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The dynamics of one-dimensional detonations predicted by a one-step irreversible Arrhenius kinetic model 
with the inclusion of mass, momentum, and energy diffusion were investigated. A series of calculations in 
which activation energy is varied, holding the length scales of diffusion and reaction constant, was performed. 
As in the inviscid case, as the activation energy increases, the system goes through a period-doubling process 
and eventually undergoes a transition to chaos. Within the chaotic regime, there exist regions of low frequency 
limit cycles. The addition of diffusion significantly delays the onset of instability and strongly influences the 
dynamics in the unstable regime. Because the selected reaction and viscous length scales are representative 
of real physical systems, the common use of reactive Euler equations to predict detonation dynamics in 
the unstable and marginally stable regimes is called into question; reactive Navier-Stokes may be a more 
appropriate model in such regimes. 

'submitted to the 23rd ICDERS: July 24-29, 2011, Irvine CA. 
tDepartment of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, 

cromick@nd.edu. 
~Technical Staff Member, Dynamic and Energetic Materials Division, Los Alamos National Laboratory, Los Alamos, New 

Mexico 87545, aslam@lanl.gov. 
§Professor, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-

5637, powers@nd.edu. 

1 



Verified Calculation of Nonlinear Dyn"amics 

of Viscous Detonation 
Christopher M. Romick, 

University of Notre Dame, Notre Dame, IN 
Tariq D. Aslam, 

Los Alamos National Laboratory, Los Alamos, NM 
and Joseph M. Powers 

University of Notre Dame, Notre Dame,IN 

~ 
UNIVERSITY OF 
NOTRE DAME 

23rd ICDERS 

Irvine, Calfornia 
July 24-29, 2011 

Los Alamos 
NATION AL LAB ORATORY 



Introduction 

• Standard result from non-linear dynamics: small scale phenomena can 

influence large scale phenomena and vice versa. 

• What are the risks of using reactive Euler instead of reactive 

Navier-Stokes? 

• Might there be risks in using numerical viscosity, LES, and turbulence 

modeling, all of which filter small scale physical dynamics? 



Introduction-Continued 

• It is often argued that viscous forces and diffusion are small effects 

which do not affect detonation dynamics and thus can be neglected. 

• Tsuboi et al., (Comb. & Flame, 2005) report, even when using micron 

grid sizes, that some structures cannot be resolved. 

• Powers, (JPP, 2006) showed that two-dimensional detonation patterns 

are grid-dependent for the reactive Euler equations, but relax to a 

grid-independent structure for comparable Navier-Stokes calculations. 

• This suggests grid-dependent numerical viscosity may be problematic. 



Introduction-Continued 

• Powers & Paolucci (AIAA J, 2005) studied the reaction length scales of 

inviscid H 2 -02 detonations and found the finest length scales on the 

order of sUD-microns to microns and the largest on the order of 

centimeters for atmospheric ambient pressure. 

• This range of scales must be resolved to capture the dynamics. 

• In a one-step kinetic model only a single chemical length scale is 

induced compared to the multiple length scales of detailed kinetics. 

• By choosing a one-step model, the effect of the interplay between 

chemistry and transport phenomena can more easily be studied. 



Review 

• In the one-dimensional inviscid limit, one step models have been 

studied extensively. 

• Erpenbeck (Phys. Fluids, 1962) began the investigation into the linear 

stability almost fifty years ago. 

• Lee & Stewart (JFM, 1990) developed a normal mode approach, using 

a shooting method to find unstable modes. 

• Bourlioux et al. (SIAM JAM, 1991) studied the nonlinear development 

of instabilities. 



Review-Continued 

• Kasimov & Stewart (Phys. Fluids, 2004) used a first order shock-fitting 

technique to perform a numerical analysis. 

• Ng et al. (Comb. Theory and Mod., 2005) developed a coarse 

bifurcation diagram showing how the oscillatory behavior became 

progressively more complex as activation energy increased. 

