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Abstract 

As the penetration level of transmission-scale time­
intermittent renewable generation resources increases, 
control of flexible resources will become important to 
mitigating the fluctuations due to these new renewable 
resources. Flexible resources may include new or exist­
ing synchronous generators as well as new energy stor­
age devices. The addition of energy storage, if needed, 
should be done optimally to minimize the integration 
cost of renewable resources, however, optimal place­
ment and sizing of energy storage is a difficult optimiza­
tion problem. The fidelity of such results may be ques­
tionable because optimal planning procedures typically 
do not consider the effect of the time dynamics of op­
erations and controls. Here, we use an optimal energy 
storage control algorithm to develop a heuristic proce­
durefor energy storage placement and sizing. We gener­
ate many instances of intermittent generation time pro­
files and allow the control algorithm access to unlimited 
amounts of storage, both energy and power, at all nodes. 
Based on the activity of the storage at each node, we re­
strict the number of storage node in a staged procedure 
seeking the minimum number of storage nodes and total 
network storage that can still mitigate the effects of re­
newable fluctuations on network constraints. The qual­
ity of the heuristic is explored by comparing our results 
to seemingly" intuitive" placements of storage. 

1 Introduction 

Electrical grid planning has traditionally taken two dif­
ferent forms; operational planning and expansion or up­
grade planning. The first is concerned with the re.la­
tively short time horizon of day-ahead unit commitment 
or hour-ahead or five-minute economic dispatch. The 
focus is on controlling assets that are already present on 

the system to serve loads at minimum cost while oper­
ating the system securely. The second typically looks 
out many years or decades and is focused on optimal 
addition of new assets, again with a focus on mini­
mizing the cost of electricity. When a system consists 
entirely of controllable generation and well-forecasted 
loads, the network power flows do not deviate signifi­
cantly or rapidly from well-predicted patterns. In this 
case, expansion planning can be reasonably well sep~~ 
arated from operational planning. In the simplest ap­
proach, expansion plans may be optimized against two 
extreme cases, e.g. the system's maximum and mini­
mum load configurations. 

As the penetration of time-intermittent renewables in­
creases, expan~ion and operational planning will neces­
sarily become more coupled. For an electrical grid with 
large spatial extent, renewable generation fluctuations 
(here, we focus on wind generation) at well-separated 
sites will be uncorrelated on short time scales[l, 2], and 
the intermittency of this new non-controllable genera­
tion will cause the patterns of power flow to change on 
much faster time scales than before, and in unpredictable 
ways . New equipment (e.g. combustion turbines or eo­
ergy storage) and control systems may have to be in­
stalled to mitigate the network effects of renewable gen­
eration fluctuations to maintain generation-load balance. 
It is at this point where operations planning must inter­
face with expansion planning. The optimal placement 
and sizing of the new equipment, if required, depends on 
how the rest of the network and its controllable compo­
nents respond to the fluctuations of the renewable gen­
eration. Overall, we desire to install a minimum of new 
equipment by placing it at network nodes that afford us 
a high degree of controllabil ity, i.e . nodes where con­
trolled power injection and/or consumption have a sig­
nificanl impacl on the network congeslion introduced by 
the renewable fluctuations. From the outset, it is not 
clear which nodes provide the best controllability. Im-



plicitly, placing a minimum of new equipment implies 
that it will experience a high duty, thus avoiding out­
comes where equipment is only used for a small fraction 
of time. 

Before discussing our initial approach at integrating op­
erational planning and expansion planning, we first sum­
marize a few methods for mitigating the intermittency 
of renewable generation. When renewable penetration 
is relatively low and the additional net-load fluctuations 
are comparable to existing load fluctuations, a power 
system may continue to operate "as usual" with primary 
and secondary regulation reserves[3] being controlled 
via a combination of distributed local control , i.e. fre­
quency droop, and centralized control , i.e. automatic 
generation control (AGC). In this case, planning for re­
newables may simply entail increasing the level of re­
serves to guard against the largest expected fluctuation 
in aggregate renewable output. 

