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DFT Calculations for the Uranium EOS 

Carl W. Greeff, Scott D. Crockett, Sven P. Rudin, and John M. Wills 
T-1, Los Alamos National Laboratory, Los Alamos, NM 87545 

We present results of density functional theory calculations on the 
Uranium equation of state. We examine the influence of approximations 
for the exchange-correlation functional and spin-orbit interaction, as well 
as numerical methods such as pseudopotentials. We compare calculated 
properties, such as static lattice energies and electronic specific 
heats, to their empirically derived counterparts. 
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Overview 

Uranium is an easy actinide: Sf electrons itinerant at 
ambient conditions. 

We want to test usefulness of standard EOS models: 

• Additivity of electronic, ion thermal free energies 

• Quasi-harmonic approximation 

Also test applicability of DFT to calculate inputs to these . 
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Lattice parameters under compression 
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Cold pressure - empirical vs. OFT 
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Phonons and thermodynamics of a-U 
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dispersion by J. Bouchet, PRB 77 
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experiment. 
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Phonon instability of bee U 

The bcc structure is also unstable wrt phonon displacement corresponding to 
the H-point at the Brillouin zone boundary. 

We examine the influence of electron-ion coupling by noting, for classical ion 
motion, 

Z == (27f~)3N J dPe-(3Tn J dRTr e-(3[Vnn(R)+Vne(R)+T'e+Vee ] 

(27f~)3N J dPe-(3Tn J dR e-(3Fe(R,T) 

and we approximate 

F p(R , T ) = EDFT + T L [fi In f i + (1 - fi) In(l - fi) ] 
7, 
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Phonon instability: effect of compression 
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Phonon instability: effect of electron T 
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Energy difference for bee phase 
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Summary 

For a-U, we are doing pretty well. 

DFT predicts structure. 

PBE cold curve is accurate. 

Quasi-harmonic lattice dynamics consistent with 
thermodynamics. 

For y (bee) there are several issues 

Unstable modes invalidate quasi-harmonic 
approximation. 

Electron-ion coupling is not negligible. 

Large DFT energy difference from a is not easily 
reconciled with phase diagram. 



What ean we say about bee U? 

Empirical EOS models have: 

U == cold energy + 3kT + electron thermal energy. 

It is possible that strong anharmonicity causes this to be 
significantly in error. 

Or it could be that DFT energy difference is misleading. 
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Spin-orbit coupling influence on a-U lattice parameters 
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Spin-orbit coupling: effect on density of states 
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