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Abstract

In the past several years, several international agencies have begun to collect data on human performance
in nuclear power plant simulators [1]. This data provides a valuable opportunity to improve human reliability
analysis (HRA), but there improvements will not be realized without implementation of Bayesian methods.
Bayesian methods are widely used in to incorporate sparse data into models in many parts of probabilistic
risk assessment (PRA), but Bayesian methods have not been adopted by the HRA community. In this paper,
we provide a Bayesian methodology to formally use simulator data to refine the human error probabilities
(HEPs) assigned by existing HRA methods. We demonstrate the methodology with a case study, wherein
we use simulator data from the Halden Reactor Project to update the probability assignments from the
SPAR-H method. The case study demonstrates the ability to use performance data, even sparse data, to
improve existing HRA methods. Furthermore, this paper also serves as a demonstration of the value of
Bayesian methods to improve the technical basis of HRA.
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1. Introduction

Probabilistic risk assessment (PRA) is a concep-
tual and computational framework for making ro-
bust, defensible decisions in many industries, in-
cluding nuclear power production. The goal of
PRA is to estimate the both the probability and
the consequences of accidents by systematically in-
corporating information from many sources. In
making decisions about potentially hazardous sys-
tems, it is important to use all available informa-
tion, including data and subjective information. As
Aven states, “the purpose of risk analysis is to sup-
port decision-making, not to produce numbers” [2].
With this goal in mind, all information (objective
and subjective) becomes relevant to making good
decisions.

Bayesian methods are the sole framework that
systematically incorporates subjective information
into logical inference. Because of PRA’s focus on
low-frequency scenarios in highly reliability sys-
tems, empirical data are often lacking. Conse-
quently, Bayesian methods are widely used in PRA

for hardware failure quantification [3, 4].

The hardware PRA community has built a frame-
work for formally assigning probabilities using both
subjective information and objective data [3, 4, 5,
6]. Within this framework, operational experience
and data play an important role in the assignment
of probabilities. This use of Bayesian methods can
be complementary to the use of Bayesian Networks
or can apply outside of the BN framework, as is
done for hardware PRA.

There have been repeated calls to expanding
the technical basis of Human Reliability Analy-
sis (HRA) by systematically integrating informa-
tion from different domains [7, 8, 9, 10, 11, 12].
Paradoxically, the HRA community has not em-
braced Bayesian methods, despite the fact that
HRA has a greater amount of subjective informa-
tion and informal evidence than the hardware com-
munity. The one exception has been in the area
of causal models (called Bayesian Networks, BNs,
or Bayesian Belief Networks, BBNs), which are
becoming more prevalent among HRA researchers
[13, 14, 15, 16, 17, 18, 19, 20, 21, 22] This BN re-
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search provides a powerful opportunity to enhance
HRA, but BNs are only one implementation of the
larger world of Bayesian methods that can benefit
HRA. There remains a full range of Bayesian meth-
ods and associated computational techniques that
can be applied within HRA, but which the HRA
community has not adopted.

The use of Bayesian methods for refining various
parts of HRA has been explored as an academic ac-
tivity in NUREG/CR-6949 [23], but has not been
adopted in the larger HRA community. In the time
since NUREG/CR-6949, discussions about the use
of data in HRA have continued to focused on using
only “objective” frequencies (e.g., [24]), despite the
fact that no single source of data can provide such
frequencies. This narrow focus on frequencies is in-
consistent with the rest of PRA (which encompasses
subjective information), not to mention an unreal-
istic expectation for data collection. Furthermore,
this objective-frequency approach discards substan-
tial amounts of subjective data that is relevant to
the decision making process. To enable the use of
data and to ensure compatibility with the remain-
der of PRA, the HRA community must embrace an
expanded range of Bayesian methods.

Using Bayesian methods entails three things: 1)
using subjective probabilities! to express degrees
of belief; 2) using all available information (sub-
jective and objective) to assign these probabili-
ties; and 3) applying the Bayesian inference pro-
cess to update beliefs as additional information be-
comes available. The Bayesian inference process
entails generating a hypothesis, describing knowl-
edge about the hypotheses by use of a probability
distribution (called the prior), collecting and filter-
ing data, and then obtaining the overall probability
distribution (called the posterior) which represents
degree of belief in the hypothesis, conditional on all
available evidence and information. The Bayesian
inference process can be performed implicitly by ex-
perts (e.g., as a mental calculation) or with formal,
explicit mathematical techniques (as is often done
in PRA).

Conceptually, Bayesian methods can be applied
to a wide range of HRA problems. Applying these
methods computationally requires a more detailed
look at specific problem spaces. NUREG/CR-6949

1Objective or empirical data can be used to develop sub-
jective probabilities, but the use of the subjective interpreta-
tion or probability also allows additional types of information
to be used.

has been criticized as too general, and reviewers
requested more targeted applications of Bayesian
methods to specific problems [23, p. 59-60]. One
such application is the use of Bayesian methods to
formally incorporate data into the models that as-
sign probabilities.