As the penetration level grows, system operators may 
simply continue to increase the level of reserves, how­
ever, if this fast-moving generation comprises natural 
gas combustion turbines, this simple planning will gen­
erally result in increased renewable integration costs[4} 
which are usually spread over the rate base. Alterna­
tively, operational planning can be improved by incor­
porating long-range and short-range renewable genera­
tion forecasting to better schedule the controllable gen­
eration (energy and reserves) to meet net load and op­
erate reliably[4, 5, 6]. Long-range forecasts, typically 
dew-ahead or farther, are used in a unit commitment op­
timization to ensure adequate generation and reserves 
will be online to meet the expected net load and its un­
certainty. Short-range forecasts , typically hour ahead 
or shorter, are used in an economic dispatch optimiza­
tion that sets actual generation and reserve levels of the 
committed generation. Some have investigated rolling 
unit commitment[7, 4] where updated wind forecasts are 
used .modify the unit commitment more frequently. Sim­
ulations have resulted in lower overall renewable inte­
gration costs. 

Both unit commitment and economic dispatch seek min­
imize the cost of electricity, however, they must also 
respect system constraints including generation limits, 
transmission line thermal limits, voltage limits, system 
stability constraints, and N-I contingencies. Previous 
works[4, 5, 7, 6] have generally looked at the effects of 
stochastic generation on the economics and adequacy of 
aggregate reserves while not considering such network 
constraints . These constraints may be respected for a 
dispatch based on a mean renewable forecast, however, 
if the number of renewable generation sites and their 
contribution to the overall generation is significant, veri­
fying the system security of all probable renewable f1uc-
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tuations (and the response of the rest of the system) via 
enumeration will be exponentially complex in the num­
ber of sites resulting in a computationally intractable 
problem. 

The approaches summarized above do not consider net­
work constraints or the behavior of the system on time 
scales shorter than the time between economic dis­
patches (one hour in the case of [4]). In particular, they 
do not model how fast changes in renewable generation 
and the compensating response of regulation reserves in­
teract with network constraints. In our initial study, we 
augment the approaches summarized above by focus­
ing on thc behavior of the electrical network at a finer 
time resolution and investigate how the control of energy 
storage affects its placement and sizing. We presume 
that the unit commitment problem has been solved, and· 
at the start of a time period, we dispatch the control­
lable generation by solving a DC optimal power flow 
(DCOPF) based on the site-specific mean forecast fOf 
wind generation. In the time before the next DCOPF 
is executed, the wind generation fluctuates, and we con­
trol a combination of existing generators (usinK a.simpli­
fied description of frequency droep control) ana encr.gy 
storage to avoid violations of network constraints and 
generation limits . For each level of wind penetration, 
we generate many different realizations of wind fluc­
tuations, and we gather statistics on the activity of the 
energy storage at each node . The statistics from simu­
lated system operations are then coupled to the expan­
sion planning process by developing a heuristic to guide 
the optimal placement and sizing of storage throughol,lt 
the network-a result that cannot be achieved with 'the 
previous approaches described above. 

The rest of this manuscript is organized as follows. Sec­
tion 2 lays out the system model including the develop­
ment of our heuristic for placement and sizing of energy 
storage. Section 3 describes the simulations carried oUt 

on a slightly modified version of RTS-96[8] and the ap­
plication of our design heuristic. Section 4 gives some 
interpretations of the results , and Section 5 wraps up 
with some conclusions and directions for future work. 

2 Mathematical Formulation 

We briefly describe the mathematical formulation of the 
optimal control problem and the algorithm used to solve 
it. We begin with a quick review of" the DC power lIow 
model and the proportional control scheme used to em­
ulate frequency droop and AGC[9]. 



.. 

2.1 Background and Notation 

Let Y = ('E, '/I) denote the undirected graph underlying 
the power grid, and 11 denote the number of nodes in the 
grid. Nodes are class ifi ed into three types: 

Loads y,(assumed fi xed over time scale of the 
study re lative to the renewable generati on). 

