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A stable hyperelastic model for foamed rubber

M.W. Lewis & P. Rangaswamy
Los Alamos National Laboratory, Los Alamos, New Mexico, USA

ABSTRACT: A hyperelastic strain energy function for foamed rubber that is based on the physical features of a typical
uniaxial compression curve for foams and the behavior of a spherical pore in a spherical, incompressible Mooney-Rivlin matrix is
presented. The model is unconditionally stable when positive moduli are used, and can represent most foam test data, including
variable Poisson behavior during compression. This most general model has six parameters, including four moduli, a dimension-
less parameter associated with buckling or plateau strain, and an initial porosity. The model will be described and its ability to fit
compression response data for PDMS foams over a range of relative densities will be evaluated. Several potential extensions of
this model will be discussed, including representation of the Mullins effect, representation of aging behavior, inclusion of matrix

compressibility, and modeling the effect of pore gas response.

1 INRODUCTION

Elastomeric foams, or foamed rubbers, comprise a
class of materials that are useful in many engineer-
ing applications. Because of their relatively low
densities, they offer benefits at low component
weight. Because of low initial stiffness and ability
to undergo large, fully recoverable elastic deforma-
tions, the materials work well as impulse limiters
and cushions that lower stresses that result from dif-
ferential thermal expansion or contraction of nested
components.

Current efforts at mechanical modeling of foamed
rubbers can be divided into two approaches. The
first of these approaches consists of attempts to un-
derstand the mechanics of foam deformation by
modeling realizations of unit cells or larger volumes
of foam with mesh discretizations that represent ac-
tual porosity and matrix morphology. The second of
these approaches consists of phenomenologically-
based constitutive model development, fitting, and
evaluation.

The first of these approaches, which may be seen
in work by Kraynik er al. (1998), Braydon et al.
(2005), and a few others, will be referred here to as
Direct Numerical Simulation (DNS) investigations.
These DNS investigations are often limited by mesh
resolution, mesh distortion, and contact mechanics
issues. Additionally, the process of moving from
DNS to component- or system-level modeling is not
yet developed well.

The second of these approaches, of which the
current work is an example, is represented by the
work of Jemiolo and Turtletaub (2000). The most
commonly used hyperelastic model for foamed rub-
bers in finite element analysis is the model proposed
by Jemiolo and Turtletaub, a generalization of the
Ogden (1984) strain energy function in isochoric
principal stretches. That model has the advantage
that it can reproduce test data with good accuracy. It
has disadvantages that include possible instability
and high sensitivity of model fit parameters to data
perturbation and fitting procedure. As a result, it is
impractical to represent variability in mechanical
behavior with model parameter distributions. The
work of Danielsson et al. (2004) is also an example
of a developed hyperelastic model for these materi-
als, but is limited to lower porosity foams as it does
not capture the classic plateau behavior observed in
foams with low relative density.

This work describes a proposed new model for
foamed rubber. The model was developed to pro-
vide both accurate fits to test data and model pa-
rameters that can be varied sensibly to represent ma-
terial variability. The model consists of a strain
energy function that was manufactured to reproduce
foam compression behavior at moderate porosities,
namely an initial Poisson’s ratio, a nearly linear re-
gion at small strains, an inflection point where the
material tangent compressive modulus drops signifi-
cantly, and a strongly stiffening region as porosity is
eliminated. These first three features were intro-



duced phenomenologically, that is without a micro-
mechanical motivation.

The stiffening region response was derived using
an approach similar to Danielsson et al. (2004) for
evaluating the strain energy of a void in an incom-
pressible material subjected to far-field hydrostatic
compression and a volume-conserving deformation.
Our only extension to this part of the model is the
calculation of the integrated second isochoric invari-
ant for this deformation.

This model has been coded as a material model
subroutine for use with a non-linear static finite ele-
ment program and has been used to model a valida-
tion problem involving large compressive strains
combined with substantial torsional deformation.

The following sections of this paper consist of a
model description section detailing the form of the
model and the parameter fitting process used here,
an example section in which the model is shown to
reasonably fit uniaxial strain compression test data, a
model extensions section in which extensions to the
model are considered and simple aging and pore gas
compression extensions are demonstrated, and a
conclusions section.

