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A stable hyperelastic model for foamed rubber 

M.W. Lewis & P. Rangaswamy 
Los Alamos National Laboratory, Los Alamos, New Mexico, USA 

ABSTRACT: A hyperelastic strain energy function for foamed rubber that is based on the physical features of a typical 
uniaxial compression curve for foams and the behavior of a spherical pore in a spherical, incompressible Mooney-Rivlin matrix is 
presented. The model is unconditionally stable when positive moduli are used, and can represent most foam test data, including 
variable Poisson behavior during compression . This most general model has six parameters, including four moduli, a dimension­
less parameter associated with buckling or plateau strain, and an initial porosity. The model will be described and its ability to fit 
compression response data for PDMS foams over a range of relative densities will be evaluated. Several potential extensions of 
this model will be discussed, including representation of the Mullins effect, representation of aging behavior, inclusion of matrix 
compressibility, and modeling the effect of pore gas response. 

1 INRODUCTION 

Elastomeric foams, or foamed rubbers, comprise a 
class of materials that are useful in many engineer­
ing applications. Because of their relatively low 
densities, they offer benefits at low component 
weight. Because of low initial stiffness and ability 
to undergo large, fully recoverable elastic deforma­
tions, the materials work well as impulse limiters 
and cushions that lower stresses that result from dif­
ferential thermal expansion or contraction of nested 
components. 

Current efforts at mechanical modeling of foamed 
rubbers can be divided into two approaches. The 
first of these approaches consists of attempts to un­
derstand the mechanics of foam deformation by 
modeling realizations of unit cells or larger volumes 
of foam with mesh discretizations that represent ac­
tual porosity and matrix morphology. The second of 
these approaches consists of phenomenologically­
based constitutive model development, fitting, and 
evaluation. 

The first of these approaches, which may be seen 
in work by Kraynik et al. (1998), Braydon et al. 
(2005), and a few others, will be referred here to as 
Direct Numerical Simulation (DNS) investigations. 
These DNS investigations are often limited by mesh 
resolution, mesh distortion, and contact mechanics 
issues. Additionally, the process of moving from 
DNS to component- or system-level modeling is not 
yet developed well. 

The second of these approaches, of which the 
current work is an example, is represented by the 
work of lemiolo and Turtletaub (2000). The most 
commonly used hyperelastic model for foamed rub­
bers in finite element analysis is the model proposed 
by lemiolo and Turtletaub, a generalization of the 
Ogden (1984) strain energy function in isochoric 
principal stretches. That model has the advantage 
that it can reproduce test data with good accuracy. It 
has disadvantages that include possible instability 
and high sensitivity of model fit parameters to data 
perturbation and fitting procedure. As a result, it is 
impractical to represent variability in mechanical 
behavior with model parameter distributions. The 
work of Danielsson et al. (2004) is also an example 
of a developed hyperelastic model for these materi­
als, but is limited to lower porosity foams as it does 
not capture the classic plateau behavior observed in 
foams with low relative density. 

This work describes a proposed new model for 
foamed rubber. The model was developed to pro­
vide both accurate fits to test data and model pa­
rameters that can be varied sensibly to represent ma­
terial variability. The model consists of a strain 
energy function that was manufactured to reproduce 
foam compression behavior at moderate porosities, 
namely an initial Poisson's ratio, a nearly linear re­
gion at small strains, an inflection point where the 
material tangent compressive modulus drops signifi­
cantly, and a strongly stiffening region as porosity is 
eliminated. These first three features were intro-



duced phenomenologically, that is without a micro­
mechanical motivation. 

The stiffening region response was derived using 
an approach similar to Danielsson et al. (2004) for 
evaluating the strain energy of a void in an incom­
pressible material subjected to far-field hydrostatic 
compression and a volume-conserving deformation. 
Our only extension to this part of the model is the 
calculation of the integrated second isochoric invari­
ant for this deformation. 

This model has been coded as a material model 
subroutine for use with a non-linear static finite ele­
ment program and has been used to model a valida­
tion problem involving large compressive strains 
combined with substantial torsional deformation. 

The following sections of this paper consist of a 
model description section detailing the form of the 
model and the parameter fitting process used here, 
an example section in which the model is shown to 
reasonably fit uniaxial strain compression test data, a 
model extensions section in which extensions to the 
model are considered and simple aging and pore gas 
compression extensions are demonstrated, and a 
conclusions section. 

