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1. Introduction

Electronic structure calculations based on solving the Kohn-Sham equa-
tions play an important role in the analysis of electronic, structural and op-
tical properties of molecules, solids and other nano structures. The efficiency
of such a calculation depends largely on the computational cost associated
with the evaluation of the electron charge density for a given potential within
a self-consistent field (SCF) iteration. The most straightforward way to per-
form such an evaluation is to partially diagonalize the Kohn-Sham Hamilto-
nian by computing a set of eigenvectors corresponding to the algebraically
smallest eigenvalues of the Hamiltonian. The complexity of this approach
is O(N3

e ), where Ne is the number of electrons in the atomistic system of
interest. As the number of atoms or electrons in the system increases, the
cost of diagonalization becomes prohibitively expensive.

An alternative scheme for evaluating the charge density is to express the
charge density as the diagonal of the Fermi-Dirac function evaluated at a
fixed Kohn-Sham Hamiltonian. By approximating the Fermi-Dirac function
through a pole expansion technique [1], we can reduce the problem of com-
puting the charge density to that of computing the diagonal of the inverses of
a number of shifted Kohn-Sham Hamiltonians. This approach was pursued
by a number of researchers in the past. The cost of this approach depends
on the number of poles required to expand the Fermi-Dirac function and
the cost for computing the diagonal of the inverse of a shifted Kohn-Sham
Hamiltonian.

The recent work by Lin et al. [1] provides an accurate and efficient pole-
expansion scheme for approximating the Fermi-Dirac function. The number
of poles required in this approach is proportional to log(β∆E), where β is
proportional to the inverse of the temperature factor, and ∆E is the spectral
width of the Kohn-Sham Hamiltonian. (i.e. the difference between the largest
and the smallest eigenvalues). This pole count is significantly lower than the
previous approaches [2, 3, 4, 5].

Furthermore, an efficient selected inversion algorithm for computing the
inverse of the diagonal of a shifted Kohn-Sham Hamiltonian without com-
puting the full inverse of the Hamiltonian has been developed [6, 7, 8]. The
complexity of this algorithm is O(Ne) for quasi-1D systems such as nanorods,
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nanotubes and nanowires, O(N
3/2
e ) for quasi-2D systems such as graphene

and surfaces, and O(N2
e ) for 3D bulk systems. In exact arithmetic, the

selected inversion algorithm gives the exact diagonal of the inverse, i.e., the
algorithm does not rely on any type of localization or truncation scheme. For
insulating systems, the use of localization and truncation can be combined
with selected inversion to reduce the complexity of the algorithm further to
O(Ne) even for general 3D systems.

In the previous work [7, 8] we used the pole expansion plus selected in-
version (PEpSI) technique to solve the Kohn-Sham problem discretized by
a finite difference scheme. However, it is worth pointing out that PEpSI
is a general technique that is not limited to discretized problems obtained
from finite difference. In particular, it can be readily applied to discretized
Kohn-Sham problems obtained from any localized basis expansion technique.
In this paper, we describe how PEpSI can be used to speed up solving a
discretized Kohn-Sham problem obtained from an atomic orbital basis ex-
pansion. We show that electron charge density, total energy, Helmholtz free
energy and atomic forces can all be efficiently calculated by using PEpSI.

We demonstrate the performance gain we can achieve by comparing PEpSI
with the LAPACK diagonalization subroutine dsygv on two types of nan-
otubes. We show that by using the PEpSI technique, it is possible to per-
form electronic structure calculations accurately for a nanotube that contains
10,000 atoms on a single processor within a reasonable amount of time. The
crossover point beyond which the computational complexity of PEpSI ex-
hibits linear scaling with respect to the number of atoms is around a few
hundred atoms.

This paper is organized as follows. In section 2, we show how the PEpSI
technique previously developed [7, 8] can be extended to discretized Kohn-
Sham problems obtained from an atomic orbital expansion scheme. In par-
ticular, we will show how charge density, total energy, free energy and force
can be calculated in this formalism. We will also discuss how to update the
chemical potential. In section 3, we report the performance of PEpSI on two
quasi-1D test problems.

Throughout the paper, we use Im(A) to denote the imaginary part of a
complex matrix A. A properly defined inner product between two functions
f and g is sometimes denoted by 〈f |g〉. The diagonal of a matrix A is
sometimes denoted by diag(A).
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2. Theory

The ground-state electron charge density ρ(x) of an atomistic system can
be obtained from the self-consistent solution to the Kohn-Sham equations

Ĥ [ρ(x)]ψi(x) = ψi(x)εi, (1)

where Ĥ is the Kohn-Sham Hamiltonian that depends on ρ(x), {ψi(x)} are
the Kohn-Sham orbitals that satisfy the orthonormality constraints

∫

ψ∗
i (x)ψj(x)dx = δij, (2)

and the eigenvalue εi is often known as the ith Kohn-Sham quasi-particle
energy. Using the Kohn-Sham orbitals, we can define the charge density by