2 MODEL DESCRIPTION

Before we begin the discussion of the phenomenol-
ogy of foamed rubber, a few words about nomencla-
ture and conventions are appropriate. When foams
are compressed, large compressive strains can obtain
and significant volume change occurs. We therefore
need to be very specific about our choices of stress
and strain measures. Note that if an experimentalist
refers to “true stress” when working with foams in
compression, he or she had better have measured
lateral strain, because standard assumptions of in-
compressibility at large deformations associated
with metals and solid elastomers do not apply to
foams. For our purposes, we will refer to engineer-
ing stress and engineering strain, both used here as
positive in compression. It should also be noted that
the present work is primarily focused on foam re-
sponse under combined loads of compression and
shear. The theory developed extends to tension, but
most foams are not useful in tension as they are very
weak because of their porosity.

2.1 Phenomenology

In much of the literature on foams, foam response 1s
characterized in terms of the relative density of the
foam, p*. The relative density of a foam is defined
as the ratio of the density of the foam, pr, to the
density of the parent solid, p;. The initial porosity of

the foam, ¢, , is related to the relative density as tol-
lows:

¢, =l-p =—. (1

A plot of uniaxial stress in compression vs. axial
strain for monotonic loading of foam with a relative
density of approximately 0.37 is shown in Figure 1.
The linear, plateau-like, and densification regions
are clearly indicated. A hyperelastic material sub-
jected to this loading would unload along the same
curve to a state of no strain when unstressed. A real
foamed elastomer would exhibit some hysteresis and
possibly cyclic softening. For our purposes, we ig-
nore these dissipative mechanisms, with the under-
standing that they can be added to a stable, energy-
conserving model.
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Figure 1. Sample uniaxial compression test data on PDMS
foam with an initial porosity of approximately 0.63.
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Figure 2. A plot showing the nonincremental version of Pois-
son’s ratio and the relative volume decrease measured in a Ju-
bricated uniaxial stress compression test of a PDMS foam with
an approximate initial porosity of 0.63.

Figure 2 is a plot of the nonincremental form of
Poisson’s ratio, here defined as the ratio of the lat-
eral engineering strain to the compressive axial en-
gineering strain in a uniaxial stress compression test,
as measured by Mooday (2002). These data suggest



that the volumetric stitffness drops significantly in
the plateau-like region of the compression stress-
strain curve. The relative volume change, 1 — J,
where J is the relative volume or the determinant of
the deformation gradient, is also plotted in Fig. 2.
During densification, the volumetric response stiff-
ens, until the nearly incompressible behavior of the
parent elastomer is approached.

2.2 The Model

We have chosen to break the total strain energy
function into two main terms to capture the salient
features discussed previously.

2.2.1 Initial stiffness and abrupt stiffness decrease
In order to describe the initial abrupt decrease in
volumetric stiffness discussed previously, we have
chosen to use a simple hyperelastic model based on
linear uncoupled stress response in principal
stretches added to a volumetric strain response that
1s quadratic in (J — 1) until the relative volume hits a
critical point, Jp, at which point the function be-
comes linear. This part of the strain energy function
is as follows:

- 3

U, = gg(& <[y 2

m{g,, -2 Jb][@ - tfs-4) }

In Equation 2 above, E is an uncoupled version of
Young’s modulus (i.e. if the uncoupled bulk
modulus were zero), A; are the principal stretches,
and K is the uncoupled bulk modulus (i.e. if the un-
coupled Young’s modulus were zero). The expres-
sion H[x] is the unit step function at x. The other
terms in Equation 2 have been defined previously in
this article.

2.2.2 Micromechanically-Based Hyperelastic
Model for Compaction
In order to describe the substantial increase in stiff-
ness and stress as the compressive strain approaches
the initial porosity of a foam, we borrow from a
strain energy approach used by Danielsson et al.
(2004) for porous rubber. We have generalized their
approach to include both first and second isochoric
invariants in the strain energy function for an iso-
lated void enclosed in a spherical shell of incom-
pressible, Mooney-Rivlin material. The strain en-
ergy expression is as follows:

U, = Cm(il - 3) . Cm(i2 - 3). 3)

In Equation 3, Cjo and Cy; are the Mooney-Rivlin
coefficients of the parent material, and the other two
unfamiliar symbols represent the generalized iso-
choric invariants as follows:

I =1L£(J)+ 30, (4a)
where

=2 (220, )[ "’-r’ (4b)

' 1/3 -(1-¢,)

and

I =Lf(J)+ 39,. (5a)
where

b
(J-1-9,)[/-(1-9.)]

_ Jh(a_
fz(‘])_‘] (2 ‘])+ ¢o%

In Equations 4a and Sa, the first and second iso-

choric invariants have been used. These invariants
are defined as follows:

71 = Bii (6)
and

I,=B], (7
where

B-J 7B, 8)
and

B=F F', )
or

B,=J7F,F,. (10)

In Equations 9 and 10, F is the deformation gradient,
or the derivative of the current configuration with
respect to the reference configuration.