In this paper, we provide a methodology for using
Bayesian methods and computational techniques
traditionally used in hardware PRA to formally use
simulator data to refine the Human Error Proba-
bilities (HEPs) from an existing HRA method. We
demonstrate the methodology by using simulator
data from the Halden Reactor Project to update
the SPAR-H HRA method (the prior). The results
(posterior) discussed in this paper are specific to
this combination of information, but the method-
ology provided is applicable to any combination of
HRA methods and data. The intention is twofold:
to demonstrate the expanded use of Bayesian meth-
ods within HRA, and to demonstrate that it is pos-
sible to use data, even sparse data from different
sources, to update existing HRA methods.

In Section 2, we argue that parameters of exist-
ing HRA models can be interpreted as prior param-
eters, and that they should be subject to Bayesian
updating in the same way that the parameters of
an aleatory model are updated with hardware data.
In Section 3 we provide an introduction to the
Bayesian inference process. In Section 4, we present
the methodology for using simulator data to update
beliefs about human error probability. In Section
5, we present a case study where we used data ex-
tracted from Halden simulator experiments to up-
date HEPs from the SPAR-H method. In Section 6,
we provide a discussion of the work, and we present
final conclusions in Section 7.

2. The meaning of probability in PRA and
HRA

PRA wuses a combination of models to predict
system behavior and possible consequences and to
assign probabilities to different contributors and
outcomes. Probability is used as a tool to distin-
guish more likely scenarios from less likely scenar-
ios. The scenarios are decomposed into a set of
basic events (e.g., component failure on demand,
human errors), which are encoded in determinis-
tic logic-based models (e.g., Fault Trees and Event
Trees). A probability is associated with each basic
event, and the basic event probabilities are com-



bined according to the logic model to provide sce-
nario probabilities for use in decision making.

An example basic event in PRA is “failure of
valve in a closed position.” The probability of each
basic event is expressed by a probability model and
an associated set of parameters. Each probability
model could be a common probability distribution,
such as the Bernoulli distribution with parameter p
or the binomial distribution with parameters p and
n. Each could also be a more complicated prob-
ability model such as an influence diagram, which
incorporates causal factors, each of which is asso-
ciated with a set of parameters. For either model-
ing approach the analyst assigns model parameters,
which represent his/her current state of knowledge
based on all of the available information. These
models are derived from either (a) subjective infor-
mation (e.g., about the chance of not performing
an intended function), (b) actual failure data, or a
combination of (a) and (b).

The goal of quantitative HRA is to determine the
human error probability (HEP), which is the prob-
ability of the basic event associated with a human
failure event (HFE). Example events in PRA are
“failure to initiate Feed and Bleed” and “failure to
align electrical bus to alternative feed.” In prob-
ability language, the HEP is an assignment of the
belief of the truth of the proposition “the human
response to event X will not satisfy system require-
ment Y.” By replacing the word “human” in the
previous sentence with the word “hardware,” it be-
comes apparent that assigning the HEP with an
HRA model is not conceptually different than as-
signing a hardware failure probability with a com-
mon probability distribution such as the binomial
distribution.

The difference between HRA and hardware anal-
ysis is that HRA uses HRA models/methods to as-
sign probabilities, whereas for hardware, statistical
data is used in combination with subjective infor-
mation to assign probabilities. There are numerous
HRA methods available that provide models for as-
signing the HEP. Many HRA methods provide a
function that assigns the HEP, based on the context
of the performance. That is, these provide the con-
ditional probability of a human failure event (HFE),
given the context of performance P(H F E|context).
In many HRA methods, the context is represented
by a set of Performance Shaping Factors (PSFs) or
Performance Influencing Factors (PIFs), which are
discretized into levels or states.

The use of detailed HRA models to predict out-

comes for human events is no different than the use
of a binomial distribution to predict outcomes for
hardware events. The only difference between the
two cases is the number of parameters included in
the model used to make the prediction.

3. Overview of Bayesian inference

The goal of applying Bayesian inference is to rea-
son about a set of hypotheses. In other words, we
will determine which hypotheses are logically more
plausible, given the initial knowledge and the evi-
dence/data available. The hypothesis, H, expresses
a belief, e.g., about an event or a set of outcomes
or about the parameters of a model. The data, D,
represents observations relevant to the hypothesis.

The heart of the Bayesian inference process is
Bayes’ Theorem (Equation 1), which provides the
conceptual and mathematical means for combining
different information in the context of a probabilis-
tic model.

P(D|H)

P(H|D) = P(H) =5 (1)

We apply Bayes’ Theorem to obtain the posterior
distribution, P(H|D), which expresses the plausi-
bility of the hypothesis, given the data. We fol-
low this process to determine the probability that
a hypothesis is true, conditional on all available ev-
idence. Bayes’ Theorem can be applied iteratively
to incorporate a variety of new evidence to make
inferences about the same hypothesis. As such, the
posterior probability from one analysis becomes the
prior probability for the next. This process allows
us to coherently incorporate a variety of informa-
tion sources into a single structure in order to make
inferences.