2 MODEL DESCRIPTION 

Before we begin the discussion of the phenomenol­
ogy of foamed rubber, a few words about nomencla­
ture and conventions are appropriate. When foams 
are compressed, large compressive strains can obtain 
and significant volume change occurs. We therefore 
need to be very specific about our choices of stress 
and strain measures. Note that if an experimentalist 
refers to "true stress" when working with foams in 
compression, he or she had better have measured 
lateral strain, because standard assumptions of in­
compressibility at large deformations associated 
with metals and solid elastomers do not apply to 
foams. For our purposes, we will refer to engineer­
ing stress and engineering strain, both used here as 
positive in compression. It should also be noted that 
the present work is primarily focused on foam re­
sponse under combined loads of compression and 
shear. The theory developed extends to tension, but 
most foams are not useful in tension as they are very 
weak because of their porosity. 

2.1 Phenomenology 

In much of the literature on foams, foam response is 
characterized in terms of the relative density of the 
foam, p*. The relative density of a foam is defined 
as the ratio of the density of the foam, PI ' to the 
density of the parent solid, ps. The initial porosity of 

the foam, CPo , is related to the relative density as fol­
lows: 

(1) 

A plot of uniaxial stress in compression vs. axial 
strain for monotonic loading of foam with a relative 
density of approximately 0.37 is shown in Figure 1. 
The linear, plateau-like, and densification regions 
are clearly indicated. A hyperelastic material sub­
jected to this loading would unload along the same 
curve to a state of no strain when unstressed. A real 
foamed elastomer would exhibit some hysteresis and 
possibly cyclic softening. For our purposes, we ig­
nore these dissipative mechanisms, with the under­
standing that they can be added to a stable, energy­
conserving model. 
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Figure I . Sample uniaxial compression test data on PDMS 
foam with an initial porosity of approximately 0.63. 
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Figure 2. A plot showing the non incremental version of Pois­
son's ratio and the relative volume decrease measured in a lu­
bricated uniaxial stress compression test of a PDMS foam with 
an approximate initial porosity of 0.63. 

Figure 2 is a plot of the nonincremental form of 
Poisson' s ratio, here defined as the ratio of the lat­
eral engineering strain to the compressive axial en­
gineering strain in a uniaxial stress compression test, 
as measured by Mooday (2002). These data suggest 



that the volumetric stiftness drops signiticantly in 
the plateau-like region of the compression stress­
strain curve. The relative volume change, 1 - J, 
where J is the relative volume or the determinant of 
the deformation gradient, is also plotted in Fig. 2. 
During densification, the volumetric response stiff­
ens, until the nearly incompressible behavior of the 
parent elastomer is approached. 

2.2 The Model 

We have chosen to break the total strain energy 
function into two main terms to capture the salient 
features discussed previously. 

2.2.1 Initial stiffness and abrupt stiffness decrease 
In order to describe the initial abrupt decrease in 
volumetric stiffness discussed previously, we have 
chosen to use a simple hyperelastic model based on 
linear uncoupled stress response in principal 
stretches added to a volumetric strain response that 
is quadratic in (J - 1) until the relative volume hits a 
critical point, Jb, at which point the function be­
comes linear. This part of the strain energy function 
is as follows: 

E ~ ? 

Vip ="2 t(Ai - 1)- (2) 

+111(J. -1l(J -\ + 1)+ H[J -JtJ ~ I}' -(1. -1l(J -\ + I)]) 
In Equation 2 above, E is an uncoupled version of 
Young' s modulus (i.e. if the uncoupled bulk 
mod~lus were zero), Al are the principal stretches, 
and K is the uncoupled bulk modulus (i.e. if the un­
coupled Young's modulus were zero). The expres­
sion H[x] is the unit step function at x. The other 
terms in Equation 2 have been defined previously in 
this article. 

2.2.2 Micromechanically-Based Hyperelastic 
Model for Compaction 

In order to describe the substantial increase in stiff­
ness and stress as the compressive strain approaches 
the initial porosity of a foam, we borrow from a 
strain energy approach used by Danielsson et al. 
(2004) for porous rubber. We have generalized their 
approach to include both first and second isochoric 
invariants in the strain energy function for an iso­
lated void enclosed in a spherical shell of incom­
pressible, Mooney-Rivlin material. The strain en­
ergy expression is as follows: 

(3) 

In Equation 3, CIO and COl are the Mooney-Rivlin 
coefficients of the parent material, and the other two 
unfamiliar symbols represent the generalized iso­
choric invariants as follows: 

II = IJ ; (1) + 3¢o 

where 

21 -1 [¢ lX h (1)=~+(2-21-¢o ) ( 0 ) , 
]73 1 - 1- ¢o 

and 

12 = 1212(1) + 3¢o' 

where 

f 2(J)=JX (2-J)+ (J-l-¢o)[J~(I-¢o )] 
¢/ 

(4a) 

(4b) 

(Sa) 

~ 

In Equations 4a and Sa, the first and second iso­
choric invariants have been used. These invariants 
are defined as follows: 

(6) 

and 

(7) 

where 

(8) 

(9) 

or 

B- -J-%F F 
ij - ik kj" (10) 

In Equations 9 and 10, F is the deformation gradient, 
or the derivative of the current configuration with 
respect to the reference configuration. 