2 Traditional Generators yg (whose output can be 
contro lled). 

3 Renewable generators y,. (generators based on 
renewable sources whose output fluctuates over 
time). 

Given the vector P of power generated/consumed at ev­
ery node in the grid, the power fl ow equati ons determine 
how much power fij fl ows through each line in the net­
work from node i to node j. For any S C '/I , we denote 
the power generation at nodes in S by Ps = {Pi: i E S} 
and use similar notation fo r other quantities(like en­
ergy).The DC power fl ow equati ons are a linearizati on 
of the exact AC power fl ow equati ons, and have been 
widely used to compute optimal economic dispatch of 
generators in the grid. If Neb(j) denotes the set of 
neighbors of node j in the grid and xij denote the induc­
tance of the line from i to j, the DC power fl ow equations 
are given by: 

where \jIi is the phase of the complex voltage at node i. 

Written in matri x fo rm, the first set of equati ons become 
P = - L x\jl where L x is the Laplacian of the graph y 
with edge weights I/ xij. The Laplacian is not invert­
ible, but if we are given a balanced power confi gura­
tion, i.e., L Pi = 0, we can always find a unique solution 
for the \jI . This mapping can be constructed fro m the 
eigenvalue decomposition of Lx = L wieie; by invert­
ing the non-zero e igenvalues to get Mx = L .\V.>o ~eieT, . 

. I w, 

and \jI = Mxp. Letting M/ denote the i-th row of Mx , 
we can summarize the power fl ow equati ons as: 

f = Mp 

M il - --( M i M l) - x'} x - x ( 1) 

The aim of our energy storage control scheme is to dis­
patch power from storage such that, in spite of fluctu­
ations in the renewable generati on, the following con-
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straints are maintained: 

- I' S Mp S I' (Transmiss ion Capac ities) 

OS Pyg S Pyg (Generation Capacities) 

[pi = 0 (Power Balance) (2) 

where the sum over i in the third constraint is a sum over 
three types of nodes. 

2.2 Power Generation and Proportional 
Control 

At the beginning of each time hori zon, we assume that 
a subset of active generators yg are committed (based 
on the predetermined unit-commitment). We set their 
generati on levels according to a DCOPF: 

min [ WiPi 
Pyg iEyg 

Subject to Eqs. 1 and 2 

where Wi are generation costs for each generator. Let pO 
be the complete vector of ini tial generation at every node 
based on the DC-OPF. The output Py, of renewabnle 
generation yr is taken to be the mean of the renewable 
generation P~, over the time between DCOPFs. We as­
sume we know thi s value exactly, which implies we have 
perfect predictions of the mean output of the renewables. 
We will design a control scheme that operates in the du­
ration T between two successive DC-OPFs. 
In reality, the renewable generation Py, fluctuates dur­
ing thi s time causing a mismatch between total genera­
tion and total load. We assume that the generators yg 
respond by changing their output by dividing the mis­
match in some predetermined proportion a (usually cho­
sen based on generation capac ities)[9]. Again , we take a 
to be a vector of length 11, with entries ai = 0 for i rt yg. 
, and p" = Py, - p~, denote the vector of renewable gen­
eration change. We assume for simplic ity that loads are 
fi xed, whi ch is reasonable since in many cases fl uctua­
tions in renewables will be much larger than fluctuati ons 
in loads. The generators yg will then respond as: 