To apply Bayes’ Theorem, information known
about a hypothesis (independent of the data) is de-
scribed with a prior; this prior is encoded via a
probability model, P(H). The prior is a probabil-
ity distribution which expresses the plausibility of
the hypothesis; this prior represents the analyst’s
initial knowledge about the hypothesis?.

The next step is to collect or obtain data, D, and
express it in a format that can be used to update the

2To reiterate, the Bayes’ prior is intended to capture a
state of knowledge independent of data collection. This does
not imply that the event we are modeling has this probability
distribution as an inherent property; rather, the probability
distribution expresses beliefs about the event.



prior distribution. To do this, we use a likelihood
model. The likelihood model allows us to translate
the observable data into probabilistic information.
The likelihood model represents the process pro-
viding the data; in other words, it is a model of
performance. This likelihood expresses the proba-
bility of the data, given the truth of the hypothesis,
P(D|H). In Equation 1 this likelihood is normal-
ized by the probability of the data over all spec-
ified hypotheses, P(D). For k hypotheses, P(D)
can be calculated as P(D) = Zle P(H;)P(D|H;).
Different likelihood models will be appropriate for
different types of data and hypotheses.

Bayes’ Theorem provides the mathematical
framework for assessing the posterior distribution,
but executing the calculations can be an involved
process. For discrete probability distributions, the
posterior distribution can be easily calculated using
Equation 1. However, for continuous probability
distributions, the calculation of P(D) involves inte-
gration, as shown in the continuous form of Bayes’
Theorem (Equation 2).

f@|0)mo(0) _ f(x|0)mo(0)
f(z) [ f(]0)mo(6)de

This integration cannot be obtained in a closed
form for many forms of the likelihood function.
In these cases, sampling methods such as Markov
Chain Monte Carlo Methods (MCMC) can be used
to solve for posterior distributions. MCMC sam-
pling can be implemented in programs such as
OpenBUGS (formerly WinBUGS) or Matlab. For
some combinations of likelihood functions and prior
distributions that are conjugates, the integration
has a closed form. For these conjugate distribu-
tions, the prior and the posterior distribution are
of the same functional type, and the posterior dis-
tribution can be calculated directly. Many of like-
lihood functions commonly used in PRA have con-
jugate prior distributions [6].

m (0]z) = (2)

3.1. Ezample application in PRA

In PRA, analysts are tasked with expressing a
probabilistic model for each basic event. One of
the most common types of basic event in PRA is
“component fails on demand.” For these events
and other Bernoulli processes, the most commonly
used probability model is the binomial distribution,
(Equation 3).

Prx =a) = fel) = (2)r -

The binomial distribution is used to describe un-
certainty about the number of failures, z, that will
occur in a given number of demands, n, given a pa-
rameter, p, which is interpreted as the probability
of failure-on-demand for the component. In PRA,
this type of uncertainty is called aleatory uncer-
tainty. The term aleatory refers to the stochastic
or random nature of the outcome of processes such
as coin flipping or valve opening.

The parameter p is not directly observable, but it
can be inferred from data or assigned by experts. In
most PRA applications the value of the parameter
is uncertain, due to sparse data, partially relevant
data, imprecision in the data or the methods, and
so on. This type of uncertainty is denoted epistemic
uncertainty. In PRA, the term epistemic refers to
lack of knowledge about models and parameters. In
PRA, the Bayesian inference process is used to ex-
press beliefs about the plausibility of different pos-
sible values for the parameter (that is, to provide
the plausibility of hypotheses of the form “the value
of parameter p is 2”).

Prior beliefs about the parameter can be speci-
fied using a variety of distributions, depending on
the information available. The beta distribution is
commonly used as prior distribution for the param-
eter, p, of the binomial distribution: w(p|a, ) ~
Beta (o, ). Beta(a, ) indicates a beta random
variable, which has probability density function
(pdf) given by Equation 4.

p* (1 —p)Pt

f(p;a,B) = Bla.B)

(4)

Where the beta function, B(«, 8), is used as a nor-
malization constant.

The beta distribution has the advantage of being
conjugate to the binomial distribution. This means
that the posterior distribution for this combination
will also be a beta distribution, with parameters
Opost and fPpost. The values of these parameters,
which represent the combination of the prior and
the data, are given by Equation 5.

Qpost = Aprior +x

Bpost = ﬂprior +n—x (5)

Since the beta and binomial distributions are
conjugate, the Bayesian updating process is simple:
the analyst sets the prior belief about p by assigning
values to a and 3. The data records zx failures in n
demands. The posterior distribution for p is a beta



distribution with parameters obtained from Equa-
tion 5. This posterior model expresses epistemic
uncertainty about the value of p, which is a param-
eter of the aleatory model (Equation 3) to be used
in the PRA. To implement the posterior distribu-
tion within the aleatory model, several approaches
could be used. Commonly approaches include sam-
pling from the distribution for p and using either
the moments (e.g., the mean) or the percentiles of
the distribution for p.