2.2.3 Model Summary 
The full constitutive model proposed, then, can be 
summarized as a hyperelastic model with a strain 
energy function that is expressed as follows: 

U = Ulp + Upc' (11) 

The Cauchy stress, a , can be derived as follows: 

1 au T 
a=--·F. (12) 

J aF 

More explicitly, the Cauchy stress is as follows: 
A 3 

a = E ~ Ai( Ai -l)p i ® Pi + k {J b - 1 + (J - J b)}i 
J i=l 

+ClO[§-fl(J)deV(B) + IJl'(J)i] (13) 

+COl[~ f 2(J)dev(llB - B2) + 12f~ (J)i] 



In Equation 13, the vectors Pi are unit principal di­
rections vectors associated with the corresponding 
principal stretches Ai , dev(A) signifies the deviatoric 
(traceless) part of the second order tensor A, and i is 
the/second order identity tensor. The prime symbol, 
( ) , denotes differentiation of a function with re­
spect to its argument. The other symbols in Equation 
13 should have been adequately explained at this 
point, except for the Macaulay brackets, < ... >, 
which provide the value of the term inside the 
brackets if it is positive, and zero otherwise. 

3 EXAMPLE 

In this section, we consider uniaxial strain compres­
sion. This consideration is motivated by the fact that 
for many cushioning applications, foams are made 
very thin. As a result, compression tests on these 
materials tend to be in the thin direction and end ef­
fects are not negligible. The specimens tend to be in 
a condition of near uniaxial strain. 

In uniaxial strain, only one stretch is not unity. 
Let the axial stretch be A. The relative volume, J, is 
then also A. The only direction in which the stress 
can be easily measured is the axial direction, and it 
can be shown that the axial stress can be represented 
by a combination of linearly independent functions 
of axial stretch with the model moduli as coeffi­
cients. 

Provided that one has values for the initial poros­
ity, ¢o, and for the buckling point, Jb, one may fit the 
moduli using a linear least squares approach. 
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Figure 3. Uni'axial strain compression data and fits to POMS 
foam with a density of 0.4040 glee, an approximate initial po­
rosity of 0.63 . The reduced fit is one for which C Ol has been 
set to zero. 
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Figure 4. Uniaxial strain compression data and fits to POMS 
foam with a density of 0.354 glee, an approximate initial po­
rosity of 0.68. 

In Figures 3 and 4, model fits to uniaxial strain 
compression data for foams with porosities of 0.63 
and 0.68, respectively, are presented. It should be 
noted that the tests used to generate these two fig­
ures were not true uniaxial strain tests, but were 
rather unconfined compression tests with very low 
LID ratios, which were approximately 0.025. 

4 MODEL EXTENSIONS 

In this section we consider two main model exten­
sions. The first is associated with material aging in 
the form of changing crosslinks under a defined de­
formation. The second is associated with the effects 
of pore gas compression. 

4.1 Material aging 

We consider here the effect aging under an imposed 
deformation. The approach here is based on work of 
Tobolsky (1960). We consider that the material in 
the reference state is initially stress free and its net­
work of polymer chains and that the mechanical re­
sponse of its physical and chemical crosslinks is 
well described by a particular strain energy function 
(here chosen as our model for foams). 

The material is then deformed to some new con­
figuration. In this new configuration, the storage 
configuration, new crosslinks are formed during an 
aging process. Old crosslinks may break, too. The 
new set of crosslinks are envisioned as forming a 
second network that is stressless in the configuration 
in which they formed. The mechanical response of 
this second network is assumed to be well repre­
sented by a strain energy function similar to that of 
the original material, but the reference state for the 
second network is the one under which it was 
formed. 



Let us call the detormation gradient that describes 
the deformation of the material under which this 
type of aging occurs Fs. The relative deformation 
gradient, F r, for the second network is found using a 
multiplicative decomposition of the total deforma­
tion gradient as follows: 

(14) 

or 

(15) 

Similarly, one can construct all the relevant tensors 
and invariants pertinent to the strain energy function 
based on this relative deformation tensor. The rela­
tive volume as measured from the storage state is as 
follows: 

J 
J

r 
=-. 

Js 

(16) 

Based on incompressibility of the parent material, 
we can derive a new initial porosity for the storage 
state as follows: 

(17) 

4.1.1 Application of aging model to uniaxial strain 
Let us consider using the approach outlined above to 
describe a material subjected to a uniaxial strain 
compression storage condition at a strain well be­
yond the buckling point (stress-strain slope decrease 
point). Furthermore we will consider that the virgin 
material is well described with COl = O. 