• Henrick et al. (J. Compo Phys., 2006) developed a more detailed 

bifurcation diagram using a fifth order mapped WEND shock-fitting 

technique. 



One-Dimensional Unsteady Compressible Reactive 
Navier-Stokes Equations 

ap a 
at + ax (pu) == 0, 

a a (2 ) at (pu) + ax pu + P - T == 0, 

:t (p (e + ~2) ) + :x (pu (e + ~2) + jq + (P - T) U) = 0, 

:t (pYB) + :x (pUYB + j7:) = pT. 

Equations were transformed to a steady moving reference frame. 



Constitutive Relations 

P == pRT, 

p 
e == ----:---p(-y-1) -qYB, 

E 
r == H(P - Ps)a (1 - Y B ) e - pi p , 

.'m aYB 
JB == -pD , ax 

4 au 
T == 3 J.L ax ' 

aT aYB 
jq == -k- + pDq--ax ax 

with D == 10-4 
m

2 
k == 10-1 wand I/. == 10-4 Ns so for 

s ' mK' r m 2 , 

po == 1 k~, Le == Se == Pr == 1. 
m 



Case Examined 
Let us examine this one-step kinetic model with: 

• a fixed reaction length, L1/2 == 10-6 m, which is similar to the finest 

length scale of H 2 -02 . 

• a fixed the diffusion length, LJ-L == 10-7 m; mass, momentum, and 

energy diffusing at the same rate. 

• an ambient pressure, Po == 101325 Pa, ambient density, 

po == 1 kg/m3
, heat release q == 5066250 m 2 

/ S2, and l' == 6/5. 

• a range of activation energies were examined (25 < E < 32) and 

thus a range for the collision frequency factor 

(1.145 x 1010 l/s < a < 3.54 x 1010 l/s). 



Numerical Method 

• Finite difference, uniform grid 

(~x == 2.50 x 10-8m, N == 8001, L == 0.2 mm) . 

• Computation time = 192 hours for 10 J-ts on an AMD 2.4 GH z with 

512 kB cache. 

• A point-wise method of lines aproach was used. 

• Advective terms were calculated using a combination of fifth order 

WEND and Lax-Friedrichs. 

• Sixth order central differences were used for the diffusive terms. 

• Temporal integration was accomplished using a third order 

Runge-Kutta scheme. 



Method of Manufactured Solutions (MMS) 

10-6 

• A solution form is assumed, 

and special sources terms are 

added to the governing equa­

tions. 
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Method 
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• Initialized with inviscid 

ZND solution. 

• Moving frame travels at 

the CJ velocity. 

• Integrated in time for long 

time behavior. 



Inviscid Limit 

• Lee and Stewart revealed for E < 25.26 the steady ZND wave is 

linearly stable. Henrick et al. found the stability limit at 

Eo == 25.265 ± 0.005. 

• The system goes through a bifurcation process, transitioning to a 

period-1 limit cycle. 

• A period-doubling begins at El ~ 27.2. The point where this 

period-doubling behavior accumulates is Eoo ~ 27.8324. 

• After this period-doubling region, there is a likely a chaotic regime with 

pockets of order, having periods of 5, 6, and 3. 

• The period-doubling behavior and transition to chaos predicted has 

striking similarilities to that of the logistic map. 



Bifurcation Diagram (Inviscid) 
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Note: The bifurcation plot was constructed using N 1 / 2 == 20 in 

combination with a shock-fitting technique of Henrick et a/. 



Inviscid Limit - Shock-capturing vs. Shock-fitting 

• At lower activation energies where the behavior is simpler, 

shock-capturing compares well with shock-fitting with similar 

resolutions. 

• At E == 26.64, shock-fitting predicts a period-1 oscillating detonation 

(Pmax == 5.48 M Pa). 