2.2.3 Model Summary

The full constitutive model proposed, then, can be
summarized as a hyperelastic model with a strain
energy function that is expressed as follows:

U=U,+U,,. (11)
The Cauchy stress, o, can be derived as follows:
19U
_ B 12
J oF (12
More explicitly, the Cauchy stress is as follows:
a=—2/l A, ~D)p, ®p, +K{J, ~1+ (/-7 )}i
2
+Cyo Jfl(J)a’ev( )+ 1Lf ()i (13)
s T Ty
+C01[7 fo(J)dev(IB-B?)+ 1, fz(J)l]



In Equation 13, the vectors p; are unit principal di-
rections vectors associated with the corresponding
principal stretches A;, dev(A) signifies the deviatoric
(traceless) part of the second order tensor A, and i is
the second order identity tensor. The prime symbol,
(), denotes differentiation of a function with re-
spect to its argument. The other symbols in Equation
13 should have been adequately explained at this
point, except for the Macaulay brackets, <...>,
which provide the value of the term inside the
brackets if it is positive, and zero otherwise.

3 EXAMPLE

In this section, we consider uniaxial strain compres-
sion. This consideration is motivated by the fact that
for many cushioning applications, foams are made
very thin. As a result, compression tests on these
materials tend to be in the thin direction and end ef-
fects are not negligible. The specimens tend to be in
a condition of near uniaxial strain.

In uniaxial strain, only one stretch is not unity.
Let the axial stretch be A. The relative volume, J, is
then also A. The only direction in which the stress
can be easily measured is the axial direction, and it
can be shown that the axial stress can be represented
by a combination of linearly independent functions
of axial stretch with the model moduli as coeffi-
cients.

Provided that one has values for the initial poros-
ity, ¢,, and for the buckling point, J, one may fit the
moduli using a linear least squares approach.
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Figure 3. Uniaxial strain compression data and fits to PDMS
foam with a density of 0.4040 g/cc, an approximate initial po-
rosity of 0.63. The reduced fit is one for which Cq, has been
set to zero.
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Figure 4. Uniaxial strain compression data and fits to PDMS
foam with a density of 0.354 g/cc, an approximate initial po-
rosity of 0.68.

In Figures 3 and 4, model fits to uniaxial strain
compression data for foams with porosities of 0.63
and 0.68, respectively, are presented. It should be
noted that the tests used to generate these two fig-
ures were not true uniaxial strain tests, but were
rather unconfined compression tests with very low
L/D ratios, which were approximately 0.025.

4 MODEL EXTENSIONS

In this section we consider two main model exten-
sions. The first is associated with material aging in
the form of changing crosslinks under a defined de-
formation. The second is associated with the effects
of pore gas compression.

4.1 Material aging

We consider here the effect aging under an imposed
deformation. The approach here is based on work of
Tobolsky (1960). We consider that the material in
the reference state is initially stress free and its net-
work of polymer chains and that the mechanical re-
sponse of its physical and chemical crosslinks is
well described by a particular strain energy function
(here chosen as our model for foams).

The material is then deformed to some new con-
figuration. In this new configuration, the storage
configuration, new crosslinks are formed during an
aging process. Old crosslinks may break, too. The
new set of crosslinks are envisioned as forming a
second network that is stressless in the configuration
in which they formed. The mechanical response of
this second network is assumed to be well repre-
sented by a strain energy function similar to that of
the original material, but the reference state for the
second network is the one under which it was
formed.



Let us call the deformation gradient that describes
the deformation of the material under which this
type of aging occurs F;. The relative deformation
gradient, F,, for the second network is found using a
multiplicative decomposition of the total deforma-
tion gradient as follows:

F=F F, (14)
or
F =F-F (15)

Similarly, one can construct all the relevant tensors
and invariants pertinent to the strain energy function
based on this relative deformation tensor. The rela-
tive volume as measured from the storage state is as
follows:

J, ==. (16)

Based on incompressibility of the parent material,
we can derive a new initial porosity for the storage
state as follows:

RN o

&

4.1.1 Application of aging model to uniaxial strain
Let us consider using the approach outlined above to
describe a material subjected to a uniaxial strain
compression storage condition at a strain well be-
yond the buckling point (stress-strain slope decrease
point). Furthermore we will consider that the virgin
material is well described with Cy; = 0.