4. Methodology to Bayesian update HEPs
with simulator data

Once we understand that assigning HEPs is
not conceptually different than assigning hardware
event probabilities, the Bayesian inference process
can be applied to update HEPs. Executing the
Bayesian inference process outlined in Section 3 re-
quires several steps:

1. Define the hypothesis
Identify suitable sources of information
Specify the prior distribution
Specify the likelihood function
Conduct Bayesian updating to obtain a poste-
rior

In this section, we demonstrate how to conduct
the Bayesian updating process on HEPs generated
by existing HRA methods using simulator data.
The prior distribution is based on a current HRA
method, and the likelihood function will be spec-
ified to match simulator data. It should also be
noted that we could combine two or more priors to
have a mixture prior representing multiple meth-
ods, however this discussion is beyond the scope of
this paper.

U L

4.1. Step 1: Define the hypothesis

The goal of HRA is to assign a human error prob-
ability (HEP) for the human failure event (HFE) X.
In PRA language, we want to assign a probability
the basic event “failure of human response to event
X,” which is assumed to be Bernoulli process. Asin
Section 3.1, we use the binomial distribution (with
unknown parameter p and n = 1) as the aleatory
model. Since we are uncertain about the value of p,
we wish to use Bayesian inference to obtain a pos-
terior probability distribution for p. Therefore, the
goal of the Bayesian inference is to express a belief
about the hypothesis “the HEP for event X is p.”

4.2. Step 2: Identify suitable sources of informa-
tion

The HRA method and the simulator data se-
lected to be used in the Bayesian updating process
must each be compatible with the hypothesis de-
scribed in Step 1. Any HRA method that directly
assigns human error probabilities is a candidate for
use in Bayesian inference on the hypothesis. This
includes methods such as ASEP [25], CBDT [26],
CESA-Q [27], CREAM [28], HEART [29], KHRA
[30], SLIM-MAUD [31], SPAR-H [32], THERP [33],
and others. While the focus of the current paper is
on HRA methods that directly assign HEPs, the
same Bayesian updating process can be used to up-
date expert judgments (such as those used to assign
the probabilities as part of methods like ATHEANA
[34)).

There are several international projects collecting
data on human performance data in nuclear power
plant simulators, including projects at the OECD
Halden Reactor Project [35, 36], KAERI [37, 3§],
the U.S. NRC [39, 24] and others [1]. Each of these
simulator data sources should be compatible with
the hypothesis, although many of the data sources
are not yet available to the HRA community. Data
availability remains a key issue in HRA [10], so the
choice of simulator data depends largely on avail-
ability.

In addition to being compatible with the hypoth-
esis, the HRA method and the simulator data must
be compatible with each other. Event decomposi-
tion must be consistent between the HRA method
and the simulator data (i.e., they must both define
the human failure event in a similar way.). The
variables (e.g., PSFs or PIFs) in the data source
must be defined in such a way that enables them to
be mapped onto the variables in the HRA method.
Alternatively, both the data and the HRA method
can be mapped to the generic, comprehensive set of
PIFs developed to enable data analysis [18].

4.8. Step 3: Specify the prior distribution

The prior distribution encodes information re-
lated to our knowledge about the hypothesis iden-
tified in Step 1. The form of the prior distribu-
tion depends on the quality of the prior informa-
tion. When prior information is absent, it is de-
sirable to use a non-informative prior to represent
ignorance. When more information is available, in-
formative prior distributions can be specified.

Existing HRA methods provide information,
which can be used to express the prior distribution



on p, which is denoted py. Most HRA methods pro-
vide a point estimate, or a formula to obtain a point
estimate, of the value of p for each context or com-
bination of PSFs. This point estimate can be inter-
preted as the mean value of pg, F(po) for a given
context. To implement this in a probability dis-
tribution we use a limited information prior, based
on the constrained non-informative (CNI) distribu-
tion, where the constraint is on the mean value of
the distribution [40]. The CNI distribution can be
approximated by a Beta(a, ) distribution, with
«a = 0.5, and B derived from the constraint on the
mean? given by Equation 6.
Q@

E(Beta(a, 8)) = oy E(po) (6)
In PRA, «a can be thought of as the number of fail-
ures contained in the prior distribution, and the
sum (a+ ) can be thought of as the number of de-
mands over which these failures occurred. There-
fore the CNI prior represents half of a failure oc-
curring in (a + 8) demands, where 3 is determined
from the predictions of the HRA model. We use this
procedure to develop a CNI prior for each context
represented in the HRA method.

4.4. Step 4: Specify the likelihood function

The likelihood is a mathematical function rep-
resenting the process providing the data. In a
Bayesian analysis, the likelihood is conditioned on
the data. Thus, the form of the likelihood must co-
incide with the type of data to be collected. For
the hypothesis indicated in Step 1, we are reason-
ing about the likelihood of observing a human fail-
ure upon demand. For this problem, the relevant
data is the number of human failures, x, in a given
the number of demands or opportunities for human
failure, n. The binomial likelihood function is ap-
propriate for this type of data.

This likelihood model does not explicitly factor
in information about the context of the perfor-
mance (i.e., the PSFs). Rather, a different likeli-
hood model is developed for each combination of
PSFs in the HRA method.

