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Abstract

Discretization of optimal shape design problems leads to very large
nonlinear optimization problems. For attaining maximum computa-
tional efficiency, a sequential quadratic programming (SQP) algorithm
should achieve superlinear convergence while preserving sparsity and
convexity of the resulting quadratic programs. Most classical SQP ap-
proaches violate at least one of the requirements. We show that, for
a very large class of optimization problems, one can design SQP algo-
rithms that satisfy all these three requirements. The improvements in
computational efficiency are demonstrated for a cam design problem.
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1 Introduction

Within the class of potentially very large scale problems, shape optimization
occupies an important place, being an essential part of the design of struc-
tures and mechanisms. The reduction of the continuous problem to a finite
one via discretization or spline function approximations (Braibant and Fleury
1984) can lead to a very large nonlinear constrained optimization problem
(NLP). Because of its origin, however, this NLP can be extremely sparse, as
measured by the fill-in that appears in the rows of the Jacobian of the result-
ing constraints. In fact, since most relations that need to be satisfied by the
continuous problem are local (involving an unknown function at a point and
its derivatives), the finite problem constraints will have nonzero entries only
at a very small set of neighboring points. It is therefore desirable to design
an algorithm for the NLP that takes advantage of this structure and still has
good convergence properties.

This is the requirement that motivates our work. One of the traditional
ways of solving the NLP is sequential quadratic programming (SQP) (Bert-
sekas 1982). At each step of this iterative procedure, a constrained quadratic
program is solved. The desirable features of such an algorithm would be to
achieve fast convergence, to generate easy-to-solve quadratic programs, and
to preserve sparsity for fast linear algebra resolution. Fast convergence is
usually associated with superlinear convergence (Bertsekas 1982). A “not
difficult” quadratic program is one that has a positive semidefinite matrix
in the objective function because the resulting problem is convex. Results
from the past decade show that such quadratic programs have only polyno-
mial complexity (Wright 1997), and are easy to solve from the viewpoint of
complexity theory.

Unfortunately, traditional SQP approaches do not achieve, at the same
time, superlinear convergence and convexity and sparsity of the resulting
quadratic program (QP). Using the Hessian of the Lagrangian of the NLP at
the current point results in a QP that is sparse but not generally convex. In
Betts and Frank (1994) sparsity and convexity of the QP are preserved by
using the exact Hessian of the Lagrangian with a diagonal modification, but
the rate of convergence is reduced to a linear one. Although an acceleration
can be observed by adaptively reducing the diagonal perturbation to zero, it
is not clear whether superlinear convergence and convexity of the QP can be
guaranteed under the usual assumptions. Finally, Powell’s method (Powell
1978). based on the BFGS formula, will result in a convex QP and will exhibit
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superlinear convergence (with some line search modifications; see Bertsekas
1982) but it will destroy the sparse pattern of the problem.

In this paper we show that a very large class of NLPs, many of which
originate in the discretization of optimal shape design optimization problems,
can lead to superlinearly convergent SQPs with convex and sparse QPs. The
key observation is that these NLPs typically have far more total constraints
(equality and inequality) than unknowns, and it is therefore likely that there
will be as many active constraints as variables. Therefore, near convergence,
the sequence approaches the behavior of the Newton step for the nonlinear
equation corresponding to the satisfaction of the active constraints, regardless
of the matrix used in the QP. A constant, sparse positive definite matrix will
be enough to ensure the convexity and sparsity of the resulting QP.

An SQP algorithm, implemented in Matlab, that solves the QP based on
an interior-point technique (Vanderbei 1994) with sparsity support is used
for the NLP that results from the discretization of a cam design problem.
Comparisons between this approach and Powell’s algorithm are provided, as
well as between the interior-point and Matlab QP resolutions.

2 The Optimization Problem

This section describes the class of problems under consideration and sufficient
conditions to obtain superlinearly convergent SQPs with convex and sparse

QPs.

2.1 The Continuous Formulation

The target problem in our case has a finite number of equality constraints,
and an infinite number of inequality constraints, indexed by a real variable
whose domain is a finite, closed interval. Since we wish to incorporate two-
dimensional shape optimization as part of our model, we also include a shape
function, y(t). as a variable in the inequalities to be satisfied. Extension to
multidimensional shape optimization is similar, and we therefore restrict our
attention to just one shape parameter. Let t € [a, b] be the parameter of the
shape. Let F be a finite set of points in [a,b]. Let D be a domain in R™.
The problem that we consider is as follows:




min [ f(u(0)t,2)+ 3 glte) @€ (1)

teF
N;
> ai(z, )y () + fil=, t,9() <0 tefa, b, i=1l.p (2)
j=1

gi(z,t;,y(t:)) =0 teF, i=1.p. (3)

We wish to include derivatives of the shape function, ¥, in the formulation,
because several meaningful constraints are based on them. A good example is
the convexity of the shape constraint, which could involve the shape function
and its first two derivatives (depending on the formulation).