The mechanical response of the second network
about the storage configuration will be assumed for
demonstration purposes to be described well by the
first isochoric invariant part of the strain energy
function as follows:

U, = Cif I -3), (18)
where
I =1 7(J,)+ 39, (19)
where

2J,-1 ¢ ;
£, 2-27 -¢)|—L | . (19b)
)=+ M-(l—«»:)}

We could consider that the moduli for the strain en-
ergy network of the initial network change also, but
for demonstration purposes we will consider them
constant. The resulting strain energy density func-
tion is as follows:

U=U,+U, +Jq41-3) (20)

We now consider the uniaxial strain mechanical re-
sponse of the new material as follows. The Cauchy
stress for this aged material is then as follows:

&|Dj>

i A -Dp, ®p,+K{J, -1+ {J-J)}i
Cm[jfl( )dev(B)+1,f,(J )] 21)

+Cl,J

|2 0B ) 7 (1) 0]

The axial stress under conditions of uniaxial strain is
again a combination of linearly independent func-
tions multiplied by the moduli of the model.
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Figure 5. Example normalized compressive stress curves for
an unaged material and one stored at 22% axial strain compres-
sion.

A sample plot showing the unaged and aged uniaxial
deformation response for a fictitious 62% porous
rubber material aged under an imposed compressive
strain of 22% is shown in Figure 5. In this case, the
C19 moduli for the second network and the initial
network are identical.

4.2 Pore gas effects

Let us consider the two different relationships for
the compression of gases. The first is an isothermal
treatment where it is assumed that the ambient envi-
ronment can easily exchange heat with the gas while
it is compressed so that the gas is always at the am-
bient temperature. Another way of saying this is
that the compression is slow compared to heat trans-
fer processes and that the heat generated in compres-
sion is not enough to raise the temperature of the en-
vironment.

The pressure under these isothermal conditions is
as follows:

v()
pi=pr,~%, (22)
1%

where p; is the current pressure, v is the current vol-
ume, p, is the initial pressure, and v, is the initial



volume. We can express this in terms ot the relative
volume of the gas, J,, as follows:

p=Pe. (23)
Jg 1s defined as follows:

J =

4

1%
— (24)
vO

The other relationship that can be used is that for
adiabatic gas compression, in which no heat transfer

is allowed to occur. The pressure for this case is as
follows:

P,

/s

P, (25)

It can be shown that if a strain energy density per
initial unit volume of gas is W(J), then the relation-
ship between W and the current pressure p is as fol-
lows:

A (26)

Both the adiabatic and isothermal compression laws
may be integrated to provide the following strain en-
ergy functions for pore gas:

W, =W, - p,In(/,) 27)
and
W, =W, + %(J;‘Y -1). 28)

We can use the incompressible matrix assumption to
derive an expression for the relative volume of pore
gas in a foam as follows:

J-1
Jy=—-+1 (29)

o

Once can substitute the expression in Equation 31
into the strain energy expressions of Equations 27
and 28 to calculate the strain energy per initial unit
volume of gas in terms of the initial porosity and the
macroscopic relative volume. To develop an ex-
pression for the pore gas strain energy per initial unit
volume of the foam, one simply multiplies this ex-
pression by the initial porosity as follows:

Ug(“'i) = ¢0W(a,i) (Jg (J>¢o )) (30)

Similar but less rigorous developments have been
made by others, but this model extension is rigor-
ously tied to the initial foam porosity. This provides
a stress contribution to the foam as follows:

isothermal

0, =—pij . 31)
e ') adiabatic

5 CONCLUSIONS

A strain energy density function for foamed rubber
has been developed and demonstrated. It is a hybrid
model, combining rigorously developed strain en-
ergy functions for isolated pores in an incompressi-
ble Mooney-Rivlin parent material with more phe-
nomenological ad hoc strain energy function to
capture initial stiffness, Young’s modulus, and Pois-
son’s ratio along with buckling phenomena.

The model has a feature that it becomes singular
when the foam is compressed to the point where the
relative volume is equal to the foam relative density.
This is an approximation to observed physical re-
sponse and ignores effects of matrix material com-
pressibility which would serve to remove this singu-
larity while preserving a very stiff behavior at large
compressions.

Given that the developed constitutive model is
only a strain energy density function, several exten-
sions are possible. Two have been considered here.

The first model extension considered is associ-
ated with material aging and represents the effects of
crosslink density change in a deformed storage state.
This approach can produce observed permanent set
and stiffness changes.

The second model extension considered here is
the inclusion of pore gas compression effects. This
concept has been considered by others, but is more
rigorously developed here.

Several other model extensions are possible, in-
cluding the use of developed equivalent isochoric
invariants in more physically-based strain energy
functions like the Arruda-Boyce model proposed in
Arruda and Boyce (1993),viscoelasticity, and the
Mullins effect.
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