4.5. Step 5: Conduct Bayesian updating to obtain
a posterior

In the previous four steps, we established a hy-

pothesis, gathered data relevant to the hypothesis,

3This relationship is used when E(pg) < 0.5. For E(pg) >
0.5, the values are switched: 8 = 0.5 and « is derived from
the mean. The interpretation of @ and 8 remains the same.

expressed prior beliefs about the hypothesis, and
identified the appropriate likelihood model. In this
step, we implement Bayes’ Theorem to quantify
the posterior belief about the hypothesis. In other
words, we will determine which the plausibility of
the hypothesis given the prior and the data.

Since we used a conjugate prior distribution and
likelihood function, the Bayesian updating process
is straightforward. The posterior distribution for p,
denoted p; is Beta(cpost, Bpost), where the values
of apost and Bpost are established using Equation 5.

5. Case study: SPAR-H with Halden data

In this section, we implement the methodology
detailed in Section 4 to perform updating on the
SPAR-H method using simulator data from the
Halden Reactor Project.

5.1. SPAR-H

The SPAR-H [32] human reliability analysis
method was developed to estimate HEPs for use in
the SPAR nuclear power plant PRA models. SPAR-
H is used as part of PRA in over 70 U.S. nuclear
power plants and by the event assessment programs
at the NRC.

The SPAR-H method considers two plant states:
at-power and low power/shutdown, and two types
of human activities: diagnosis and action. The two
types of activities use the same equations and PSFs,
but use different PSF multipliers and different val-
ues for the nominal HEP (NHEP). In this paper, we
present the model for action tasks during at-power
operations.

The SPAR-H method uses eight PSFs to rep-
resent the context. Each PSF level is associated
with an HEP multiplier value. Table 1 contains the
SPAR-H PSFs and the PSF multiplier values for
action tasks®. The first step in applying SPAR-H
is to evaluate the level for each PSF to determine
the multipliers.

The second step is to calculate HEP using equa-
tions provided in the worksheets. Two equations
are provided; which equation is used depends on the

4Note that the SPAR-H method also has an “Insufficient
Information” level for each PSF, with a corresponding mul-
tiplier of 1. This is not included in Table 1 because Bayesian
methods use prior information to enable inference when there
is missing information. See [20] for more information.



Table 1: SPAR-H PSFs, levels for each PSF, and multipliers

for each level.

PSF PSF Level Multiplier
Expansive 0.01
Extra 0.1
Available Time Nominal 1
Barely adequate 10
Inadequate HEP=1.0
Nominal 1
Stressors High 2
Extreme 5
Nominal 1
Complexity Moderate 2
High 5
High 0.5
Experience/Training Nominal 1
Low 3
Nominal 1
Avail., but poor 5
Procedures Incomplete 20
Not available 50
Good 0.5
. Nominal 1
Ergonomics/HMI Poor 10
Missing/Misleading 50
Nominal 1
Fitness for duty Degraded Fitness 5
Unfit HEP=1.0
Good 0.5
Work Processes Nominal 1
Poor 5

number of negative PSFs (any PSF where the as-
signed level has a multiplier greater than 1). Equa-
tion 7 is used to calculate the HEP for situations
with fewer than three negative PSFs. Equation 8 is
used if there are three or more negative PSFs,

8
HEP =NHEP-[[5: (7)
1

8
_ NHEP -T[, S;
NHEP-(I[}Si—1) +1
where S; is the multiplier associated with the as-
signed level of PSF 4. For diagnosis tasks NHEP =
0.01 and for action tasks NHEP = 0.001. The

SPAR-H guidance suggests a lower limit of 1 x 10°
for the HEP.

HEP

(8)

5.2. Halden simulator experiments

In 2010, a team of researchers from the Halden
Reactor Project conducted a series of experiments

at a training simulator of a PWR plant in the
United States [36]. The experiments were con-
ducted as part of the NRC’s HRA Empirical Study,
which was designed to collect simulator data to
benchmark and improve existing HRA methods.
These experiments used the PWR simulator to
challenge the operators under a variety of different
contexts.

In these experiments, operating crews each per-
formed four different simulator scenarios: a basic
Steam Generator Tube Rupture (SGTR) (scenario
3), a loss of CCW (component cooling water) and
RCP (reactor coolant pump) seal water (scenario
2), and a total loss of feedwater (scenario 1A), fol-
lowed immediately by a complex SGTR (scenario
1C). Each simulator scenario was designed to corre-
spond to an HFE that would be included in a PRA
model. For scenario 1A, the criterion for occurrence
of an HFE was “failure to establish feed and bleed
within 45 minutes of the reactor trip, given that
the crews initiate a manual reactor trip before an
automatic reactor trip.” For scenario 1C, the crite-
rion for occurrence of an HFE was “failure of crew
to isolate the ruptured steam generator and con-
trol pressure below the SG PORV setpoint to avoid
SG PORV opening.” In the experiment, the crew
was expected to complete this action within 40 min-
utes of the start of the SGTR. For scenario 2, the
criterion for occurrence of an HFE was “failure of
the crews to trip the RCPs and start the Positive
Displacement Pump (PDP) to prevent RCP seal
LOCA.” For scenario 3, the criterion for occurrence
of an HFE was “failure of crew to isolate the rup-
tured steam generator and control pressure below
the SG PORV setpoint before SG PORV opening.”