ρ(x) =
∞
∑

i

|ψi(x)|2fi, i = 1, 2, ...,∞, (3)

with occupation numbers 0 ≤ fi ≤ 2, i = 1, 2, ...∞. At finite temperature
T = 1/(kBβ), the occupation numbers in (3) can be chosen according to the
Fermi-Dirac distribution function

fi = fβ(εi − µ) =
2

1 + eβ(εi−µ)
, (4)

and µ is the chemical potential chosen to ensure that

∫

ρ(x)dx = Ne. (5)

Note that ρ(x) is simply the diagonal of the single particle density matrix
defined by

γ̂(x, x′) =

∞
∑

i=1

ψi(x)fβ(εi − µ)ψ∗
i (x

′), (6)

and the charge sum rule in (5) can be expressed alternatively by

Tr [γ̂(x, x′)] = Ne, (7)

where Tr denotes the trace of an operator.
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It follows from (1) and (6) that the electron density ρ(x) is a fixed point
of the Kohn-Sham map defined by

ρ(x) = diag
(

fβ(Ĥ[ρ(x)]− µδ(x, x′))
)

, (8)

where µ is chosen to satisfy (7). The most widely used algorithm for finding
the solution to (7) and (8) is a Broyden type of quasi-Newton algorithm.
In the physics literature, this is often referred to as the self-consistent field
(SCF) iteration. The most time consuming part of this algorithm is the
evaluation of ρ(x) = γ̂(x, x) in (8).

2.1. Basis expansion by nonorthogonal basis functions

An infinite-dimensional Kohn-Sham problem can be discretized in a num-
ber of ways (e.g., planewave expansion, finite difference, finite element etc.)
In this paper, we focus on a discretization scheme in which a Kohn-Sham
orbital ψi is expanded by a linear combination of a finite number of basis
functions {ϕj}, i.e.,

ψi(x) =

N
∑

j=1

ϕj(x)cji. (9)

We should note that the total number of basis functions N is generally pro-
portional to the number of electrons Ne or atoms in the system to be stud-
ied. These basis functions {ϕj} can be constructed to have local nonzero
support. But they may not necessarily be orthonormal to each other. Ex-
amples of these basis functions are wavelet basis functions [9, 10], adaptive
local basis functions [11], Gaussian type orbitals [12, 13] and local atomic
orbitals [14, 15, 16, 17, 18, 19]. In numerical examples presented in section 3,
we use a set of nonorthogonal local atomic orbitals.

Substituting (9) into (1) yields a generalized eigenvalue problem

HC = SCΞ, (10)

where C is an N ×N matrix with cij being its (i, j)th entry, Ξ is a diagonal

matrix with εi on its diagonal, Sij = 〈ϕi|ϕj〉, and Hij = 〈ϕi|Ĥ|ϕj〉. For
orthogonal basis functions, the overlap matrix S is an identity matrix, and
Eq. (10) reduces to a standard eigenvalue problem. When local atomic or-
bitals are used as the basis, S is generally not an identity matrix, but both
H and S are sparse.
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Without loss of generality, we assume the basis functions and the Kohn-
Sham orbitals to be real in the following discussion. Let Ψ = [ψ1, · · · , ψN ]
and Φ = [φ1, · · · , φN ], Then Eq. (9) can be written in a compact form

Ψ = ΦC. (11)

Consequently, the single-particle density matrix (6) becomes

γ̂(x, x′) = Ψ(x)f(Ξ− µ)ΨT (x′)

= Φ(x)Cfβ(Ξ− µ)CTΦT (x′).
(12)

2.2. Pole expansion and selected inversion for nonorthogonal basis functions

The most straightforward way to evaluate γ̂(x, x′) is to follow the right
hand side of (12), which requires solving the generalized eigenvalue prob-
lem (10). The computational complexity of this approach is O(N3). This
approach becomes prohibitively expensive when the number of electrons or
atoms in the system increases.

An alternative way to evaluate γ̂(x, x′), which circumvents the cubic scal-
ing of the diagonalization process, is to approximate γ̂(x, x′) by a Fermi
operator expansion (FOE) method [20]. In an FOE scheme, the function
fβ(Ξ − µ) is approximated by a linear combination of a number of simpler
functions, each of which can be evaluated directly without diagonalizing the
matrix pencil (H,S). A variety of FOE schemes have been developed. They
include polynomial expansion [20], rational expansion [2, 1, 3], and a hybrid
scheme in which both polynomials and rational functions are used [4, 21].
In all these schemes, the number of simple functions used in the expansion
is asymptotically determined by β∆E, where ∆E = maxNi=1 |εi − µ| is the
spectrum width for the discrete problem.