2.3 Controlling Storage and Constraints 
on Storage 

We use s to denote the vector of energies stored at each 
node. However, the quantity we control directly is pS, 
the power drawn from each storage node at any given 
time. In our storage placement and sizing heuri stic, we 
allow pS and s to be as hi gh as needed to ensure that the 



constraints (2) are sC} ti sfied . We also restrict the set of 
nodes that have storage to a set S. However, node that 
for notational convenience, pS, s are still assumed to be 
vectors of length n and we set p j = O,s) = 0 for j if. S. 
In the paper, we use the optimal energy storage control 
as a heuristic to decide placement and sizing of storage. 
This decision only assumes that we know what the re­
newable generation is going to be over the next win­
dow of time of length T until the next DC-OPF. Thus, 
we would like this decision to be robust to the behav­
ior of wind beyond T and that our control over the next 
time window can work independently of what the con­
trol was in the current time window. Hence we enforce 
the following invariance condition: No net energy is 
exchanged between the grid and the storage during the 
window of time T . Mathematically, this means that we 
require: 

s(O) = s(T) (3) 

2.4 Overall Power generation 

If storage is being di spatched at a node, it adds to the 
pre-ex isting generation p'" such that total generation is 
p = p'lS + pS, where p"S is the generation without in­
eluding the local storage dispatch. For Y' or Yr, pns is 
just the fixed load value or the time-variable renewable 
generation. The storage dispatch simply adds to these 
outputs. 
For generators, i.e. yg , the situation is slightly more 
complicatcd. The dispatch of storage modifics the in­
stantaneous load-generation imbalance so that the pro­
portional control we proposed for yg is slightly modi­
fied. The controlled generation at a node responds to the 
sum of storage dispatch at all nodes, including its own, 
i.e. 

Thus, the overall power generation from a yg node is 

2.5 

p = pO + pS + p' + a ( - .L pi - LPi) (4) 
IE Yr I 

Optimal Control with perfect Fore­
casts 

In our initial work on operations-based placement and 
sizing of energy storage, we implement an optimal con­
trol algorithm that assu mes perfect forecasts of renew­
able generation , i.e. the output of each renewable gen­
eration node is known exactly over the time horizon T. 
The control algorithm Ll ses this information to decide 
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Figure 1: Penalty Functions 

how much power to draw from or inject into each stor­
age node in order to keep the grid within the constraints 
(2). We note that, at the same time, the generation yg 
is responding according to (4). The control algorithm 
computes this optimal dispatch by minimizing a cost 
function consisting of three terms. The cost function 
tries to enforce the constraints (2) in a soft manner: We. 
do this because in some situations, it might be infeasible 
to maintain all the constraints strictly. In those cases, 
we allow violations to occur but the controller suffers a 
cost that blows up cubically with t\:le· magnitude of tht; 
constraint v iol ation. Thus, the controller will do its best 
to keep the system within its constraints, but when it is 
infeasi ble to do so, it will allow the violations to occur. 
To make the notation compact, wc dcfine two auxi ll ary 
functions f and h, which are plotted in Figure 1 and de­
fined be low. 

J(x,a,b) ~ { 
o 
(Kf*(x-b))3 
(Kf*(x - a)? 

if a:::; x:::; b 

if x > b 
if x < a 

h(x) = log (cosh (K" X)) 

where Kf = 50, K" = .00l . 
The three costs in the penalty function are: 

eli (p ): penali zes overloading of transmission lines : 
cli (p ) = L (i ,) )c 'Ef(Mij p, - fij,fij ) 

2 cg (pm) penalizes violation of capacity co'nstrainrs 
of controllable generators: 

cg (pm) = L;e (jg f(pjlS , 0, Pi ) 

3 csp (pS): penalizes the absolute value of power 
drawn from storage (increases very slowly): 
csp (pS) = L; h(pj) 
The fact that h increases very slowly ensures that 
the eli (p ) , cg (p'lS) dominate thi s cost by far, so that 
the controller will never choose to allow violations 
to occur in order to save on power capacity. 



We define the total cost as cost (p , p"S, pS ) = eli (p) + 
cg (p"S) + cSp (pS). The best control strategy minimizes 
this cost function integrated over time. In order to lever­
age practical numerical techniques, we discretize the 
time axis uniformly with time step t. to get Tf = f time 
steps and assume that our controls are constant over each 
time period t.. We seek 

TI 

, mi~ Lcli(p)+ cg (pm)+ csp(pS) 
p; ( (O), ... ,p; ( (Tr I) 1= 0 

subject to 

I- I 
s(t) = L pS(t)t. 