Four crews participated in the experiments. For
three of the crews the composition was one Shift
Manager (SM), one Unit Supervisor (US), one Shift
Technical Advisor (STA) and two Reactor Opera-
tors (RO). In one crew the SM was not present and
instead they had three ROs. Three of the crews
participated in each of the four scenarios. A fourth
crew only participated in three of the scenarios due
to simulator failure. In total, the Halden team col-
lected data on fifteen experimental cases.

Multiple types of information were gathered dur-
ing and after each of the scenarios. The data in-
cluded second-by-second simulator logs, audio and
video recording of the crew, observations from the
experimental team, and observations from plant
training experts. After the scenarios, the Halden
experimental team conducted crew member inter-



views and distributed questionnaires to all crew
members. The crew member questionnaires in-
cluded an adapted version of the NRC Simulator
Crew Evaluation Form, NUREG-SR1020 rev. 9,
Form ES-604-2 [41]. Due to the sensitive nature of
these data, only the Halden team had access to the
raw data. The Halden team processed the data to
remove all identifying details about the crews before
releasing any information to other research teams.

The Halden team issued report HWR-981, [36],
which summarizes the fifteen experiments. The
summary includes detailed descriptions of the sce-
narios, and both the context and the outcome of
each experiment. The summary includes ratings
for eleven PSFs: stress, adequacy of time, team
dynamics, work processes, communication, sce-
nario complexity, indications of conditions, human-
machine interface, training and experience, proce-
dural guidance, and execution complexity. The
Halden team rated these PSF's on a four-point scale:
nominal or positive, not a driver, negative driver,
and main negative driver.

5.3. Extracted data

While the Halden team did not directly col-
lect information about the SPAR-H PSFs; the
anonymized Halden data contained enough infor-
mation to be used to extract the SPAR-H PSFs.
The Sandia team used the Halden report [36] and
the anonymized simulator crew evaluation forms to
assign a level for the SPAR-H PSF's for each of the
fifteen experiments.

The data extracted from the fifteen simulator
runs are presented in Table 2. Each row represents
a single crew’s performance in one of the four sce-
narios. The first column of Table 2 contains the sce-
nario number for each data point. The next eight
columns of Table 2 are the levels of the SPAR-H
PSFs, as rated by the Sandia team. Together, these
eight columns form the context of the performance.
Each of these contexts is associated with a letter
(A-D) for brevity.

At this point, it is important to differentiate be-
tween scenarios and contexts. The scenarios denote
the configuration of the experiments conducted by
Halden. The contexts are the states of the PSFs as-
sociated with each experimental run, or each crew-
scenario combination. The context for each sce-
nario is not necessarily identical, because several of
the PSFs can vary with different crews. The data
set in Table 2 includes four contexts. For this set
of data, the context is identical across all of crews

for each scenario in the experiment. However, this
uniformity will not always be seen in simulator data
since several of the PSFs can vary with different
Crews.

The final column of Table 2 documents whether
the crew response to the scenario was an error, ac-
cording to the criteria discussed in the previous sec-
tion. In this column, “Yes” denotes than an HFE
occurred, “No” denotes that there was not an HFE.
The error column for Scenario 1C contains two dif-
ferent outcomes for each crew, due to a difference
between the experimental failure criterion and the
PRA failure criterion for this scenario. For scenario
1C, the PRA failure criterion is “failure to isolate
the ruptured SG and control pressure below the SG
PORYV setpoint to avoid SG PORV opening”; the
experimental failure criterion added a 40 minute
time cut-off to the PRA criterion. In the error col-
umn in Table 2, the first result represents the PRA
failure criterion and the result in parenthesis repre-
sents the experimental failure criterion.

5.4. Bayesian updating

The Bayesian updating approach described in
Section 4 is implemented on each context, or com-
bination of PSF's. For the eight PSFs, in SPAR-H,
there are 19440 possible contexts.

The SPAR-H equations, Equations 7 and 8, de-
terministically assign an HEP for each combination
of PSFs, P(Error|PSFiNPSF;N...N PSFEg). Re-
lating this back to Section 4.3, SPAR-H assigns a
value for E(pg) for each of 19440 the possible con-
texts.

To obtain E(pg) for each context, we developed
a Matlab script implementing Equations 7 and 8,
the rule for selecting the appropriate equation, and
the lower limit on HEP. We used a second Matlab
script to assign the parameters of a CNI prior dis-
tribution for each py. The parameters of the prior
distribution for the four contexts represented in the
data are shown in Table 3.