While most of the FOE schemes require as many asO(β∆E) orO(
√
β∆E)

terms of simple functions, the recently developed pole expansion [1] is partic-
ularly promising since it requires only O(log β∆E) terms of simple rational
functions. The pole expansion takes the form

fβ(ε− µ) ≈ Im

P
∑

l=1

ωρ
l

ε− (zl + µ)
, (13)

where zl, ω
ρ
l ∈ C are complex shifts and weights respectively. We will refer to

{zl} as poles in the following discussions. The construction of the pole expan-
sion is based on the observation that the non-analytic part of the Fermi-Dirac
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function lies only on the imaginary axis within
[

iπ
β
,+i∞

]

⋃

[

−i∞,− iπ
β

]

. A

dumbbell-shaped Cauchy contour (see Fig. 1) is carefully chosen and dis-
cretized to circle the eigenvalues {εi} on the real axis, while avoiding the
intersection with the non-analytic region. The pole expansion does not re-
quire a band gap between the occupied and unoccupied states. Therefore, it
is applicable to both insulating and metallic systems. Furthermore, the con-
struction of the pole expansion relies only on the analytical structure of the
Fermi-Dirac function rather than its detailed shape. This is a key property
that is crucial for constructing pole expansions for other functions, including
the reduced free energy density matrix and the reduced energy density matrix
which are discussed in section 2.3 for the purpose of computing Helmholtz
free energy and atomic forces.

 

  

 

Re 

Im 

Figure 1: (color online) A schematic view of the placement of poles used in
a pole expansion approximation of fβ(z). The thick black line on the real
axis indicates the range of εi − µ, and the thin blue line on the imaginary
axis indicates the non-analytic part of fβ(z). The yellow dumbbell shaped
contour is chosen to exclude the non-analytic part of the complex plane. Each
block dot on the contour corresponds to a pole used in the pole expansion
approximation.

Following the derivation in the appendix, we can use (13) to approximate
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the single particle density matrix by

γ̂(x, x′) ≈ Φ(x)Im

(

P
∑

l=1

ωρ
l

H − (zl + µ)S

)

ΦT (x′)

≡ Φ(x)γΦT (x′).

(14)

In the above expression, γ is an N ×N matrix. It is often referred to as the
reduced single particle density matrix. Using Eq. (14), we can evaluate the
electron density in the real space as the diagonal elements of γ̂, i.e.,

ρ̂(x) ≈ Φ(x)γΦT (x) =
∑

ij

γijϕj(x)ϕi(x). (15)

We assume that each basis function ϕi(x) is compactly supported in the real
space. In order to evaluate ρ̂(x) for any particular x, we only need γij such
that ϕj(x)ϕi(x) 6= 0, or Sij 6= 0. This set of γij ’s is a subset of {γij|Hij 6= 0}.
To obtain these selected elements, we need to compute the corresponding
elements of (H − (zl + µ)S)−1 for all zl.

The recently developed selected inversion method [6, 7, 8] provides an
efficient way of computing the selected elements of an inverse matrix. For a
symmetric matrix of the form A = H − zS, the selected inversion algorithm
first constructs an LDLT factorization of A, where L is a block lower diago-
nal matrix called the Cholesky factor, and D is a block diagonal matrix. In
the second step, the selected inversion algorithm computes all the elements
A−1

ij such that Lij 6= 0. Since Lij 6= 0 implies that Hij 6= 0, all the selected
elements of A−1 required in (15) are computed. As a result, the computa-
tional scaling of the selected inversion algorithm is only proportional to the
number of nonzero elements in the Cholesky factor L. In particular, the se-
lected inversion algorithm has a complexity of O(N) for quasi-1D systems,
O(N1.5) for quasi-2D systems, and O(N2) for 3D bulk systems. The selected
inversion algorithm achieves universal improvement over the diagonalization
method for systems of all dimensions. It should be noted that selected inver-
sion algorithm is an exact method for computing selected elements of A−1

if exact arithmetic is to be employed, and in practice the only source of er-
ror is the roundoff error. Particularly, the selected inversion algorithm does
not rely on any localization property of A−1, though combined with localiza-
tion property for insulating systems the computational cost can be further
reduced which will be studied in future work.
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2.3. Total energy, Helmholtz free energy and atomic force evaluation

In addition to reducing the computational complexity of charge density
calculation in each SCF iteration, the PEpSI technique can also be used to
compute the total energy, the Helmholtz free energy as well as the atomic
forces efficiently without diagonalizing the Kohn-Sham Hamiltonian.

When Kohn-Sham orbitals {ψi} are available, the total energy associated
with an insulating system can be evaluated as

Etot =

∞
∑

i=1

fi〈ψi, Ĥψi〉 −
1

2

∫∫

ρ̂(x)ρ̂(y)

|x− y| dx dy

+ Exc[ρ̂]−
∫

Vxc[ρ̂](x)ρ̂(x) dx.

(16)

An alternative expression for Etot is

Etot =Tr[γH ]− 1

2

∫∫

ρ̂(x)ρ̂(y)

|x− y| dx dy

+ Exc[ρ̂]−
∫

Vxc[ρ̂](x)ρ̂(x) dx,

(17)

where γ is the reduced density matrix defined in (6). Note that in this
expression, the first term depends on the trace of the product of γ and H .
The computation of this term requires only the (i, j)th entry of γ for (i, j)
satisfyingHij 6= 0. These entries are already available from the charge density
calculation, thus using them for total energy evaluation does not introduce
additional complexity. All other terms in the total energy expression depends
on the electron density ρ̂(x), which we already know how to compute by the
PEpSI technique. Here we assume LDA [22] or GGA [23, 24] exchange-
correlation functional is used for the Kohn-Sham total energy expression.