~=O 

s(Tf) = s(O) 

pi( t) = 0 i Ii sl 

p(t) = pO + pS(t) + pr(t) + a ( - L p;(t) - LPi(t)) 
I E (j, I 

pnS(t) = p(t) _ pS(t) 

Our problem falls within the well-studied class of deter­
ministic, discrete-time optimal control problems and can 
be solved using standard nonlinear programming tech­
niques [10]. Note that pO and pr are known from the 
DC-OPF and the perfect renewable forecasts, respec­
tively. Thus, we can express p(t) ,pS(t),pllS(t) directly 
in terms of P~I (t) using the second, third and fourth con­
straints above to get P(P~I)' pS(P~I)' p'lS (P~I)' Further we 
can write P~I(t) = SS((I+ lt ss((I), with the convention that 

Ssl (Tf ) = Ssl (0) (in order to satisfy the constraint (3)). 
This leaves us with the following unconstrained opti­
mization problem: 

It can be shown that this is a convex optimization prob­
lem r III that can be solved efficiently using Newton 's 
method (since the Hessian has a sparse block structure 
arising from the pairwise interaction) . In practice, a 
Levenberg-Marquardt correction [12] is required to en­
sure convergence as the Hessian can become numeri­
cally singular. We use software from [13] and [?] to 
solve the problem . 
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2.6 Optimal Sizing and Placement of Stor­
age 

Renewable Generation Profiles 
240~-_-~--~-~-~-----, 

100 

Time 

Figure 2: Three typical renewable generation profiles 
used in our study. The dashed lines are the time averages 
of the profiles. 

We seek to develop heuristics to decide how to place 
storage and size its energy and power capacity. T~e 
high-level pseudocode given in algorithm I, which uses 
the optimal control algorithm given above, is our initial 
attempt at this heuristic. Let sl denote the set of nodes 
with non-zero storage and perf(sl) denote the inverse of 
the total storage power capcity used by the optimal con­
trol with access to unlimited storage only at nodes in 
sl. At every iteration of the outer loop, the set of active 

Algorithm 1 Optimal Sizing and Placement Algorithm 

Choose thresholds £, £' 
sl <-- 1 : 11 

repeat 
for k = 1 -7 N do 

Generate Random Time Series Profiles for the 
Renewables 
Solve (5) with storage only at nodes sl for the 
given profiles to get optimal dispatch pS*(t ) 
Ak <-- maxI Ips*(t )1 

end for 
A <-- ~ E~= , Ak 
Y <-- max{y: {perf({i E sl : Ai ~ ymax (A)}) < 
perf(sl) + £}} 
sl <-- {i E sl: Ai ~ ymax (A)} 

until y:s: £' 

storage nodes sl is chosen. For each inner loop iteration, 
we create a trial where a random profile ror renewable 
generation is created at each renewable node (details of 
how this is done are in Section 3 and typical examples 



of three profiles are shown in fjg. 2). For each trial of 
the renewable profile, the control is allowed access to an 
unlimited amount of storage power and energy at all the 
nodes in sl (and 0 storage at nodes not in sl), and we 
solve the control problem for the optimal storage power 
dispatch pS;](t ). For each trial k and each node in sl, we 
find Ak, the maximum of the absolute value of the stor­
age power at that node, which is a measure of the size of 
the storage power required at that node by the optimal 
storage dispatch for a given trial k. The values of Ak are 
averaged over many trials. 
Next, the set of storage nodes sl is reduced by picking 
only those nodes i E sl such that Ai 2 ymax (A), i.e. only 
the nodes that require, on average, a storage power ca­
pabilty within a fraction y of the node with the maxi­
mum storage power capability. In essence, we are using 
our optimal control scheme to identify the nodes that 
exercise the greatest control over cost (p, pS, s ). The pa­
rameter y determines the severity of the "cut". As y is 
increased towards one, fewer anclfewer nodes remain in 
sl. As our controllability is reduced, we might expect 
the level of constraint violations to increase. However, 
the violations'seem to remain almost constant and we in­
stead observe that at a critical yalueofy, the total amount 
of storage power on the network, as required by the op'ti­
mal control, suddenly increases. We set y just below this 
threshold thereby selecting the reduced set of nodes that 
performs nearly as well as allowing the optimal control 
access to all of nodes. 
Using the reduced set of nodes from above as our new 
starting point, the algorithm is repeated (i.e. we regen­
erate A and find the new find maximal reduction in the 
number of nodes) , This outer loop repeats until we are 
not able to reduce the number of nodes any farther with­
out observing a signi ficant increase in the total amount 
of storage power. 