To implement the Bayesian approach we need two
pieces of data for each context: z, the number of
human failures, and n, the number of opportunities
for human failure. The data for each context in Ta-
ble 2 can be aggregated together to provide values
for  and n. The aggregated data for the four con-
texts is presented in Table 4. Two sets of data are
presented for context B, to account for the two sets
of failure criteria for Halden scenario 1C. The first
set of data is for human errors, as defined by the



Scen. Time Stressors Complex. Exper. Procedures HMI Fitness WorkProc Context Error?
1A Extra Nominal Moderate Nominal Avail., but poor Nominal Nominal Nominal A No
1A  Extra Nominal Moderate Nominal Avail., but poor Nominal Nominal Nominal A No
1A Extra Nominal Moderate Nominal Avail., but poor Nominal Nominal Nominal A No
1A  Extra Nominal Moderate Nominal Avail., but poor Nominal Nominal Nominal A No
1C Barely adeq. High Moderate Nominal Avail., but poor Nominal Nominal Nominal B No(No)
1C Barely adeq. High Moderate Nominal Avail., but poor Nominal Nominal Nominal B No(Yes)
1C Barely adeq. High Moderate Nominal Avail., but poor Nominal Nominal Nominal B No(Yes)
1C Barely adeq. High Moderate Nominal Avail., but poor Nominal Nominal Nominal B Yes(Yes)
2 Inadequate High High Low Avail., but poor Nominal Nominal Poor C Yes
2 Inadequate High High Low Avail., but poor Nominal Nominal Poor C Yes
2 Inadequate High High Low Avail., but poor Nominal Nominal Poor C Yes
2 Inadequate High High Low Avail., but poor Nominal Nominal Poor C Yes
3  Extra Nominal Nominal Nominal Nominal Nominal Nominal Nominal D No
3  Extra Nominal Nominal Nominal Nominal Nominal Nominal Nominal D No
3  Extra Nominal Nominal Nominal Nominal Nominal Nominal Nominal D No

Table 2: SPAR-H PSF assignments and performance outcomes extracted from the fifteen Halden simulator experiments. See

Section 5.3 for description of each column.

Table 3: Expected value and prior distribution for p for
each of the four contexts represented in the simulator data.
The expected value is the HEP calculated from the SPAR-H
method. The expected value was used to fit the constrained
non-informative prior distribution in the table.

Context  E(pg) Prior

A 1.00E-3  pg ~ Beta(0.5,499.5)

B 1.67E-1  py ~ Beta(0.5,2.4975)
C 1.00 o ~ Beta(50000,0.5)
D L.O0E-4  po ~ Beta(0.5,4999.5)

PRA criteria. The second set of data is for human
errors, as defined by the experimental criteria.

To obtain the posterior distribution, we apply
Equation 5 to combine the prior and the data. The
posterior distribution for p; for the four updated
contexts is presented in Table 4.

5.5. Results

Table 4 demonstrates that it is possible to use
sparse data to refine HEPs for existing HRA meth-
ods. Furthermore, comparing the posteriors (Table
4) with the priors (Table 3) shows the importance
of incorporating data into existing HRA methods.

For contexts A, C, and D, the posterior mean is
very close to the prior mean. This indicates that
the data from the experiments was consistent with
the predictions of the SPAR-H model. For contexts
A, C, and D, combining data with the SPAR-H
method doesn’t change the HEPs assigned. How-
ever, adding the data enhances the technical basis
of the SPAR-H HEPs, and this enhanced techni-

Table 4: Aggregated data and posterior distribution for p
for the four contexts represented in the simulator data. The
relevant data are the number of failures, x, and the number
of opportunities for failure, n. For context B, we ran the
analysis for both interpretations of the data. The expected
value of p; is calculated from the posterior distribution.

Context Data (x/n) Posterior E(p1)
A 0/4 p1 ~ Beta(0.5,503.5)  9.92E-4
Brra 1/4 p1 ~ Beta(1.5,5.4975) 2.14E-1
Beop  3/4 p1 ~ Beta(3.5,3.4975)  5.00E-1
C 4/4 p1 ~ Beta(50004,0.5)  ~ 1.00
D 0/3 p1 ~ Beta(0.5,5002.5) 1.00E-4

cal basis increases the credibility of the SPAR-H
method.

For context B, the posterior mean is measurably
different than the prior mean for both interpreta-
tions of the data. In both cases, the HEPs increase.
For case Bpgra, the posterior mean is a slight in-
crease over the prior mean. For case Bcgp, the
posterior mean increases more substantially. This
increase shows that the HEPs predicted by SPAR-
H underestimate the probability of human errors,
which leads to non-conservative PRA results.

The results for context B show that simulator
data can be used to refine the probabilities from
existing HRA methods. In this case, adding data
to the SPAR-H method has both demonstrated
and improved a weakness in the original method.
Adding data brings the SPAR-H HEPs more in line
with the data that is observed. In all cases, adding
data increases the credibility of the SPAR-H model.



6. Discussion

The results of the case study demonstrate that
Bayesian updating can be used to refine the prob-
ability assignments from existing HRA methods.
The results also show that the SPAR-H method un-
derestimates the human contribution to risk for at
least one context, which leads to non-conservative
PRA results. This underestimation provides a pow-
erful argument for the need to use data to refine
existing HRA methods.

6.1. Applicability of simulator data

Simulator data provides powerful insight into
P(Error|PSFs). Leveraging simulators provides
a unique opportunity to gather, via controlled ex-
periments, data for events that would not normally
be seen in the historical record for NPP operation
(e.g., severe accidents, or unlikely PSF states such
as unavailable procedures). These controlled exper-
iments can be designed to focus on specific causal
factors in order to make inference on performance
under known conditions.