For metallic systems, the Helmholtz free energy Ftot is the quantity of
interest because at finite temperature Ftot takes into account both energy
and entropy [25]. The Helmholtz free energy can be written as [26]

Ftot =− 2β−1Tr ln(1 + exp(β(µ− Ξ))) + µNe

− 1

2

∫∫

ρ̂(x)ρ̂(y)

|x− y| dx dy + Exc[ρ̂]

−
∫

Vxc[ρ̂](x)ρ̂(x) dx.

(18)
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It is straightforward to show that as β → ∞, Ftot → Etot. Again, in Eq. (18),
only the first term requires special treatment. Note that the function

fF
β (ε− µ) = −2β−1 ln(1 + exp(β(µ− ε))) (19)

is analytic everywhere in the complex plane, except for segments of the imag-

inary axis within
[

iπ
β
,+i∞

]

⋃

[

−i∞,− iπ
β

]

. In this sense, fF
β shares the same

analytic structure as that of the Fermi-Dirac function fβ. The pole expan-
sion technique can be applied with the same choice of poles {zl} but different
weights, denoted by {ωF

l }, i.e.

fF
β (ε− µ) ≈ Im

P
∑

l=1

ωF
l

ε− (zl + µ)
. (20)

Following the derivation in the appendix, we can rewrite the Helmholtz free
energy as

Ftot =Tr[γFS] + µNe −
1

2

∫∫

ρ̂(x)ρ̂(y)

|x− y| dx dy

+ Exc[ρ̂]−
∫

Vxc[ρ̂]ρ̂(x) dx,

(21)

where the reduced free energy density matrix γF is given by

γF ≈ Im

P
∑

l=1

ωF
l

H − (zl + µ)S
. (22)

Again, the selected elements of [H − (zl + µ)S]−1 required for evaluation the
first terms of (21) are already available from the charge density calculation.
No additional computation is required to obtain these elements.

To perform geometric optimization or ab initio molecular dynamics, we
need to compute atomic forces associated with different atoms. Atomic force
is the derivative of the Helmholtz free energy with respect to the position
of an atom. Following the derivation in the appendix, we can express the
atomic force associated with the I-th atom as

FI = − ∂F
∂RI

= −Tr

[

γ
∂H

∂RI

]

+ Tr

[

γE
∂S

∂RI

]

. (23)
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where γE is the reduced energy density matrix defined by

γE = CΞfβ(Ξ− µ)CT . (24)

It is clear that the function

fE
β (ε− µ) = εfβ(ε− µ) (25)

shares the same analytic structure as that of the Fermi-Dirac function fβ .
Thus, the reduced energy density matrix can be approximated by the same
pole expansion used to approximate the reduced density matrix (14). In
particular, there is no difference in the choice of poles zl. But the weights of
the expansion, which we denote by ωE

l , for the reduced energy density matrix
approximation, are different. To be specific, the reduced energy density
matrix can be written as

γE ≈ CIm
P
∑

l=1

ωE
l

Ξ− (zl + µ)I
CT =

P
∑

l=1

ωE
l

H − (zl + µ)S
. (26)

Again the selected elements of γE required in (23) can be easily computed
from the selected elements of [H − (zl + µ)S]−1 which are available from the
charge density calculation.

2.4. Chemical potential update

The true chemical potential µ required in the pole expansions (14), (21)
and (26) is not known a priori. It must be solved iteratively as part of the
solution to (7) and (8). For a fixed Hamiltonian H associated with a fixed
charge density, it is easy to show that the left hand side (7), which can be
expressed as,

N(µ) = Tr[γ̂] = Tr[γΦTΦ] = Tr[γS] (27)

is a monotonic function with respect µ. Hence the root of (7) is unique. It
can be obtained by either the Newton Raphson or the bisection method.

In an SCF iteration, ρ and µ are often updated in an alternating fashion.
When the Kohn-Sham quasi-particle energies ǫi associated with a fixed charge
density are available, both N(µ) and its derivative can be easily evaluated in
the Newton’s method. However, if γ̂ is approximated via a pole expansion
(14), a new expansion is needed whenever µ is updated. Furthermore, the
derivative of N(µ) can be approximated by finite difference. In practice, one

12



or two Newton’s iterations are sufficient to produce a reasonably accurate
µ after the first SCF iteration. When µk is sufficiently close to the true
chemical potential, the derivative of N(µk) can be approximated by

N ′(µk) ≈ N(µk)−N(µk−1)

µk − µk−1
. (28)

Thus each Newton’s iteration requires only one more selected inversion cal-
culation. This type of iterative strategy for updating the chemical potential
has also been discussed in literature [27, 5].

