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The dynamics of one-dimensional detonations predicted by a one-step irreversible Arrhenius kinetic model
with the inclusion of mass, momentum, and energy diffusion were investigated. A series of calculations in
which activation energy is varied, holding the length scales of diffusion and reaction constant, was performed.
As in the inviscid case, as the activation energy increases, the system goes through a period-doubling process
and eventually undergoes a transition to chaos. Within the chaotic regime, there exist regions of low frequency
limit cycles. The addition of diffusion significantly delays the onset of instability and strongly influences the
dynamics in the unstable regime. Because the selected reaction and viscous length scales are representative
of real physical systems, the common use of reactive Euler equations to predict detonation dynamics in
the unstable and marginally stable regimes is called into question; reactive Navier-Stokes may be a more
appropriate model in such regimes.
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Introduction

e Standard result from non-linear dynamics: small scale phenomena can

influence large scale phenomena and vice versa.

e What are the risks of using reactive Euler instead of reactive

Navier-Stokes?

e Might there be risks in using numerical viscosity, LES, and turbulence

modeling, all of which filter small scale physical dynamics?




Introduction-Continued

e It is often argued that viscous forces and diffusion are small effects

which do not affect detonation dynamics and thus can be neglected.

® Tsuboi et al., (Comb. & Flame, 2005) report, even when using micron

grid sizes, that some structures cannot be resolved.

e Powers, (JPP, 2006) showed that two-dimensional detonation patterns
are grid-dependent for the reactive Euler equations, but relax to a

grid-independent structure for comparable Navier-Stokes calculations.

® This suggests grid-dependent numerical viscosity may be problematic.




Introduction-Continued

e Powers & Paolucci (AIAA J, 2005) studied the reaction length scales of

inviscid H2-O> detonations and found the finest length scales on the

order of sub-microns to microns and the largest on the order of

centimeters for atmospheric ambient pressure.
® This range of scales must be resolved to capture the dynamics.

® In a one-step kinetic model only a single chemical length scale is

induced compared to the multiple length scales of detailed kinetics.

e By choosing a one-step model, the effect of the interplay between

chemistry and transport phenomena can more easily be studied.




Review

® |n the one-dimensional inviscid limit, one step models have been

studied extensively.

® Erpenbeck (Phys. Fluids, 1962) began the investigation into the linear

stability almost fifty years ago.

® Lee & Stewart (JFM, 1990) developed a normal mode approach, using

a shooting method to find unstable modes.

e Bourlioux et al. (SIAM JAM, 1991) studied the nonlinear development

of instabilities.




Review-Continued

e Kasimov & Stewart (Phys. Fluids, 2004) used a first order shock-fitting

technique to perform a numerical analysis.

® Ng et al. (Comb. Theory and Mod., 2005) developed a coarse
bifurcation diagram showing how the oscillatory behavior became

progressively more complex as activation energy increased.

e Henrick et al. (J. Comp. Phys., 2006) developed a more detailed
bifurcation diagram using a fifth order mapped WENO shock-fitting

technique.




One-Dimensional Unsteady Compressible Reactive
Navier-Stokes Equations

e+u—> +jq+(P—T)u> =0,

Equations were transformed to a steady moving reference frame.




Constitutive Relations

P = pRT,

p
e = ——— —qYB,
p(y—1)
__E_
r=H(P—Ps)a(l —Yg)e P/

with D = 10~ 4m k=10"""= and
pozlm,Le—Sc— Pr =1.




Case Examined

Let us examine this one-step kinetic model with:

e a fixed reaction length, L1/2 —10"° mm, which is similar to the finest

length scale of H5-O-.

a fixed the diffusion length, L,, = 10~ 7 m; mass, momentum, and

energy diffusing at the same rate.

an ambient pressure, P, = 101325 Pa, ambient density,
po =1 kg/m?, heatrelease ¢ = 5066250 m?*/s”, and v = 6/5.

a range of activation energies were examined (25 < F < 32) and

thus a range for the collision frequency factor
(1.145 x 10'° 1/5s < a < 3.54 x 10'° 1/s).




Numerical Method

Finite difference, uniform grid
(Az =2.50 x 10 ®*m, N = 8001, L = 0.2 mm) .

Computation time = 192 hours for 10 s on an AMD 2.4 G H z with
512 kB cache.

A point-wise method of lines aproach was used.

Advective terms were calculated using a combination of fifth order
WENO and Lax-Friedrichs.

Sixth order central differences were used for the diffusive terms.

Temporal integration was accomplished using a third order

Runge-Kutta scheme.




Method of Manufactured Solutions (MMS)

e A solution form is assumed,
and special sources terms are
added to the governing equa-

tions.

With these sources terms, the
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assumed solution satisfies the

maodified equations.

Fifth order and third order con-
vergence is acheived for space

and time, respectively.




Method

e Initialized with inviscid
ZND solution.

e Moving frame travels at

the CJ velocity.

e Integrated in time for long

time behavior.