2.2 The Discretized Optimization Problem

The main emphasis of this work is on the treatment of the nonlinear opti-
mization problem that results from discretizing (1). The resulting problem
has the familiar form

min f(z) (4)
gi(z) <0, 1<i<n (5)
Chi(z)=0, 1<:i<p. (6)

For the targeted class of problems, the constraints have a particular struc-
ture. There are few equality constraints corresponding to the set F', compared
with the constraints originating from the discretization of the inequality con-
straints (2). Since the original constraints (2) are local constraints (for a given
point ¢;. only the values of y(¢) and its derivatives at t; enter the constraint
equations), the resulting inequality constraints at a discretization node ¢;,
gi(z). depend only on the value of y at ¢; and a small, fixed length set of
neighboring points. The Jacobian matrix of the constraints is therefore very
sparse. having an almost banded structure.

Since the inequality constraints in (4) originates in (2), their number is
at least the number of discretizing points. We assume that (4) is such that
the number of constraints ezceeds the number of variables. This assumption
is reasonable, especially if there are at least two inequality constraints in (2).
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We also invoke the standard assumption that z* is regular, in other words,
that the Jacobians of the equality constraints and the active constraints are
linearly independent at x*.

Assumption E Qur major assumption is that the total number of active
constraints (equality constraints plus active inequality constraints) is exactly
equal to the total number of variables. This condition is difficult to check
on (1), but can be observed to hold in most applications of interest. One
explanation is that, in most cases, the objective function in (1) is a functional
that depends on the values of y(2) at all points ¢ (one way to rigorously define
that is with respect to the Frechet derivative). If there were fewer constraints
active than the number of variables, a direction of descent could be found
for this case. '

2.3 The Sequential Quadratic Programming Algorithm

The method used here to solve (4) is the sequential quadratic programming
(SQP). At each point z the following problem is solved:

minV f(zx)7d + 57 Hyd ¥
Vai(ze)Td+ gi(zx) <0 i=1.n (8)
Vhi(zi)Td + hi(zi) =0 i =1..p. | 9)

An Armijo-rule-based line search is used to determine z{**1). As a penalty
function to measure the extent of infeasibility, we use the usual exact penalty
function

P(z) = max {gi(z), |h;(z)],7 = 1..n,j = 1..p}. (10)

The line search evaluates decreases of the function f(z) + c¢P(z), where c is
a sufficiently large constant that is nondecreasing at each iteration, although
it becomes constant after a sufficiently big k. As a variant of this method
one can solve an additional quadratic program of the same form as (7) and
do an arc search instead of a line search, in order to guarantee superlinear
convergence. For details, see (Bertsekas 1982).

However, the most important factor in securing superlinear convergence
is the choice of the H; matrix. Let L(z*,A*) be the Lagrangian function
associated with the program (4). To obtain superlinear convergence, the
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matrix Hj has to be “close” in some sense to VZ_L(zg, A¢). In addition,
there are two desirable properties that Hj should satisfy. It should be positive
definite to ensure that (7) can be reasonably easy to solve (since a quadratic
program with a matrix that is not positive definite is NP hard). Also it Hg
should be sparse for computational efficiency.

A choice is Hy = V2 _L(zk, Ar). The sparsity of this problem is preserved,
but there is no guarantee that Hj will be positive definite. Another classical
choice is based on the BFGS rank one update (Powell’s algorithm) Bertsekas
(1982). Although this will generate a positive definite matrix Hj, the rank-
one update will destroy the sparsity. Therefore, neither of these choices will
lead to a program (7) that is both sparse and convex.

Our goal is to determine whether it is possible to obtain SQP with convex
and sparse QPs that achieve superlinear convergence, under the assumptions
set forth at the end of the preceding subsection.

Theorem 2.1 Assume that the solution z* is a regular point of the con-
straints of (4) and that the number of equality constraints plus the number
of active inequality constraints equals the number of unknowns in (4). Let
H, A VEk, any constant matriz. Then, if xr — =, and the step length al-
lowed by the penalty function is at least unity for all k sufficiently large, the
convergence ts superlinear. '

Proof A sufficient condition to obtain superlinear convergence is to be able
to take unit steps along dj that decrease the penalty function and to ensure
that the sequence Hy be uniformly bounded, positive definite on the column
span of Z~ and satisfy

,}LH;[H;C - VizL(xk, )\k)]Z‘ (11)
Here Z~ is matrix whose columns are a base for the nullspace of the Jacobian
matrix of the active constraints (Bertsekas, Prop 4.32, 1982).