3. Numerical results

In this section, we report the performance gain we achieved by applying
the PEpSI technique to an existing electronic structure calculation code that
uses local atomic orbital expansion to discretize the Kohn-Sham equations.

The test problems we used are two types of nanotubes. One is a boron
nitride nanotube (BNNT) with chirality (8,0), which is an insulating system
shown in Figure 2. The other is a carbon nanotube (CNT) with chirality (8,8)
shown in Figure 3, which is a metallic system. According to the formula d =√

3a
π

√
n2 +mn +m2, where a is the bond length and (n,m) is the chirality

of nanotubes [28], the diameter for BNNT (8,0) is 12.09 Bohr and for CNT
(8,8) is 20.50 Bohr. The longitudinal length of BNNT (8,0) with 256 atoms
is roughly the same as CNT (8,8) with 512 atoms.

We performed our calculation at Γ point only. Because Brillouin zone
sampling can be trivially parallelized, adding more k-points will not affect
the performance of our calculation.

Figure 2: (color online) Boron nitride nanotube (8,0) with 256 atoms. The
boron atoms are labeled as pink (light gray) balls while the nitrogen atoms
are labeled as blue (dark gray) balls. The bond length between a pair of
adjacent boron and nitride atoms is 1.45 Angstrom.
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Figure 3: (color online) Carbon nanotube (8,8) with 512 atoms. The carbon
atoms are labeled as gray balls. The bond length between a pair of adjacent
carbon atoms is 1.42 Angstrom.

Our computational experiments were performed on the Hopper system at
the National Energy Research Scientific Computing (NERSC) center. The
performance results reported below were obtained from running the existing
and modified codes on a single core of Hopper which is part of a node that
consists of two twelve-core AMD ’MagnyCours’ 2.1-GHz processors. Each
Hopper node has 32 gigabytes (GB) DDR3 1333-MHz memory. Each core
processor has 64 kilobytes (KB) L1 cache and 512KB L2 cache. It also has
access to a 6 megabytes (MB) of L3 cache shared among 6 cores.

Although the existing code has been parallelized using MPI and ScaLA-
PACK, the parallelization of selected inversion is still work in progress.
Hence, the performance study reported here is limited to single-processor
runs. However, we expect that the new approach of using the PEpSI tech-
nique to compute the charge density, total energy, Helmholtz free energy and
force will have a more favorable parallel scalability compared to diagonalizing
the Kohn-Sham Hamiltonian by ScaLAPACK because it can take advantage
of an additional level of parallelism introduced by the pole expansion. Due
to the availability of such parallelism, the cost of the computational time of
PEpSI is reported as the wall clock time for evaluating the selected elements
of one single pole.

In addition to comparing the performance of the existing and new ap-
proaches in terms of wall clock time, we will also report the accuracy of our
calculation and memory usage.
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3.1. Atomic Orbitals and the Sparsity of H and S

The electronic structure calculation code we used for the performance
study is based on a local atomic orbital expansion scheme [15, 16]. We
will refer to this scheme as the CGH scheme below. In the CGH scheme,
an atomic orbital φµ(r) is expressed as the product of a radial wave func-
tion fµ,l(r) and a spherical harmonic Ylm(r̂), where µ = {α, i, ζ, l,m}, and
α, i, ζ, l,m represent the atom type, the index of an atom, the multiplicity
of the radial functions, the angular momentum and the magnetic quantum
number respectively. The radial function fµ,l(r) is constructed as a linear
combination of spherical Bessel functions within a cutoff radius rc, i.e.,

fµ,l(r) =

{ ∑

q cµqjl(qr), r < rc
0 r ≥ rc .

(29)

where jl(qr) is a spherical Bessel function with q chosen to satisfy jl(qrc)=0,
and the coefficients cµqjl(qr) are chosen to minimize a “spillage factor” [29, 30]
associated with a reference system that consists of a set of (4 or 5) dimers.
We refer readers to Ref. [15, 16] for the details on the construction of the
CGH local atomic orbitals.

The cutoff radius rc determines the sparsity of the reduced Kohn-Sham
Hamiltonian H and the overlap matrix S. The smaller the radius, the sparser
H and S are. The cutoff radius for the atomic orbitals is set to 8.0 Bohr for
B and N atoms in BNNT, and 6.0 Bohr for C atoms in CNT, respectively.

Another parameter that affects the dimension ofH and S is the multiplic-
ity ζ of the radial function fµ,l(r). The multiplicity determines the number
of basis functions per atom. A higher multiplicity results in larger number
of basis functions per atom, which in turn results in more rows and columns
in H and S. In our experiments, we used both single-ζ (SZ) orbitals and
double-ζ plus polar orbitals (DZP). The number of local atomic orbitals is 4
for SZ and 13 for DZP.