Inviscid Limit

Lee and Stewart revealed for 2 < 25.26 the steady ZND wave is

linearly stable. Henrick et al. found the stability limit at
Fqo = 25.265 £ 0.005.

The system goes through a bifurcation process, transitioning to a

period-1 limit cycle.

A period-doubling begins at 7 &= 27.2. The point where this

period-doubling behavior accumulates is oo, ~ 27.8324.

After this period-doubling region, there is a likely a chaotic regime with

pockets of order, having periods of 5, 6, and 3.

The period-doubling behavior and transition to chaos predicted has

striking similarilities to that of the logistic map.




Bifurcation Diagram (Inviscid)

Note: The bifurcation plot was constructed using N /o = 20 in

combination with a shock-fitting technique of Henrick et al.




Inviscid Limit - Shock-capturing vs. Shock-fitting

e At lower activation energies where the behavior is simpler,
shock-capturing compares well with shock-fitting with similar

resolutions.

e At / = 26.64, shock-fitting predicts a period-1 oscillating detonation
(Pmaz = 5.48 M Pa).

e Shock-capturing using N1/2 = 20, yields an relative difference of

2.1% and using N1/9 = 40 this relative difference is reduced to
0.34%




Inviscid Limit - Shock-capturing vs. Shock-fitting
e At a higher activation energy,
(E = 27.82), shock-fitting predicts

a period-8 detonation, where as

shock-capturing using V; /o = 40

predicts a period-4 detonation. To
reconcile this difference, the resolu-
tion of the shock-capturing technique

must be increased to IV, /5 = 160.

Numerical diffusion is playing an im-
portant role in determining the behav-
ior of the system. Let’s add physical
diffusion and see how that affects the

behavior of the system.




Effect of Diffusion on Limit Cycle Behavior

e N
6:‘
5.5
= s e Recall the stability limit for the
z 4iwvw | ZND wave was found to be Fig =
351 | 25.265 == 0.005 in the inviscid
o5 1 1.5 2 case
t(us)
6.5 - o
6‘ E=27.64 | ® Inthe viscous case F/ = 26.66
>3 is still stable; however, above
= 5
%M,w | FEo =~ 27.14 a period-1 limit cy-
L] cle can be realized.




Period-Doubling Phenomena

E =29.60

® As in the inviscid limit the vis-
cous case goes through a period-

doubling phase.

® However the addition of diffusion

delays this transition from £ =
27.21t0 Fh ~ 29.32.




Effect of Diffusion on Transition to Chaos

e With the ratio of L,, /L1 /2 = 1/10, the accumulation point of
bifurcation is delayed until F/oo ~ 30.0327.

e For [v > 30.0327, a region exists with many relative maxima in the

detonation pressure; it is likely the system is in the chaotic regime.




Approximations to Feigenbaum’s Constant

E,—FE,_
oo = lim 9,, = lim L

n— o0 n— oo En—|—1 — En

Feigenbaum predicted 0o, ~ 4.669201.

Inviscid Inviscid Viscous Viscous

n E, On E, On

0 25.2650 - 27.14 -

1 271875 3.86 29.32 3.89
27.6850 4.26 29.88 4.67
27.8017 4.66 30.00 -

WO D

27.82675 - -




Chaos and Order

e The period-doubling behavior and transition to chaos predicted in the

inviscid limit is also observed in the diffusive case.

e Within this chaotic region, there exist pockets of order with periods of 5,

6, and 3 present.

Viscous Detonations:
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Bifurcation Diagram (Viscous)
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Effect of Diminshing Viscosity (£ = 27.04)
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. ® The system undergoes tran-
1.5
sition from a stable detona-

{b) Intermediate |

tion to a period-1 limit cycle,

to a period-2 limit cycle.

® The amplitude of pulsations

Increases.

e The frequency decreases.




Convergence Rate

® Theoretical convergence rate in space is 5"‘, however due to the
Heaviside function acting as a weak 1° order error, the true

convergence rate is below the theoretical value.

® Here are two representative points in pressure for two different

activation energies.

Az (m) P29_0 (MPCL) Tcoo 0 P29.5 (MPCL)

3.33 x 107® 4.1998 - 5.8825
1.66 x 1073 3.7527 3.74 4.8461
1.11 x 1078 3.7165 4.7540




Conclusions

Dynamics of one-dimensional detonations are influenced significantly

by mass, momentum, energy diffusion in the region of instability.
In general, the effect of diffusion is stabilizing.

Bifurcation and transition to chaos show similarities to the logistic map.

For physically motivated reaction and diffusion length scales not unlike

those for H-air detonations, the addition of diffusion delays the onset

of instability.




Conclusions-Continued

e As physical diffusion is reduced, the behavior of the system trends

towards the inviscid limit.

If the dynamics of marginally stable or unstable detonations are to be
captured, physical diffusion needs to be included and dominate

numerical diffusion or an LES filter.
Results will likely extend to detailed kinetic systems.

Detonation cell pattern formation will also likely be influenced by the

magnitude of the physical diffusion.