Since z* is regular, the Jacobian of the active and equality constraints
has full row rank. By Assumption E, it follows that this Jacobian is square
and invertible. Therefore, its nullspace is 0, or Z* = 0. It is immediate that
any constant sequence A satisfies all the requirements on Hy for superlinear
convergence of x. \YAVAY/

One way to ensure that the step length is unity for all k sufficiently big
is to solve an additional QP and to do an arc search (Bertsekas 1982). Since




this is not the focus of our investigation, we simply assume the stepsize to
be unity for all sufficiently big .

An interesting conclusion is that sequential linear programming (A=0)
will actually achieve superlinear convergence under these conditions. The
cases of interest are, of course, those for which A is positive semidefinite,
resulting in a convex and sparse QP (7). In our experiments we choose
sz()and HL.=I.

The fact that the superlinear convergence does not depend on the choice of
the matrix A might appear surprising. In reality, the fact that the Jacobian
of the constraints is invertible (it is square and full row rank) constrains
the problem to such an extent that the direction found by (7) is actually
determined almost in completely by the constraints. Thus, for sufficiently
big k, the method behaves like Newton’s method: it solves the nonlinear
system that requires the equality constraints and active equality constraints
to be equal to zero. However, far from the solution, (7) ensures that the
descent of the penalty function and guarantees good global behavior.

In all fairness, we must emphasize that Assumption E is almost impossible
to check on the initial problem (1) or its discretization (4). This assumption,
however, is expected to hold in most cases of interest, especially when the
objective function in (1) presents some uniformity with respect to the values
of the shape function y(t). '

3 Numerical Experiments

As an example, consider the problem of designing the shape of a cam. Al-
though simple. this example offers the possibility to test different theoretical
issues related to the optimization procedure. The objective of this example
is to maximize the area of the valve opening for one rotation of the cam. The
variables of the optimization problem are the m values ri, k = 1,...,n defined
in Fig. 1. The shape of the cam is assumed to be circular over an angle of
§7r of its circumference, with radius R, and the m radii r; representing the
design parameters are equally distributed over an angle of %T

Assuming a simple. linear relationship between the shape of the cam and
the valve opening area yields the following objective function:

m

f= —7"312,27';, (12)
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where R, is a constant related to the geometry of the valve. Note that the
expression of f involves all the r;’s (all portions of the shape intervene in the
objective function). Assumption E therefore is expected to hold. If there
are too few inequalities active, there might be r;’s that do not appear in any
active constraint. But then, f would be unbounded.

A number of p constraints written as

7‘_1n_2—2+k = Rt? k= L <=2 Py (13)

require the tip of the cam to be on a circle of radius R,. Additional con-
straints enforce convexity of the optimal shape and limit its curvature. With
the notations of Fig. 1, the convexity constraints are equivalent to the re-
quirement that the sum of the areas of triangles OA;_; Ar and OArArq1
is larger than the area of the triangle OAx_; Axy1. In terms of the design
parameters i, these constraints become

—PkTke1 — PkTr—1 + 2rk_17%+1 cos(AF) < 0, k=2...m~-1 (14)

where A = 0.8x/(m — 1) is the angle between two consecutive radii. Ad-
ditional convexity constraints are imposed at r, and r,, as well as at two
fictitious points r_; and rp43:

—ryrg — Rry + 2Rra cos(A8) < 0

—Rrp —rmo1Tm + 2Rrp 1 cos(Af) <0
—Rry — R? + 2Rr; cos(A8) <0 (15)

—R?— Rr,, +2Rr,, cos(A8) <0

Curvature is controlled through the maximum allowed variation in consecu-
tive radii, that is,

(resr — )’ = (2(A0))* <0,  k=1,..,m—1, (16)

with a a given constant.
The following default values were used for the model constants:

m =101 and 401,p=3,R=1.0,R, = 1.0, R, = 2.0,a = 1.5. (17)

Since a feasible initial estimate of the design parameters is difficult to
obtain. the cam is initially considered to be a circle of radius R. Optimal
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solutions obtained for different numbers of design parameters are presented
in Fig. 2. The solid line solution is obtained for m = 101 design parameters,
while the dashed line solution corresponds to m = 401.