We measure the sparsity by the percentage of the nonzero elements in the
matrix H denoted by

Hnnz% =
nnz(H)

N2(H)
× 100. (30)

Here nnz(H) is the number of nonzero elements of H and N(H) is the dimen-
sion of H respectively. Since the computational cost of the selected inversion
method is determined by the sparsity of L + LT for the Cholesky factor L
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of H − zS, we will also report the percentage of the nonzero elements in the
matrix L+LT (denoted by Lnnz%) below. To reduce the amount of non-zero
fill-in of L, we use the nested dissection (ND) technique [31] to reorder the
sparse matrix H − zS before it is factored. Fig. 4 (a) depicts the sparsity
pattern of the H matrix associated with a 5120-atom BNNT (8,0) obtained
from SZ atomic orbitals after it is reordered by ND. The sparsity pattern
of L + LT for the corresponding Cholesky factor L of the same problem is
shown in Fig. 4 (b).

(a) (b)

Figure 4: (color online) The sparsity pattern of H (a) and L + LT (b) for
an 5120-atom BNNT (8,0) with SZ orbitals. Nested dissection reordering is
used.

Table 1 shows the sparsity of Hamiltonian matrices associated with BNNT
(8,0) and CNT (8,8) systems that consist of 64 to 10240 atoms. The Hamil-
tonians for these systems are constructed from SZ atomic orbitals. We report
both the Hnnz% and Lnnz% values. We can clearly see from this table that
H , and consequently L, are quite dense when the number of atoms in the
nanotubes is relatively small (less than 512). This is due to fact that a
large percentage of atoms in these small systems are within the rc distance
from each other. When the system size becomes larger (with more than 512
atoms), both Hnnz% and Lnnz% are inversely proportional to the system size.
This is because for quasi-1D systems, the numerator in Eq. (30) scales lin-
early with respect to N(H) for large N(H). Hence, the resulting matrices
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become increasingly sparse, thereby making the selected inversion method
more favorable.

# Atoms 64 128 256 512 1024 1920 5120 10240

BNNT (8,0)
Hnnz% 100.00 85.54 42.77 21.43 11.69 5.70 2.13 1.06
Lnnz% 100.00 99.48 77.94 46.13 25.07 13.70 5.26 2.64

CNT (8,8)
Hnnz% 40.63 38.67 19.53 9.77 4.88 2.60 0.97 0.49
Lnnz% 69.92 68.45 68.70 54.38 31.75 17.54 7.42 3.79

Table 1: The percentage of nonzero elements Hnnz% and Lnnz% for BNNT
(8,0) and CNT (8,8) of various sizes.

3.2. Performance comparison between diagonalization and selected inversion

We now compare the efficiency of selected inversion with that of diago-
nalization for computing the charge density in a single SCF iteration. In the
existing code, the diagonalization of the matrix pencil (H,S) is performed
by using the LAPACK subroutine dsygv when the code is run on a single
processor. The selected inversion is performed by the SelInv software [7].

We use BNNT(8,0) and CNT(8,8) nanotubes of different lengths to study
the scalability of the computation with respect to the number of atoms in
the nanotube. The number of atoms in these tubes ranges from 64 to 10240.

Fig. 5 shows how the wall clock time used by SelInv compares with that
used by dsygv for BNNT(8,0) of different sizes. When SZ atomic orbitals
are used, SelInv takes almost the same amount of time as that used by
dsygv for a BNNT with 64 atoms. When the number of atoms is larger than
64, SelInv is more efficient than dsygv. The cubic scaling of dsygv with
respect to the number of atoms can be clearly seen from the slope of the
blue loglog curve, which is approximately 3. The linear scaling of SelInv,
which is indicated by the slope of the red curve, is evident when the number
of atoms exceeds 200. For systems with less than 200 atoms, the wall clock
time consumed by SelInv scales cubically with respect to the number of
atoms also. This is due to the fact that the H and S matrices associated
with these small systems are nearly dense. Similar observations can be made
when the DZP atomic orbitals are used. In this case, SelInv is already more
efficient than dsygv when the number of atoms is only 64. The linear scaling
of SelInv can be observed when the number of atoms exceeds 128.
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Fig. 6 shows the timing comparison between SelInv and dsygv for CNT
(8,8) of different sizes. Because the cutoff radius for the carbon atom is
chosen to be 6.0, which is smaller than that associated with the boron and
nitrogen atoms, the H and S matrices associated with CNT (8,0) are sparser
even when the number of atoms in the tube is relatively small. This explains
why SelInv is already more efficient than dsygv already for a CNT with
64 atoms regardless whether SZ or DZP atomic orbitals are used. However,
the linear scaling of SelInv timing with respect to the number of atoms
does not show up until the number of atoms reaches 500. The increase in
the crossover point is due to the fact that the sparsity of H is asymptotically
determined by the number of atoms per unit length of the nanotube. Because
the CNT (8,0) we use in our experiment has a large diameter, there are more
atoms along the radial direction per unit length in CNT than that in BNNT.
Consequently, it takes almost twice as many as atoms for CNT to reach the
same length along the longitudinal direction when compared to BNNT, as
we can see from Fig. 2 and Fig. 3.