3 Simulations 

We tested our optimal control and heuristic for storage 
placement and sizing on a modified veri on of RTS-
96[8]. The grid is shown in Fig. 3. Our modification in­
cludes the addition of three renewable generation nodes 
shown in blue, The capacities of the new lines connect­
ing the renewables to their immediate neighbors are set 
higher than the capacity of the added renewable gen­
eration , otherwise, these lines would be overloaded in 
nearly every trial. 

3.1 Simulation Setup 

We performed three sets of simulations (corresponding 
to outer iterations of algorithm I), and for each setting, 
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Grid Structure 

Figure 3: Our modified version of RTS-96. The added 
renewables are blue, loads are yellow and controllable 
generators are green. 

we perform N = 2000 trials. We define the renewable 
penetration valUe of a trial to be 

"TI " IIS( ) 
L/=O LiE Ijr Pi t 

"TI " IlS( ) 
L/=O LiE Ij, Pit 

The penetration is the fraction of the load that is served 
by the renewable generation. For each trial , a random. 
value uniformly distributed between 0 and 50% is 'se-' 
lected for the penetration level , and the mean values of 
the renewables are scaled so as to achieve these values. 
A zero-mean fluctuation is generated around the base 
value for each renewable: 

r( ) _ " 1 Jo6 sin(wk(ti1+'t)+(!>k) d't 
Pi t - L k i1 

k 

where the <l>k are randomly chosen phases and Wk are 
chosen such that the above sine waves are harmonics of 
the basic wave with time period T . Since, we discretize 

the time axis, we use ~fsin ( oodt~H)+'h) d1, the average 

power in the interval t i1 to (t + I )i1. The final profile 
is generated by scaling the disturbances so they are 
comparable to the mean generation (which is typical 
for turbulent fluctuations of wind) and adding it to 
the mean: pj"' (t ) = p? (t) * (I + pj (t)),i E yr. Each 
instancc of thc rcnewable generation profiles we create 
is statistically independent and uncorrelated with every 
other instance. We do not intend for a sequence of these 
instances to approximate an actual time series of wind 
generation. 
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Figure 4: Activity Histograms: Red lines mark thresh­
olds used for the reduction in the storage node set. 

We start with the unrestricted case (where unlimited 
storage is available at all nodes) and compute the av­
erage activity of each node over all N = 2000 trials. The 
histogram of activities is shown in Fig. 4 . The optimal 
y for the first outer iteration of algorithm 1 is 0.34 and 
the resulting reduced set contains 10 nodes . When we 
tried to remove more nodes from the set, the average 
level of total network power and energy storage capac­
ity showed a sudden increase indicating that further re­
ductions based on this first stage of planning actually 
decreased the system performance. 
We repeat this process, but this time starting with the 10-
node set identified from the first iteration. Simulating 
another N = 2000 trials yields the second histogram in 
figure 4. When we restrict our optimal control to just 
these 10 nodes, their rank order changes relative to the 
rank order in the unrestricted case. It is this property that 
allows our heuri stic to make further reductions in the 
number of nodes without significant impacts to overall 
performance. 
The optimal y for this second iteration is 0.85 leaving 
only two nodes for the third interation. The algorithm 
terminates here as the controllable set cannot be shrunk 
any further without significance performance degrada­
tion . The 3 cuts (all nodes, 10 nodes, 2 nodes) obtained 
by the algorithm are depicted on the grid in Fig. S. 

