010 l/s). 



Numerical Method 

• Finite difference, uniform grid 

(~x == 2.50 x 10-8m, N == 8001, L == 0.2 mm) . 

• Computation time = 192 hours for 10 J,ls on an AMD 2.4 G H z 

with 512 kB cache. 

• A point-wise method of lines aproach was used. 

• Advective terms were calculated using a combination of fifth 

order WENO and Lax-Friedrichs. 

• Sixth order central differences were used for the diffusive terms. 

• Temporal integration was accomplished using a third order 

Runge-Kutta scheme. 



Method 
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• Initialized with inviscid 

ZND solution. 

• Moving frame travels at 

the CJ velocity. 

• Integrated in time for 

long time behavior. 



Effect of Diffusion on Limit Cycle Behavior 
6.5 • Lee and Stewart revealed for E=26.64 
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Period-Doubling Phenomena 

9 

8 
_ 7 
ro 

CL. 
~ 6 
CL. 

5 

4 

3 

8 

9 

8 
_ 7 
ro 

CL. 
~ 6 

8.5 9 
t(f,lS) 

'" ::~AAAA~MMMM 
3 

9 8 8.5 t(f,lS) 

E=29.60 

9.5 10 

E=30.02 

• As in the inviscid limit, the 

viscous case goes through a 

period-doubling phase. 

• For the inviscid case the 

period-doubling began at 

El ~ 27.2. 

• In the viscous case the begin­

M~ ning of this period doubling is 

9 .5 10 delayed to El ~ 29.32. 



Effect of Diffusion on Transition to Chaos 

• In the inviscid limit, the pOint where bifurcation points 

accumulate is found to be Eoo ~ 27.8324. 

• For the viscous case, LJ-L/ L 1/ 2 == 1/10, the accumulation 

point is delayed until Eoo ~ 30.0327. 

• For E > 30.0327, a region exists with many relative maxima 

in the detonation pressure; it is likely the system is in the chaotic 

regime. 



Approximations to Feigenbaum's Constant 

. . En - E n- 1 
boo == 11m bn == 11m 

n-+oo n-+oo E n+1 - En 

Feigenbaum predicted boo ~ 4.669201. 

Inviscid Inviscid Viscous Viscous 

n En bn En bn 

0 25.2650 27.14 

1 27.1875 3.86 29.32 3.89 

2 27.6850 4.26 29.88 4.67 

3 27.8017 4.66 30.00 

4 27.82675 



Chaos and Order 

• The period-doubling behavior and transition to chaos predicted in the 

inviscid limit is also observed in the diffusive case. 

• Within this chaotic region, there exist pockets of order with periods of 5, 

6, and 3 present. 
Viscous Detonations: 

9111 --~----~--~---
Period-5 

8 

~ 7 
~ 
~ 6 
0- 5 

<? 
0-

~ 
0-

4 

7.5 

7.5 

8 8.5 9 

t (f'Sl 

8 8.5 9 

t (f'Sl 

9 '1' ----~--~--~---
Chaotic 

8 

~ 7 
as 
0-
~ 6 
0-

S 

4 

t (~tS) 

9 

911~--~----~--~~~-
8. 'Period-3 

~ 7 

~ 6 
0- S! 

4 

31" "7:5" 8 '8:5" "9 
t (~tS) 



Bifurcation Diagram 
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WEN05M Shock-Capturing (Inviscid) 

• At lower activation energies where the behavior is simpler, 

shock-capturing compares well with shock-fitting with similar 

resolutions. 

• At E == 26.64, shock-fitting predicts a period-1 oscillating detonation 

(Pmax == 5.48 M Pa). 

• Shock-capturing using Nl/2 == 20, yields an relative difference of 

2.1 % and using Nl/2 == 40 this relative difference is reduced to 

0.34% 
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WEN05M Shock-Capturing (Inviscid) 
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• At a higher activation energy, 

(E == 27.82), shock-fitting predicts 

a period-8 detonation, where as 

shock-capturing using N 1 / 2 == 40 

predicts a period-4 detonation. To 

reconcile this difference, the resolu­

tion of the shock-capturing technique 

must be increased to Nl/2 ~ 160. 

• Numerical diffusion is playing an im­

portant role in determining the behav­

ior of the system. Let's add physical 

diffusion and see how that affects the 

behavior of the system. 



WEN05M & Central Differencing (Viscous) 
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• Even when a complex behavior is 

predicted by the WEND scheme 

(period-a detonation), the central dif­

ference predicts the same behavior. 

• The values of the detonation pres­

sure match minus a time-shift which 

orginates at the initialization. 



WEN05M & Central Differencing (Viscous) 
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Effect of Diminshing Viscosity (E == 27.64) 
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• The system undergoes 

transition from a stable 

detonation to a period-1 

limit cycle, to a period-2 

limit cycle. 

• The amplitude of pulsa­

tions increases. 

• The frequency de-

creases. 



Conclusions 

• Dynamics of one-dimensional detonations are influenced 

significantly by mass, momentum, energy diffusion in the region 

of instability. 

• In general, the effect of diffusion is stabilizing. 

• Bifurcation and transition to chaos show similarities to the 

logistic map. 

• For physically motivated reaction and diffusion length scales not 

unlike those for H 2-air detonations, the addition of diffusion 

delays the onset of instability. 



- ----------------------------------------------------~--------------------------------------------------~ 

Conclusions-Continued 

• When physical diffusion is captured with an appropriately fine 

grid a central difference of advective terms works as well as a 

WENO method in capturing the detonation dynamics. 

• As physical diffusion is reduced, the behavior of the system 

trends towards the inviscid limit. 

• If the dynamics of marginally stable or unstable detonations are 

to be captured, physical diffusion needs to be included and 

dominate numerical diffusion or an LES filter. 

• Results will likely extend to detailed kinetic systems. 

• Detonation cell pattern formation will also likely be influenced by 

the magnitude of the physical diffusion. 