We should note here that it is possible to combine the PEpSI technique
with a SZ atomic orbital based Kohn-Sham DFT solver to perform electron
structure calculation on quasi-1D systems with more than 10,000 atoms. On
the Hopper machine, the wall clock time used to perform a single selected
inversion of the H − zS matrix associated with a 5,120-atom BNNT(8,0)
is 26.72 seconds. When the number of atoms increases to 10240, the wall
clock time increases to 50.07 seconds. Similar performance is observed for
CNT(8,8). It takes 47.59 seconds to perform a selected inversion for a 5120-
atom CNT(8,8) tube, and 97.16 seconds for a 10240-atom tube.

3.3. Memory usage

We should also remark that the memory requirement for SelInv increases
linearly with respect to the number of atoms when the nanotube reaches a
certain size. For a nanotube that consists of 10240 atoms, the amount of
memory required to store L and the selected elements of [H− (zl +µ)S]−1 is
0.66 GB and 0.93 GB respectively. The relatively low memory requirement
of SelInv for quasi-1D system suggests that the method may even be appli-
cable to quasi-1D systems that contain more than 100, 000 atoms on a single
processor.
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3.4. Accuracy

When selected inversion can be computed to high accuracy, which is often
the case in practice, the only source of error introduced by the PEpSI tech-
nique comes from the limited number of terms in the pole expansion (14).
The number of poles needed in (14) to achieve a desired level of accuracy in
total energy (or Helmholtz free energy) and force is largely determined by the
inverse temperature β = 1/(kBT ) used in (4) and the spectrum width ∆E.
Here we show that at room temperature T = 300K, the number of poles re-
quired to provide an accurate pole expansion approximation is modest even
for a metallic system such as CNT(8,8). Table 2 shows that when diago-
nalization is replaced by PEpSI for a single Γ-point calculation, the errors
in total energy and force decrease as the number of poles in (14) increases.
When the number of poles reaches 80, the difference between the final total
energies produced by the existing code and the modified code (which replaces
diagonalization with PEpSI) is 3.6×10−7 eV. The difference in the mean ab-
solute error (MAE) is 2 × 10−6 eV/Angstrom, which is quite small for all
practical purposes.

# Poles EPEpSI −Eref (eV) MAE Force (eV/Angstrom)
20 5.868351108 0.400431
40 0.007370583 0.001142
60 0.000110382 0.000026
80 0.000000360 0.000002

Table 2: The difference between the total energy and atomic force produced
by the existing electronic structure code and modified version in which diag-
onalization is replaced by PEpSI. The difference in atomic force is measured
in terms of the mean absolute error (MAE).

4. Conclusion

In this paper, we generalized the recently developed pole expansion and
selected inversion technique (PEpSI) for solving finite dimensional Kohn-
Sham equations obtained from an atomic orbital expansion. We gave expres-
sions for evaluating electron density, total energy, Helmholtz free energy and
atomic forces without using eigenvalues and eigenvectors of a Kohn-Sham
Hamiltonian. These expressions are derived from an FOE approximation
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Figure 5: (color online) Comparisons of the wallclock time used by selected
inversion (at one pole) required for PEpSI and by the LAPACK dsygv used
to diagonalize a Kohn-Sham Hamiltonian associated with BNNT (8,0). The
Hamiltonians are constructed from SZ orbitals (4 basis per atom) in (a) and
DZP orbitals (13 basis per atom) in (b).

to the Fermi-Dirac function using an efficient and accurate pole expansion
technique. They only use selected elements of the reduced density matrix, re-
duced energy density matrix and reduced free energy density matrix. These
selected elements can be obtained from computing selected elements of the
inverse of a shifted Kohn-Sham Hamiltonian through the selected inversion
technique. The complexity of selected inversion is O(Ne) for quasi-1D sys-

tems such as nanorods, nanotubes and nanowires, O(N
3/2
e ) for quasi-2D sys-

tems such as graphene and surfaces, and O(N2
e ) for 3D bulk systems. It com-

pares favorably to the complexity of diagonalization, which is O(N3
e ). We

reported the performance gain we can achieve by comparing the efficiency
of PEpSI with that of diagonalization on two types of nanotubes. The lin-

20



10
1

10
2

10
3

10
4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
-2

10
-1

10
0

10
1

10
2

10
3

Figure 6: (color online) Comparisons of the wallclock time by selected in-
version (at one pole) required for PEpSI and by the LAPACK dsygv used
to diagonalize a Kohn-Sham Hamiltonian associated with CNT(8,8). The
Hamiltonians are constructed from SZ orbitals (4 basis per atom) in (a) and
DZP orbitals (13 basis per atom) in (b).

ear scaling of PEpSI with respect to the number of atoms is clear when the
number of atoms in these quasi-1D systems is larger than a few hundreds.
Even when these nanotubes contain fewer than a hundred atoms, PEpSI still
appears to outperform a diagonalization based DFT calculation. For quasi-
2D and quasi-3D systems, we expect the crossover point over which PEpSI
exhibits O(N

3/2
e ) and O(N2

e ) scaling to be much larger. However, based on
the experiments presented here, PEpSI may still be more efficient than di-
agonalization (before the crossover point is reached) as long as the Cholesky
factors of the shifted Kohn-Sham Hamiltonian are not completely dense.