To study how the energy and power capacity require­
ments of storage depends on the level of renewable pen­
etration , we first must quanti l'y these measures in a con­
sistent fash ion. For a given renewable profile pl' (t ), the 
optimal storage power dispatch is pS*(t ), and s*(t) is 
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Cuts 

Figure 5: Our modified RTS-96 grid showing the three 
sets of nodes identified by our heuristic. The minimal set 
(two nodes) is shown in red. The ten node set includes 
the two red nodes and the eight addtional green nodes. 
The maximal set includes all of the nodes. 

the resulting energy in storage. We define the energy 
in the renewable fluctuations to be sl'(t ) = L~:bP'('t)L'l, 
i.e. s'(t) is the energy stored in a (hypothetical) battery 
that is connected directly to a renewable node and elim­
inates all fluctuations about the mean renewable genera­
tion. We will only look at changes in energy stored over 
time, so s*(O) and s'(O) can be arbitrarily chosen. With 
these brief prelimiaries, the parameters relevant to our 
study are: 

Normalized Power Capacity : This quantifies the to­
tal power capacity of the storage relative to the sum 
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Figure 6: The level of constraint violations vs the pene­
tration of renewable generation . 
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Figure 7 : The normalized energy capacity of storage in 
the entire network vs the penetration of renewable gen­
eration. 
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Figure 8: The' normali zed power capacity of storage in 
the entire network vs the penetration of renewable gen­
eration . 

of maximal power fluctuati ons over the renewables: 

Nonnalized Energy Capacity: This quantifics the 
total energy capacity of the storage relative to the. 
sum or maximal energy nuctuations over the re­
newables: 

LjES I(max, sj(t ) - min,s j(t )) 

L Ee!r (max, s;(t ) - min, si (t )) 

Constraint Violations: This is defined as the sum or 
all constraint violations (as defined in (2)) averaged 
over time. 
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These quantities are all defined for a given renewable 
configuration. In order to investigate their typical be­
havior as a function of renewable penetration, we create 
a I 0 equally-spaced intervals between 0 and .5. For each 
bin I , we compute statistics (mean and standard devia­
tion) of all three quantities over trials with a penetration 
value in the bin I. The means an standard deviations for 
the three quantities are shown as functions of penetra­
tion in Figs . 8,7 ,6. 

4 Interpretations 

First, we note that Fig. 6 demonstrates the effectiveness 
of node-specific control for mitigating the impact of re­
newable generation fluctuations on the network. The Up" 

per curve in the inset in Fig.6 shows the level of con­
straint violations for a system that maintains generation­
load balance purely via proportional control, i.e. orily 
the controlled generators responding to a generation­
load imbalance in proportion to their capacity. Without 
the node-specific control in our model of energy stor­
age, the response of the generators is inflexible, and sys­
tem begins to experience constraint violations for small 
values of renewable penetration. With the node-specific 
control allowed by our storage model, Figure 6 shows 
that the control can eliminate all constraint violations 
up to about 30% renewable penetration for all the node 
configurations we explored. We do not attribute this be­
havior to the storage itself, rather, this appears to be a 
property of the flexibility of node-specific control. Al­
though we did not explore this possibility, we beli.eve 
that if we would have incorporated the controlled gen­
erators yg into our control algorithm, we would have 
seen similar performance up to a renewable penetration 
of 30% for a system without any storage. It is intere~­

ing to note that more detailed studies have found similar 
thresholds for renewable penetration[4l . 