It can be argued that simulator data does not al-
ways represent the expected conditions in a nuclear
power plant (e.g., the simulator events are designed
to be more difficult than “real” accidents). How-
ever, the approach presented in this paper bypasses
this difference, by reasoning about P(Error|PSF's)
rather than P(Error). While the simulator data is
not necessarily perfectly representative of the con-
text of real operational events, the simulator data
is fully representative of the occurrence of human
failure events, given the PSFs. That is, we believe
that operators responding to a given context will
exhibit the same response in both real events and
in simulator performance.

6.2. Challenges: data access and organization

The greatest challenge experienced was gaining
access to the data. The most relevant information
comes from a wide range of simulator data (sev-
eral sources of such data are described in Section
4.2) and operational experience (including HERA
[42], OPERA [38], and CORE-DATA [43]). These
databases provide a powerful opportunity to update
existing HRA methods. However, access to the data
is severely limited due to the sensitivity of the raw
data.

The effort taken by the Halden reactor project to
anonymize the raw data resulted in an extremely
rich set of information. To truly enable use of data
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for HRA, future data collection projects should fol-
low Halden’s lead by anonymizing the data and
making it available to research organizations.

The simulator experiments provide a good start-
ing point for data collection. It is imperative to
continue obtaining simulator data. However, the
scope of HRA data must be expanded to include
specific human-performance elements (PSFs) in the
operational data. Since HRA models have a variety
of PSF's, the data required to update existing HRA
methods must span the spectrum of PSF's used in
current HRA methods. The PSF taxonomy pro-
posed by [44] provides a good starting point for ex-
panding operational data collection frameworks to
include a comprehensive set of PSFs.

On a related note, there is a broad range of in-
formation, beyond simulator and operational data,
that is relevant to human performance in nuclear
power plants. Possible sources of information that
may be relevant to HRA hypotheses include: ex-
isting HRA methods, expert judgment, and cogni-
tive literature. These information sources provide
a variety of both qualitative and quantitative infor-
mation, including point and interval estimates of
HEPs, linear models, correlations between various
PIFs, the magnitude of PSF influences, and rela-
tionships between variables. The data from these
sources may be less sensitive than the simulator and
operational data. However, no one has made a con-
certed effort to develop a database containing this
information. Effort should be undertaken to assem-
ble this information in a database accessible to the
HRA research community.

6.3. Next steps

The case study in this paper only included data
about four of the contexts in SPAR-H. As a next
step, it is desirable to continue to gather simulator
data, ideally from multiple simulators, to capture
the other contexts in the SPAR-H method.

In Section 5.4, we presented results for two dif-
ferent interpretations of the Halden data (contexts
Bpra and Begp). In a more complicated Bayesian
analysis, we could directly address the uncertainty
in the data by assigning prior distributions to the
number of failures in the data.

For this case study, we used a CNI prior distribu-
tion. The CNI distribution is known to have rela-
tively light tails, which makes it difficult to update
with sparse data for low probability events. In fu-
ture work, other diffuse priors (including mixture
priors) should be compared to the CNI prior.



7. Conclusions

This paper presented a Bayesian methodology
to update HEPs from existing HRA methods with
simulator data. We provided a case study, wherein
we updated several values from SPAR-H with
simulator data from Halden experiments. This
methodology and case study demonstrate the value
of Bayesian methods for HRA. Furthermore, we
demonstrated that we do not require an inordinate
amount of data, nor do we require perfect data
to improve existing HRA approaches. The same
Bayesian approach can be used to add operational
data to HRA methods, if the operational data in-
cludes descriptions of the PSFs that are relevant to
the operational performance.

Furthermore, by using the Bayesian Network
framework, it is possible to combine data about
P(Error|PSFs) with data about P(PSF's) to pro-
vide an expanded technical basis for HRA, with the
added benefit of an expanded scope of reasoning.
The BN version of the SPAR-H model, documented
in [20] can be updated using the same methodology
documented in this paper. Using the Bayesian up-
dating on the probabilities produced by BN models
provides the ability to incorporate a wide variety of
data sources to enhance the credibility of the model.

The Bayesian inference process can be applied
to a wide range of HRA problems. In this pa-
per, we demonstrated how to conduct inference for
HRA problems at a high level of abstraction (fail-
ure probabilities for general human tasks). Future
works should be developed to demonstrate how the
Bayesian inference process can be used to conduct
inference on HRA problems at more detailed, causal
levels (e.g., what is the effect of a given PSF on per-
formance).

Implementing the Bayesian methodology brings
HRA in line with the Bayesian processes used in
other aspects of PRA. By expending effort to bridge
the gap between hardware and human failure mod-
eling, HRA quality (and thereby PRA quality) is
enhanced. Inherent deficiencies in any part of PRA
degrade the applicability of the PRA results. The
Bayesian approach provides a way to incorporate
data into the HRA process, which will go a long way
to resolve the model credibility issues that plague
HRA.
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