The computational experiments we presented above were performed on
a single processor. For quasi-1D systems such as nanotubes, the use PEpSI
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allows us to tackle problems that contain as many as 10,000 atoms. This can-
not be done by using a diagonalization based approach. For quasi-2D and
3D systems, a parallel implementation of the PEpSI, which we are currently
working on, is required to solve problems with that many atoms. We will
report the performance for these large-scale calculations in a future publica-
tion.
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Research and Development Program of Lawrence Berkeley National Labo-
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Appendix A.

Derivation of Eq. (14):
Ξ is a diagonal matrix, and the pole expansion (13) can be applied to

each component of Ξ as

fβ(Ξ− µ) ≈ Im

P
∑

l=1

ωρ
l

Ξ− (zl + µ)I
,

where I is an N × N identity matrix. Using Eq. (12), the single particle
density matrix can be written as

γ̂(x, x′) ≈ Φ(x)CIm
P
∑

l=1

ωρ
l

Ξ− zlI
CTΦT (x′)

= Φ(x)Im

P
∑

l=1

ωρ
l

C−TΞC−1 − zlC−TC−1
ΦT (x′).

(A.1)

Since the generalized eigenvalue problem (10) implies the identity

CTHC = Ξ, CTSC = I, (A.2)

the single particle density matrix takes the form

γ̂(x, x′) ≈ Φ(x)Im
P
∑

l=1

ωρ
l

H − (zl + µ)S
ΦT (x′) (A.3)
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which is Eq. (14).
Derivation of Eq. (21):
The first term in the Helmholtz free energy functional is

Tr[fF
β (Ξ− µ)] = Tr[CfF

β (Ξ− µ)CTC−TC−1]

≡ Tr[γFS].
(A.4)

The second equal sign in Eq. (A.4) defines the reduced free energy density
matrix γF , which can be evaluated using the pole expansion (20) as

γF ≈ CIm

P
∑

l=1

ωF
l

Ξ− zlI
CT

= Im

P
∑

l=1

ωF
l

C−THC−1 − zlC−TC−1

= Im

P
∑

l=1

ωF
l

H − zlS
,

(A.5)

which is Eq. (21).
Derivation of Eq. (23):
The atomic force is in general given by the derivative of the Helmholtz

free energy with respect to the atomic positions. Using the representation of
the Helmholtz free energy in Eq. (18), and the fact that

(fF
β )′(z) = fβ(z), Ne = Tr [fβ(Ξ− µ)] , (A.6)
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it can be derived that

FI = − ∂

∂RI

Ftot = − ∂

∂RI

(

Tr[fF
β (Ξ− µ)]− µNe

)

= −Tr

[

(fF
β )′(Ξ− µ)

(

∂Ξ

∂RI

− ∂µ

∂RI

)]

+Ne
∂µ

∂RI

= −Tr

[

fβ(Ξ− µ)
∂Ξ

∂RI

]

+
∂µ

∂RI
(Ne − Tr [fβ(Ξ− µ)])

= −Tr

[

fβ(Ξ− µ)CT ∂H

∂RI
C

]

− Tr

[

fβ(Ξ− µ)
∂CT

∂RI
HC

]

− Tr

[

fβ(Ξ− µ)CTH
∂C

∂RI

]

= −Tr

[

γ
∂H

∂RI

]

− Tr

[

fβ(Ξ− µ)
∂CT

∂RI
HC

]

− Tr

[

fβ(Ξ− µ)CTH
∂C

∂RI

]

(A.7)

The second and the third terms in Eq. (A.7) come from the nonorthogonality
of the basis functions and should be further simplified. We have

Tr

[

fβ(Ξ− µ)
∂CT

∂RI
HC

]

+ Tr

[

fβ(Ξ− µ)CTH
∂C

∂RI

]

=Tr

[

(C−TC−1)[C(CTHC)fβ(Ξ− µ)CT ](C−TC−1)C
∂CT

∂RI

]

+ Tr

[

C−TC−1[Cfβ(Ξ− µ)(CTHC)CT ]C−TC−1 ∂C

∂RI
CT

]

≡Tr

[

(CΞfβ(Ξ− µ)CT )

(

SC
∂CT

∂RI
S + S

∂C

∂RI
CTS

)]

.

(A.8)

Define the reduced energy density matrix as in Eq. (24), and Eq. (A.8) can
be simplified as

Tr

[

γES

(

C
∂CT

∂RI
+
∂C

∂RI
CT

)

S

]

=Tr

[

γES
∂S−1

∂RI
S

]

= −Tr

[

γE
∂S

∂RI

] (A.9)
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Combining Eq. (A.9) and Eq. (A.7), we have

FI = − ∂F
∂RI

= −Tr

[

γ
∂H

∂RI

]

+ Tr

[

γE
∂S

∂RI

]

. (A.10)

which proves Eq. (23).
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