The mechanical response of the second network 
about the storage configuration will be assumed for 
demonstration purposes to be described well by the 
first isochoric invariant part of the strain energy 
function as follows: 

(18) 

where 

jr = Ir +' (J ) + 3",r 
I I J I r 'f'o (19a) 

where 

(19b) 

We could consider that the moduli for the strain en­
ergy network of the initial network change also, but 
for demonstration purposes we will consider them 
constant. The resulting strain energy density func­
tion is as follows: 

V = ViP + V pc + JsC;o(It - 3). (20) 

We now consider the uniaxial strain mechanical re­
sponse of the new material as follows. The Cauchy 
stress for this aged material is then as follows: 

~ 3 

a = E 2 Ai (Ai -1)p i ® Pi + k { J b - 1 + (J - J b) }i 
J i- I 

+CIO [§- I, (J)dev(B) + 1,.1;' (J)i] (21) 

+ C;oJ, [ ; , J,'(J, )dev(B,) +l'(J,')' (1, )i] 
The axial stress under conditions of uniaxial strain is 
again a combination of linearly independent func­
tions multiplied by the moduli of the model. 
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Figure 5. Example normalized compressive stress curves for 
an unaged material and one stored at 22% axial strain compres­
sion. 

A sample plot showing the unaged and aged uniaxial 
deformation response for a fictitious 62% porous 
rubber material aged under an imposed compressive 
strain of 22% is shown in Figure 5. In this case, the 
Clo moduli for the second network and the initial 
network are identical. 

4.2 Pore gas effects 

Let us consider the two different relationships for 
the compression of gases. The first is an isothermal 
treatment where it is assumed that the ambient envi­
ronment can easily exchange heat with the gas while 
it is compressed so that the gas is always at the am­
bient temperature. Another way of saying this is 
that the compression is slow compared to heat trans­
fer processes and that the heat generated in compres­
sion is not enough to raise the temperature of the en­
vironment. 

The pressure under these isothermal conditions is 
as follows: 

(22) 

where Pi is the current pressure, v is the current vol­
ume, p o is the initial pressure, and Vo is the initial 



volume. We can express this in terms ofthe relative 
volume of the gas, Jg , as follows: 

p . = Po 
I J

g
' 

(23) 

Jg is defined as follows: 

(24) 

The other relationship that can be used is that for 
adiabatic gas compression, in which no heat transfer 
is allowed to occur. The pressure for this case is as 
follows: 

Po 
Pa = Jr' 

g 

(25) 

It can be shown that if a strain energy density per 
initial unit volume of gas is W(Jg), then the relation­
ship between Wand the current pressure p is as fol­
lows: 

aw 
p=--. 

aJg 

(26) 

Both the adiabatic and isothermal compression laws 
may be integrated to provide the following strain en­
ergy functions for pore gas: 

Wi = Wo - p o ln(1g) 
and 

(27) 

(28) 

We can use the incompressible matrix assumption to 
derive an expression for the relative volume of pore 
gas in a foam as follows: 

(29) 

Once can substitute the expression in Equation 31 
into the strain energy expressions of Equations 27 
and 28 to calculate the strain energy per initial unit 
volume of gas in terms of the initial porosity and the 
macroscopic relative volume. To develop an ex­
pression for the pore gas strain energy per initial unit 
volume of the foam, one simply multiplies this ex­
pression by the initial porosity as follows: 

(30) 

Similar but less rigorous developments have been 
made by others, but this model extension is rigor­
ously tied to the initial foam porosity. This provides 
a stress contribution to the foam as follows : 

1 
isothermal 

(31) 
adiabatic 

5 CONCLUSIONS 

A strain energy density function for foamed rubber 
has been developed and demonstrated. It is a hybrid 
model, combining rigorously developed strain en­
ergy functions for isolated pores in an incompressi­
ble Mooney-Rivlin parent material with more phe­
nomenological ad hoc strain energy function to 
capture initial stiffness, Young's modulus, and Pois­
son's ratio along with buckling phenomena. 

The model has a feature that it becomes singular 
when the foam is compressed to the point where the 
relative volume is equal to the foam relative density. 
This is an approximation to observed physical re­
sponse and ignores effects of matrix material com­
pressibility which would serve to remove this singu­
larity while preserving a very stiff behavior at large 
compreSSIOns. 

Given that the developed constitutive model is 
only a strain energy density function, several exten­
sions are possible. Two have been considered here. 

The first model extension considered is associ­
ated with material aging and represents the effects of 
crosslink density change in a deformed storage state. 
This approach can produce observed permanent set 
and stiffness changes. 

The second model extension considered here is 
the inclusion of pore gas compression effects. This 
concept has been considered by others, but is more 
rigorously developed here. 

Several other model extensions are possible, in­
cluding the use of developed equivalent isochoric 
invariants in more physically-based strain energy 
functions like the Arruda-Boyce model proposed in 
Arruda and Boyce (1993),viscoelasticity, and the 
Mullins effect. 
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