Clearly, an increased number of design parameters lead to more stringent
curvature constraints (by decreasing the value of A#) resulting in a solution
with lower optimal cost function. Because of the discrete nature of the prob-
lem solved, the cam will still exhibit corners, which become less prominent
as a — 0. If needed, the shape can be smoothed by spline interpolation.

Figure 3 shows the influence of the coefficient « in (16) on the shape of
the optimal cam. Results are presented for & = 1.5 (solid line) and o = 2.0
(dashed line). Larger values of the cost function can be obtained by increasing
the value of a, which corresponds to milder curvature constraints.

In order to prove the theoretical observations of Section 2 related to
the advantages of interior-point methods and sparse solvers, two different
quadratic programming algorithms were used. The first one is provided
within Matlab and uses an active set strategy, similar to the one described
by Gill et. al. (1981). The second one, Logo (Vanderbei 1994 and 1997), is
an interior-point algorithm that uses a one-phase primal-dual path-following
method. Table 1 presents the evolution of the norm of the Newton direction,
using the interior-point algorithm, with m = 101. The following three cases
are considered: '

e H =0 - equivalent to a sequentially linear; programming method;
e H=1;

e Rank-one updated QP matrix (Powell’s algorithm, without the correc-
tion for the arc search).

As noted in Section 2, superlinear convergence is obtained in all three cases.
However, significant efficiency improvements are obtained when the QP ma-
trix is constant (either zero or identity) when compared with the case in
which the matrix is updated. This is due to the loss of sparsity generated
by the rank-one update. Table 2 compares the CPU time (in seconds), as
reported by Matlab, spent in the QP solver in each of the above three cases.
The advantage of using interior-point methods is highlighted by the time
required to solve the same three cases by using the quadratic programming
method available in Matlab (see Table 2).

Similar results are obtained when, the number of design variables is in-
creased to m = 401. In this case, however, the active-set algorithm from
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Matlab failed to converge. This is due to the very large number of active
constraints, which in this case becomes 2m + p + 1 = 806. Results obtained
by using the Loqo algorithm are presented in Table 3.

4 Conclusions

We have proposed a simple SQP algorithm that achieves superlinear conver-
gence for a class of problems while generating convex and sparse quadratic
programs for improved computational performance. As an additional advan-
tage, only first derivative information is used. The assumption here is that
the number of active constraints will equal the total number of variables at
the optimal point. The SQP simply uses a constant positive semidefinite
matrix for H; at each step. The cases tested were Hy = 0 and H, = I. As
expected, there were no major differences between the sequences of iterates
in the two, since, near the solution, both behave like a Newton method for
the nonlinear system made of the equality and active inequality constraints.

For all methods used, superlinear convergence, as well as a number of ac-
tive constraints equal to the number of variables, were observed. Therefore,
Assumption E did hold, as assumed. However, the computing time needed
for the solutions of the QP has been almost an order of magnitude less for
our approach compared with the case involving the rank-one updates from
BFGS. The interior-point algorithm used presents several orders of magni-
tude performance improvement over the algorithm provided by Matlab.

Nevertheless, it is difficult to check whether a given problem satisfies As-
sumption E, although some guidelines can be followed. Future work will
include investigating the possibility of relaxing some of the assumptions used
in this paper and the use of similar algorithms for dynamics-based cam de-
sign.
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Table 1: Convergence Analysis

Quadratic Matrix

Iteration || H =0 |H=1 TRa,nk-l update
1 4.596750 4.596745 4.596745
2 8.025247 - 101 | 8.025299 - 10~! | 8.025299 - 10!
3 2.860296 - 102 | 2.860317 - 1072 | 2.860336 - 1072
4 8.256211 -10~* | 8.256270 - 10~* | 8.255900 - 10~*
5 4.890005 - 10=7 | 4.898711 -10~7 | 4.9219911-107
6 5.246231 - 10~ | 2.973782 - 10~ | 1.070026 - 10~!*

Table 2:

Efficiency Analysis, m = 101

Quadratic Matrix

H =0| H =1 | Rank-1 Update

Loqo

0.30

0.32

2.47

Matlab

124.34

145.22

151.27

Table 3: Efficiency Analysis, m = 401

Quadratic Matrix

+1

12

H =0 | H =1 | Rank-1 update
Logo | 3.05] 3.10 | 28.51 ||
Ak~ \
A, {
A AIN- rk']
r [

Figure 1: Definition of Design Parameters




Figure 2: Influence of the Number of Design Parameters on the Optimal
Shape
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Figure 3: Influence of the Curvature Constraints on the Optimal Shape
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