• Shock-capturing using Nl/2 == 20, yields an relative difference of 

2.1 % and using Nl/2 == 40 this relative difference is reduced to 

0.34% 
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Inviscid Limit - Shock-capturing vs. Shock-fitting 
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• At a higher activation energy, 

(E == 27.82), shock-fitting predicts 

a period-8 detonation, where as 

shock-capturing using Nl/2 == 40 

predicts a period-4 detonation. To 

reconcile this difference, the resolu­

tion of the shock-capturing technique 

must be increased to Nl/2 ~ 160. 

• Numerical diffusion is playing an im­

portant role in determining the behav­

ior of the system. Let's add physical 

diffusion and see how that affects the 

behavior of the system. 



Effect of Diffusion on Limit Cycle Behavior 
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• Recall the stability limit for the 

ZND wave was found to be Eo == 
25.265 ± 0.005 in the inviscid 

case 

• In the viscous case E == 26.66 

is still stable; however, above 

Eo ~ 27.14 a period-1 limit cy­

cle can be realized. 



Period-Doubling Phenomena 
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• As in the inviscid limit the vis­

cous case goes through a period­

doubling phase. 

• However the addition of diffusion 

delays this transition from El ~ 

27.2 to El ~ 29.32. 



Effect of Diffusion on Transition to Chaos 

• With the ratio of LJ-L/ L1/2 == 1/10, the accumulation point of 

bifurcation is delayed until Eoo ~ 30.0327 . 

• For E > 30.0327, a region exists with many relative maxima in the 

detonation pressure; it is likely the system is in the chaotic regime. 



Approximations to Feigenbaum's Constant 

5 1· 5 · En - E n- 1 
00 == 1m n == 11m 

n---+oo n---+oo E n+1 - En 

Feigenbaum predicted 600 ~ 4.669201. 

Inviscid Inviscid Viscous Viscous 

n En 6n En 6n 

a 25.2650 27.14 

1 27.1875 3.86 29.32 3.89 

2 27.6850 4.26 29.88 4.67 

3 27.8017 4.66 30.00 

4 27.82675 



Chaos and Order 

• The period-doubling behavior and transition to chaos predicted in the 

inviscid limit is also observed in the diffusive case. 

• Within this chaotic region, there exist pockets of order with periods of 5, 

6, and 3 present. 
Viscous Detonations: 
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Effect of Diminshing Viscosity (E 27.64) 
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• The system undergoes tran­

sition from a stable detona­

tion to a period-1 limit cycle, 

to a period-2 limit cycle. 

• The amplitude of pulsations 

increases. 

• The frequency decreases. 



Convergence Rate 

• Theoretical convergence rate in space is 5th
, however due to the 

Heaviside function acting as a weak 1 st order error, the true 

convergence rate is below the theoretical value. 

• Here are two representative points in pressure for two different 

activation energies. 

~x (m) P29.0 (M Pa) rC29 .0 P29 .5 (M Pa) rC29 . 5 

3.33 X 10-8 4.1998 5.8825 

1.66 X 10-8 3.7527 3.74 4.8461 3.61 

1.11 X 10-8 3.7165 4.7540 



Conclusions 

• Dynamics of one-dimensional detonations are influenced significantly 

by mass, momentum, energy diffusion in the region of instability. 

• In general, the effect of diffusion is stabilizing. 

• Bifurcation and transition to chaos show similarities to the logistic map. 

• For physically motivated reaction and diffusion length scales not unlike 

those for H 2 -air detonations, the addition of diffusion delays the onset 

of instability. 



Conclusions-Continued 

• As physical diffusion is reduced, the behavior of the system trends 

towards the inviscid limit. 

• If the dynamics of marginally stable or unstable detonations are to be 

captured, physical diffusion needs to be included and dominate 

numerical diffusion or an LES filter. 

• Results will likely extend to detailed kinetic systems. 

• Detonation cell pattern formation will also likely be influenced by the 

magnitude of the physical diffusion. 