Figure 5 shows the location of the nodes with storage 
in the reduced-node sets identified by our heuristic in 
algorithm r. The two-node set is perhaps the most illus­
trative of how optimal placement and sizing of storage 
in a network does yield itself to simple rules of thumb 
or intuition. Intuition may have led to the conclusion 
that storage should he placed at the site of the fluctu­
ating renewables because it can effectively the mitigate 
the fluctuating power flows without these flows ever be­
ing injected into the network. It seems plausible that this 
should lead to a minimal amount of storage and quality 
control, however, the results in Fig. 5 and 6 show oth­
erwise. The nodes in the two-node set do not include 
either of renewable generation sites. In fact , even when 
expanded to the ten-node set, only one of the three re-



newable sites is included. These results demonstrate that 
the nodes that have a high degree of control over conges­
tion caused by renewable fluctuations are not necessarily 
the renewable nodes themselves. 

To further demonstrate this point, we performed an ad­
ditional simulation where the reduced-note set included 
just the three renewable sites . Figure 6 shows that the 
quality of control over the constraint violations is the 
same for this handpicked case as in the two-, ten-, and 
unrestricted-node sets . Figures 7 and 8 help to distin­
guish between these node sets. For renewable penetra­
tions below about 30%, the network total power capacity 
and energy capac ity of the storage is nearly the same for 
each case. Beyond 30% where we begin to see a few 
constraint violations in Fig. 6, the two-node set shows 
signifi cantly lower total network power and energy ca­
pacity compared to the ten or unrestricted-node cases. 
The handpicked case is comparable to the ten-node case. 
A lower network total capacity implies that the nodes 
identified in the two-node case have the highest degree 
of controllability over the network congestion caused by 
the fluctuating renewables. 

A possible reason for the two-node set showing better 
controllability is evident from Fig. 5. These two nodes 
sit at the end or the middle of crucial transmission lines 
that link two major regions in RTS-96. In reference · 
to Fig. 5, we name these regions "upper" and "lower". 
We conjecture that by controlling the power injections 
at these nodes, our control scheme can effectively con­
trol to which region the renewable generation is directed. 
Therefore, our control can direct the renewable fluctua­
tions to the region that, at that point in time, has the 
greatest ability to assist in mitigation. In addition to sim­
ply absorbing the fluctuations locally, the storage may 
be used to redirect the renewable fluctuations through­
out the network to leverage other resources to assist in 
the control. 

5 Conclusions and Future Work 

In this initial study, we have developed and demon­
strated a method for coupling operations with system 
expansion planning for the optimal placement and siz­
ing of storage in a grid with a sign ificant penetration of 
time-intermittent renewable generation. Operations are 
incorporated into the planning via simulations of an op­
timal control scheme that uses perfect renewable gen­
eration forecasts to di spatch energy storage to eliminate 
violation of network and generation constraints. By sim­
ulating the system on a relatively short time scale, we 
build up significant statistics on the storage activity at all 
network nodes. We have developed a heuristic that uses 
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these statistics to reduce the number of storage-enabled 
network nodes while maintaining or improving system 
performance. 
Somewhat unexpectedly, our method does not preferen­
tially place energy storage at the nodes with renewable 
generation. Instead, our method apparently favors nodes 
at critical junctions between major subcomponents of 
the network. We have proposed that these nodes pro­
vide for enhanced controllability because, in addition to 
simply buffering the fluctuations of the renewables, con­
trolled power injections at these nodes can modify over­
all network flows and direct fluctuating power flows to 
regions that are better positioned to mitigate them. 

There is much follow on work needed to expand the con­
cept presented in this manuscript and to verify some of 
its conjectures . A few examples include: 

• Additional networks should be considered, includ­
ing different configurations of renewable genera­
tion on the present network, to investigate whether 
our node-reduction heuristic is robust. 

• The explanation of the placement of storage pro­
posed in this work should be verifi ed by correlat­
ing the response of the storage with nearby po~er 
flows . 

• The operational simulation should be made more 
realistic by incorporating ramping constraints on 
the controllable generation. 

• The method should be extended to consider alterna­
tives to proportional control for changing the out­
puts of the controll able generators. 
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